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Abstract: Sobrerol, an oral mucolytic agent, in a recent study showed promise for treating multiple
sclerosis. A human equivalent dose of 486 mg of sobrerol administered thrice daily (i.e., 1459 mg
of daily dose) demonstrated the highest therapeutic efficacy for repurposing use, which also points
out the poor compliance of administration. In this study, oral sustained-release pellets of sobrerol
were successfully developed with evaluated manufacturing conditions and drug release kinetics.
For design of the target drug product, we used a modeling and simulation approach to establish a
predictive model of oral pharmacokinetic profile, by exploring the characteristics and correlations
corresponding to the pharmacokinetics and pharmacodynamics of sobrerol, such as absorption lag
time (0.18 h), time-scaling in vitro–in vivo correlation (tin-vitro = 0.494 tin-vivo − 0.0904), gastrointesti-
nal transit time (8 h), minimum effective concentration (1.61 µg/mL), and duration of action (12.8 h).
Results showed that the frequency of administration and the daily dose remarkably reduced by 33.3%
(i.e., from thrice to twice daily) and 22.8%, respectively, which indicates that this prototype approach
can be adopted for rapidly developing a modified-release dosage form of sobrerol, with improvement
of compliance of administration and therapeutic efficacy.

Keywords: sobrerol; multiple sclerosis; sustained-release; pellets; modeling and simulation; dissolution;
pharmacokinetics; pharmacodynamics; IVIVC

1. Introduction

Sobrerol, developed in the 1970s as a mucolytic agent, is widely used to treat acute
or chronic respiratory diseases caused by increased bronchial mucus and obstruction [1].
The recommended dose of sobrerol was 400 mg daily for adults, the longest treatment
period was 3 months with a daily dose of 600 mg, and the maximum daily dose was
900 mg for 10 consecutive days. Sobrerol is considered a relatively safe drug with no
substantial side effects when administered under guidance [2–4]. In addition to respiratory
diseases, sobrerol has recently been studied to treat multiple sclerosis, an autoimmune
neurological disease [5]. The experimental autoimmune encephalomyelitis (EAE) animal
model exhibiting inflammatory demyelination and axonal damage was adopted in the
study on multiple sclerosis treatment [6,7], and sobrerol could effectively alleviate EAE
symptoms at a dose of 100 mg/kg thrice daily, which is equivalent to the positive control
dimethyl fumarate at a dose of 100 mg/kg twice daily. Dimethyl fumarate is the first-line
oral drug currently used for treating multiple sclerosis, and its most common adverse events
are flushing, diarrhea, abdominal pain, nausea, vomiting, and lymphocyte reduction [8,9].
Compared with dimethyl fumarate, sobrerol has the potential to be safer in treatment.
However, the human equivalent dose converted from the animal dose is 486 mg thrice daily
(i.e., 1459 mg of daily dose), which considerably exceeds the current therapeutic dose used.
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In this study, we developed oral sobrerol sustained-release (SR) pellets to improve
compliance for repurposing indications. SR pellets are usually pseudospherical (0.5–1.5 mm
in diameter) with a smooth surface, relatively high density, and excellent flowability. SR
pellets dosage form is comprised of many small discrete drug delivery units, which can
then be filled into capsules or sachets for oral consumption [10–13]. SR pellets not only
have flexible release profiles but can also reduce the risk of dose dumping compared with
larger single-unit dosage forms [14–16], thus demonstrating the advantages of long-term
efficacy and safety.

The Biopharmaceutics Classification System (BCS) is a systematic classification based
on the water solubility and intestinal permeability of drugs (as shown in Table S1 of
Supplementary Material) [17]. When combined with in vitro dissolution characteristics,
this system can be used to determine how fast and how much of a drug is absorbed in the
body. To shorten the time and reduce the cost during the development of drug products,
in vitro–in vivo correlations (IVIVCs) are often used to express the characteristics of drug
products; that is, they accurately predict the correlation of the in vivo pharmacokinetic
profiles of drugs with the in vitro dissolution data. If the drugs with a property of high
permeability (i.e., BCS class I or II) are stable in the gastrointestinal tract and dissolution is
the rate-limiting step during drug absorption, the IVIVCs are expectedly established [18,19].
Therefore, sobrerol can be classified as a BCS class I drug due to high water solubility and
intestinal permeability [20,21], which is supported to follow the model of IVIVC, even more
in the case of modified-release.

As depicted in Scheme 1, we developed pellet dosage forms and evaluated manufactur-
ing conditions and drug release kinetics for various pellets. Subsequently, we predicted the
oral pharmacokinetic profiles of pellet dosage forms by adopting modeling and simulation
approaches [22,23]. We constructed a predictive model by exploring the characteristics and
correlations corresponding to the pharmacokinetics and pharmacodynamics of sobrerol.
Finally, we used the constructed predictive model to design the formula and specifica-
tion of the target drug product of sobrerol to improve compliance of administration on
repurposing treatment.
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2. Materials and Methods
2.1. Materials

Sobrerol was purchased from DaeHe Biopharma Co., Ltd. (Gyeonggi-do, Korea).
Ethanol and analytical-grade methanol were obtained from Echo Chemical Co., Ltd. (Miaoli,
Taiwan). Microcrystalline cellulose (MCC) was obtained from Wei Ming Pharmaceutical
Mfg. Co., Ltd. (Taipei, Taiwan). Ethyl cellulose (EC) and hydroxypropyl methyl cellulose
(HPMC) were obtained from Ashland Global Specialty Chemicals Inc. (Ashland, KY, USA).

2.2. Manufacturing
2.2.1. IR Pellets

Considering that a higher dose is required for repurposing sobrerol, we used the
extrusion-spheronization process that can produce high-drug-loaded dosage forms to
prepare sobrerol immediate-release (IR) pellets [24,25]. Subsequently, 84 g of sobrerol, 36 g
of MCC, and an appropriate amount of water were thoroughly mixed using a mixer (TK-
9517, Heas Technology Co., Ltd., New Taipei, Taiwan). The pellets were prepared into a
strip shape by using an extruder (SY-BG-120, Shang-Yuh Machine Co., Ltd., New Taipei,
Taiwan) at a speed of 40 rpm. Spherical pellets were produced using a spheronizer (SY-SM-
40C, Shang-Yuh Machine Co., Ltd., New Taipei, Taiwan) at a speed of 1000 rpm for 1 min.
The pellets were finally dried in a hot-air oven (ED-4, Rei Hsiung Enterprise Co., Ltd., New
Taipei, Taiwan) at 60 ◦C for 3 h to obtain IR pellets with 70% drug loading.

2.2.2. SR Pellets

SR pellets were prepared by spraying medical polymers on the IR pellets to form a
coating layer. The coating layer was composed of a hydrophobic polymer (EC) and a hy-
drophilic polymer (HPMC). The formula and preparation conditions were examined using
a 3-factor, 3-level design of experiment (33 DoE). A 13-experiment-matrix was generated
using Minitab 18 (Minitab LLC., State College, PA, USA) with three factors, namely, coating
weight relative to IR pellets (%Wcoat, Factor A), HPMC/EC composition ratio (XHPMC/EC,
Factor B), and curing temperature (Tcur, Factor C). Each factor had three levels and was
coded from low to high with values of−1, 0, and 1, respectively, and the response indicated
the first-order constant of dissolution (kd in unit of h−1). The 33 DoE matrix of sobrerol SR
pellets is presented in Table 1, and actual weights of the components are shown in Table S2
of Supplementary Material.

Table 1. The 33 DoE matrix of sobrerol SR pellets for a total of 13 experiments.

Code Factor A 1

%Wcoat

Factor B 2

XHPMC/EC

Factor C 3

Tcur

SR-1 0 +1 +1
SR-2 +1 −1 0
SR-3 +1 0 +1
SR-4 −1 −1 0
SR-5 0 +1 −1
SR-6 −1 +1 0
SR-7 0 0 0
SR-8 +1 0 −1
SR-9 0 −1 −1

SR-10 +1 +1 0
SR-11 0 −1 +1
SR-12 −1 0 +1
SR-13 −1 0 −1

1 Values of level of −1, 0, 1 corresponding to Factor A: 6.9%, 8.3%, and 9.7 %. 2 Values of level of
−1, 0, 1 corresponding to Factor B: 0.20, 0.25, and 0.30. 3 Values of level of −1, 0, 1 corresponding to Fac-
tor C: 50 ◦C, 60 ◦C, and 70 ◦C.
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SR pellets were prepared using the following steps. Various compositions of HPMC
and EC were dissolved in 50% (v/v) of ethanol to prepare a spraying solution. Subsequently,
180 g of IR pellets (diameter from 500 to 710 µm) were coated with the spraying solution
using a fluidized bed granulator (FGA-16, Ohkawara Kakohki Co., Ltd., Kanagawa-ken,
Japan) at a feed rate of 0.9–1.4 g/min; other operating conditions were as follows: air
pressure, 1.0–1.6 kg/cm2; inlet air temperature, 28–33 ◦C; and exhaust air temperature,
20–23 ◦C. Finally, the coated pellets were cured in an oven (DO45, Dogger Scientific Co.,
Ltd., New Taipei, Taiwan) at a set temperature for 6 h. Finally, 13 types of sobrerol SR
pellets were obtained.

2.3. Characterization
2.3.1. Scanning Electron Microscopy (SEM)

The morphological properties of IR and SR pellets were investigated using an SEM
(SU8010, Hitachi Ltd., Tokyo, Japan). The cross-sectional view of the pellet was obtained by
cutting the SR pellet with a blade. SEM images were acquired at an accelerated voltage of
10 kV under different magnifications.

2.3.2. High-Performance Liquid Chromatography (HPLC)

Sobrerol was assayed through HPLC (Waters Alliance 2695, Waters Corporation, Mil-
ford, MA, USA) with C18 column (Inertsil ODS-2, GL Sciences Inc., Tokyo, Japan). Samples
were diluted with 50% (v/v) of methanol from 100 µL to 1 mL and filtered through 0.45-µm
filtration membranes. The operating conditions were as follows: detection wavelength of
UV, 210 nm; flow rate, 0.8 mL/min; injection volume, 10 µL; and mobile phase, 50% (v/v) of
methanol [26]. Verification of a calibration curve (the R2 is not <0.995) and reproducibility
(the relative standard deviation of peak areas is not >2.5% in 5 sets of injection) is conducted
for system suitability before samples assayed.

2.3.3. Dissolution Test

The dissolution test was performed using USP apparatus 1 (the basket method). We
poured 1000 mL of dissolution medium (i.e., pure water; pH 1.2, 4.5, or 6.8 of buffer
solutions) into the vessel of the dissolution tester (DT-6, Shin-Kwang Precision Industry,
New Taipei, Taiwan). Subsequently, we dropped IR pellets containing 100–130 mg of
sobrerol into the basket placed in the dissolution medium, with stirring at 75 rpm. The
whole process was performed at 37 ± 0.5 ◦C. Sampling was performed at 5, 10, 15, 30, 45,
60, 75, 90, and 120 min. For SR pellets, each type was sampled for evaluation at 0.5, 1, 2, 4, 6,
and 8 h, and the dissolution medium used was pure water. Except for the aforementioned
parameters, other operating conditions were the same as those used for IR pellets.

2.3.4. The Drug Release Mechanism

The fraction of the drug dissolved (f diss) was calculated for each pellet dosage form.
The calculation of the similarity factor (f 2) for IR pellets is shown in Section S2 of Supple-
mentary Material [27]. The drug release mechanism for SR pellets was fitted using four
kinetic models (zero-order, first-order, Higuchi, and Korsmeyer–Peppas) as shown in Table
S3 of Supplementary Material [28,29].

2.4. Establishing the Predictive Model
2.4.1. Reconstruction of the Sobrerol Pharmacokinetic Model

According to a previous study, the plasma concentrations of a single oral dose of
300 mg of sobrerol at 0.25, 0.5, 1, 2, 3, 4, 6, and 8 h were 1.01, 2.82, 3.77, 2.02, 1.41, 1.05,
0.63, and 0.37 µg/mL, respectively [20]. Similarly, using the oral two-compartment model
derived from mass balance methods (as depicted in Scheme S1 of Supplementary Material)
and considering the lag time of drug absorption, pharmacokinetic parameters were recon-
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structed using WinNonlin 4.1 (Certara Inc., Princeton, NJ, USA). The oral two-compartment
model is described by the following equations [30]:

C1(t) = kaFD
Vd

(
(k21−α)

(β−α)(ka−α)
e−α(t−tlag) + (k21−β)

(ka−β)(α−β)
e−β(t−tlag)+

(k21−ka)
(α−ka)(β−ka)

e−ka(t−tlag)
) (1)

C2(t) =
kak12FD

Vd

(
1

(β−α)(ka−α)
e−α(t−tlag)

+ 1
(ka−β)(α−β)

e−β(t−tlag)

+ 1
(α−ka)(β−ka)

e−ka(t−tlag)
) (2)

where C1 and C2 (µg/mL) are the concentrations in the central and peripheral compart-
ments, respectively, at time t, ka (h−1) is the first-order rate constant for absorption through
oral administration, F is bioavailability, D (µg) is the dose, Vd (mL) is the volume of distri-
bution, k12 (h−1) and k21 (h−1) are the first-order rate constants for distribution from the
central to peripheral compartment and back, respectively, k10 (h−1) is the first-order rate
constant for elimination, α (h−1) is the distribution rate constant, β (h−1) is the elimination
rate constant, t (h) is time, and tlag (h) is the lag time.

2.4.2. Exploring the IVIVC of Sobrerol

The two-step approach was used to construct a valid IVIVC of sobrerol [31,32]. In
the first step, the pharmacokinetic profile shown in Section 2.4.1 was transformed to the
in vivo fraction of the drug absorbed (f abs) by deconvolution, and a time-scaling IVIVC
was explored by relating the times of in vitro dissolution (tin-vitro) and those of in vivo
absorption (tin-vivo) at equivalent fractions. In the second step, the first-step f abs was
reconverted by convolution to generate a pharmacokinetic profile that was comparable to
the original one for model validation. Equations (3) and (4) were used for the deconvolution
and calculation of f abs, respectively, and Equation (5) was used for convolution to predict
in vivo pharmacokinetic profiles [33], which are described as follows:

∆D(t) = {∆C1(t) + (k10C1(t) + k12C1(t)− k21C2(t))× ∆t } ×Vd (3)

fabs(t) =
∑ ∆D(t)

D
(4)

C1(t) =
t

∑
i=0

{
D× ∆ fabs(i)

Vd

(
(k21 − α)

(β− α)
e−α(t−i) +

(k21 − β)

(α− β)
e−β(t−i)

)}
(5)

where ∆D (µg) is the drug absorbed at time t, ∆C1 (µg/mL) is the concentration change in
the central compartment at time t, f abs and ∆f abs are the accumulated and partial fraction
absorbed, respectively, at time t, and i (h) is the absorption onset time of the partial
fraction absorbed.

2.4.3. Consideration of the Gastrointestinal Transit Time

The absorption process of oral drugs in the gastrointestinal tract is considerably
complicated, and the small intestine is the major site of drug absorption. Therefore, the
gastrointestinal transit time should be considered during the development of SR dosage
forms to ensure the extent of the release and absorption of the drug. The gastric transit
can range from 0 to 2 h in the fasting state, and the transit time in the small intestine
can range from 2 to 6 h [34]. The gastrointestinal transit time is estimated to be 8 h for
sobrerol pharmacokinetic profile simulation. The plasma concentration during absorption
in 8 h follows Equation (1), and that after 8 h is ruled by the intravenous two-compartment
pharmacokinetic model, which can be determined using Equation (6):

C1(t) =
D
Vd

(
(k21 − α)

(β− α)
e−αt +

(k21 − β)

(α− β)
e−βt

)
(6)
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2.4.4. Finding the Pharmacokinetic Efficacy Index

The human equivalent dose (HED) and expected therapeutic efficacy (inhibition of
symptoms) of sobrerol for multiple sclerosis treatment were derived from EAE animal
tests performed in a previous study (C57BL/6 mice with EAE induced by MOG peptides
were administered sobrerol for 14 days after onset. ** p < 0.01 and *** p < 0.001 compared
with the results for vehicle determined using Student’s t-test) [5]. On the last day after
onset (i.e., the plateau phase), low to high doses were used in this study for vehicle (thrice
daily), namely, 25 mg/kg (thrice daily), 30 mg/kg (once daily), 100 mg/kg (thrice daily),
150 mg/kg (twice daily), and 300 mg/kg (once daily), and the corresponding EAE scores
were 4.00 ± 0.22, 3.70 ± 0.15, 3.38 ± 0.27, 2.36 ± 0.27 **, 2.55 ± 0.27 **, and 2.78 ± 0.25 ***,
respectively. The HED conversion based on the body surface area is shown below [35]:

HED(mg) = Animal dose
(

mg
kg

)
× Animal Km

Human Km
× human body weight (kg) (7)

where animal Km (mouse) and human Km (adults) are 3 and 37, respectively, and the human
body weight is considered 60 kg for adults. Subsequently, the HED was used to simulate
pharmacokinetic profiles by using Equation (1), and the peak plasma concentration (Cmax)
of the highest HED with no significant difference was assumed to be the minimum effective
concentration (MEC). Three pharmacokinetic efficacy indexes, namely, the Cmax, the area
under the curve (AUC), and the duration of action (t>MEC) of each pharmacokinetic profile,
were calculated to determine the pharmacokinetics/pharmacodynamics correlation [36]. In
this study, Excel 2016 (Microsoft Corporation, Redmond, WA, USA) was used for calculating
data and drawing figures.

3. Results and Discussion
3.1. Preparation of IR/SR Pellets and Dissolution Study

Sobrerol IR pellets were formed in a matrix structure, and the drug loading was more
than 70% by total weight. Sobrerol was dispersed in the interstitium of MCC, with a rough
and fiber-scattering appearance (Figure 1a). SR pellets were produced from IR pellets with
HPMC/EC coated on the surface, which formed a smooth and continuous coating layer
with SR function (Figure 1b). In the cross-sectional view, the interstitium of SR pellets
showed an irregular crystal arrangement and tiny pores, and a clear interface between the
IR and SR coating layer could be observed (Figure 1c). The thickness of the SR coating layer
was approximately 5–10 µm (Figure 1d).

As shown in Figure S1 of Supplementary Material, the f diss of IR pellets in media
with different pH values all exceeded 80% at 30 min and reached the plateau value of
95–100% at 60 min. No degradation was observed, indicating that sobrerol was stable
even under pH changes in the gastrointestinal tract and is thus suitable for establishing an
IVIVC. The similarity f 2 of the dissolution curves of IR pellets was more than 50 (Table S4
of Supplementary Material), indicating a high similarity of dissolution between various pH
media. Thus, water was chosen as the dissolution medium in the following study, and the
first-order kd of IR pellets was calculated as 4.99 h−1.

Figure 2 shows the result of the dissolution test for 13 types of SR pellets. Analysis of
DoE indicated that Factor B (XHPMC/EC) exerted a critical effect on SR pellets (i.e., the higher
the XHPMC/EC is, the higher is the dissolution rate), and a strong interaction was noted
between Factor A (%Wcoat) and Factor B. Moreover, the 13 fitting curves were well plotted.
Among the kinetic models, the first-order model could most favorably explain the drug
release of SR pellets in the 0–8-h interval. The first-order kd values calculated from high to
low were 1.082 h−1 (SR-5), 0.978 h−1 (SR-10), 0.858 h−1 (SR-1), 0.393 h−1 (SR-6), 0.131 h−1

(SR-13), 0.115 h−1 (SR-12), 0.115 h−1 (SR-7), 0.096 h−1 (SR-3), 0.059 h−1 (SR-8), 0.048 h−1

(SR-4), 0.036 h−1 (SR-2), 0.036 h−1 (SR-9), and 0.029 h−1 (SR-11), respectively. Additional
analytical results of the DoE are provided in Figure S2 of Supplementary Material, and
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an example for designing a drug product with the target kd is discussed in Section 3.3.
Dissolution mechanisms are provided in Table S5 and Figure S3 of Supplementary Material.
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3.2. Establishment of the Predictive Model
3.2.1. Reconstruction of the Sobrerol Pharmacokinetic Model with Lag Time

A sobrerol two-compartment pharmacokinetic model associated with the lag time of
drug absorption was established, with Vd of 44.94 L/h, k12 of 0.82 h−1, k21 of 0.95 h−1, ka of
2.40 h−1, α of 2.08 h−1, β of 0.26 h−1, and tlag of 0.18 h. The aforementioned kinetic parame-
ters were incorporated in Equations (1) and (2), and the simulated plasma concentrations
over time are shown in Figure S4 of Supplementary Material. The fitting coefficients (R2)
calculated from the reconstructed model and a previous study [20] were 0.9796 and 0.9257,
respectively, indicating that the sobrerol pharmacokinetic model with lag time had more
explanatory power.

3.2.2. Time-Scaling IVIVC of Sobrerol

The in vivo fraction of the drug absorbed (f abs), which was obtained by deconvolv-
ing the reconstructed sobrerol pharmacokinetic profile, is shown in Figure 3a. Sobrerol
orally administered had an f abs of >85% in 1 h; thus, it could be classified as a fast-
absorbing drug. A satisfactory linear regression of dissolution tin-vitro versus absorption
tin-vivo is shown in Figure 3b, indicating that sobrerol had a favorable time-scaling IVIVC
(tin-vitro = 0.494 tin-vivo − 0.0904). Based on this correlation, a corresponding f abs at a certain
time could be predicted through in vitro dissolution (e.g., f diss at 0.4 h is equivalent to f abs at
1.0 h). In the second step, as shown in Figure S5 of Supplementary Material, a reconverted
pharmacokinetic profile obtained by convolution fitted well to the original one, showing
validation of the IVIVC model. A relationship between kd and ka (ka = 0.478 kd + 0.0229)
was also verified as shown in Figure S6 of Supplementary Material; ka in Equation (1)
could be substituted by kd, making its application easier. In this study, a concept of time-
scaling IVIVC involving the IR dosage form of sobrerol was proved, and assuming that any
modified-release one mimics the model as well.
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3.2.3. Pharmacokinetic Profiles Derived with Gastrointestinal Transit Time

Considering the factor of gastrointestinal transit time, the extent of drug absorption is
limited. As shown in Figure 4a, the pharmacokinetic profile during the 0–8 h of absorption
followed the oral two-compartment pharmacokinetic model, and that of the absorbed
drug during the duration of nonabsorption followed the intravenous two-compartment
pharmacokinetic model. As shown in Figure 4b, f abs values decreased with a decrease in
kd values. For example, in the case of the target f abs is >95% by 24 h, the kd should not
be <0.78 h−1.
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3.2.4. Pharmacokinetic Efficacy Index of Sobrerol

For repurposing sobrerol, the human equivalent doses (HED) and expected symptom
inhibition in humans are shown in Table 2, and the related simulated oral pharmacokinetic
profiles of administration routes are shown in Figure 5a. No significant therapeutic efficacy
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was observed for an HED of 122 mg (thrice daily) or 146 mg (once daily), and we considered
the peak concentration of an HED of 146 mg as the minimum effective concentration (MEC),
which is 1.61 µg/mL. Symptom inhibitions from high to low were observed with doses
of 486 mg (thrice daily), 730 mg (twice daily), and 1459 mg (once daily), which have the
same daily dose of 1459 mg. The pharmacokinetic efficacy indexes (i.e., Cmax, AUC, and
t>MEC) calculated are also shown in Table 2, and the pharmacokinetics/pharmacodynamics
correlation determined by the linear regression of each index versus the inhibition rate is
shown in Figure 5b. Among them, t>MEC exhibited the highest correlation with therapeutic
efficacy, indicating that this is most likely a time-dependent mechanism of treatment, which
explains the observation of higher efficacy at a higher frequency of administration under
the same daily dose of the drug. Therefore, we used t>MEC as the pharmacokinetic efficacy
index in the predictive model.

Table 2. Exploring for pharmacokinetics/pharmacodynamics correlation of sobrerol: Human plasma
simulation and calculation of pharmacokinetic efficacy indexes including Cmax, AUC, and t>MEC.

EAE Animal Tests Human Plasma Simulations

In Vivo
Dose

(mg/kg)

Frequency
(Daily)

EAE Score
1,2

HED 3

(mg)

Inhibition
4,5

(%)

Cmax
(µg/mL)

AUC
(µg·h/mL)

t>MEC
(h)

Vehicle thrice 4.00 ± 0.22 - - - - -
25 thrice 3.70 ± 0.15 122 N/S 1.48 13.59 0.0
30 once 3.38 ± 0.27 146 N/S 1.61 5.67 0.0

100 thrice 2.36 ± 0.27
** 486 41.00 5.91 54.13 12.8

150 twice 2.55 ± 0.27
** 730 36.25 8.31 55.52 11.2

300 once 2.78 ± 0.25
*** 1459 30.50 16.11 56.61 8.2

1 EAE score: EAE signs on the last day after onset (the plateau phase). 2 ** p < 0.01 and *** p < 0.001 compared
with the vehicle determined using Student’s t-test. 3 HED: Human equivalent dose conversed from the EAE
animal dose, with a human body weight of 60 kg. 4 Inhibition: Decreased ratio of the EAE score compared with
the vehicle. 5 N/S: No significant difference compared with the vehicle.

3.3. Design of SR Pellets

In Section 3.2, the characteristics of and the correlation between the pharmacokinetics
and pharmacodynamics of sobrerol are discussed, including the pharmacokinetic profile
with the lag time, the correlation between the dissolution and absorption of the drug, the
gastrointestinal transit time, and the pharmacokinetic efficacy index. Subsequently, the
predictive model of oral pharmacokinetic profile for repurposing sobrerol was established.
Figure 6 presents the contour plot of the pharmacokinetic efficacy index t>MEC generated
using the predictive model, where the x-axis is kd, the y-axis is the HED by twice daily,
and t>MEC corresponds to the variables of kd and HED. The original administration route
(i.e., 486 mg by thrice daily) exhibits the highest efficacy, with a t>MEC of 12.8 h (shown
as a red curve), and the SR dosage form is required to exceed the 12.8-h curve to ensure
a consistent or higher efficacy of the drug product. The minimum HED is 563 mg (twice
daily) at kd of 0.65 h−1 when compared with the original administration route; this not
only reduces the frequency of administration from thrice to twice a day (by 33.3%) but also
the daily dose from 1459 to 1126 mg (by 22.8%), thus considerably improving compliance
of administration.
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Figure 5. (a) Simulation for oral pharmacokinetic profiles of sobrerol with the minimum effective
concentration (MEC) of 1.61 µg/mL, and calculation for pharmacokinetic efficacy indexes (Cmax,
AUC, and t>MEC) of administration routes with total daily dose of 1459 mg during 24 h. (b) Linear
regression of each pharmacokinetic efficacy index versus the inhibition rate, showing that time
dependence is responsible for the pharmacokinetics/pharmacodynamics correlation of sobrerol.
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Figure 6. A contour plot of the pharmacokinetic efficacy index (t>MEC) corresponding to constants
of dissolution (kd) and human equivalent dose (HED). The red curve represents the t>MEC of 12.8 h,
which the SR dosage form requires to exceed for a consistent or higher efficacy of the drug product.
The blue dotted-line area is as an example as the acceptable specification of the target drug product.

However, the tolerance of drug production must be considered in practice. Deviations
may result from various factors, such as coating uniformity or drug loading among batches;
these factors can affect the dissolution rate and daily dose of the drug. Assuming that
the allowable deviation for coating conditions (i.e., XHPMC/EC and %Wcoat) is 2% and
that for drug loading is 5%, the boundary conditions to the target kd (i.e., 0.65 h−1) of SR
pellets predicted using the DoE are 0.2822 ± 0.0056 for XHPMC/EC and 9.4560 ± 0.1891%
for %Wcoat, as shown by the green dotted-line area in Figure 7. In other words, the
acceptable specifications of the drug product are tending towards 0.65 ± 0.13 h−1 for kd
and 605 ± 30 mg for HED by twice daily, as shown by the blue dotted-line area in Figure 6.

Finally, we compared the simulated oral pharmacokinetic profiles of IR pellets with a
dose of 486 mg thrice daily and target SR pellets with a dose of 605 mg twice daily, and
determined that t>MEC values were 12.8 and 13.6 h, respectively, as shown in Figure 8. The
t>MEC of SR pellets is longer than that of IR ones, indicating that the SR dosage form is
advantageous from the perspectives of both compliance and efficacy improvement.
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4. Conclusions

In this study, we successfully developed high-drug-loaded IR and SR pellets of sobrerol.
The proposed manufacturing process is simple with high commercial feasibility. XHPMC/EC
was determined as the main factor for SR pellet release, and the release followed a first-
order model. In addition, a predictive model of oral pharmacokinetic profile based on a
time-scaling IVIVC and a time-dependent mechanism for repurposing sobrerol was first
established. The predictive model estimated that SR pellets could achieve the goal of
improving compliance of administration and therapeutic efficacy in terms of the frequency
of administration and dose, that is, taking the drug twice daily and reducing the dose
by up to 22.8%. The study also demonstrated a prototype approach of modeling and
simulation for rapid design of a drug product, which can reduce the requirement of animal
experiments and accelerate research into the clinical status. Future work could further
match-up with various pellets of release characteristics to establish an oral multiparticulate
system for example, which is highly expandable in medicated application.
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