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Magnetic Resonance Imaging (MRI) has become part of the clinical routine for
diagnosing neurodegenerative disorders. Since acquisitions are performed at multiple
centers using multiple imaging systems, detailed analysis of brain volumetry differences
between MRI systems and scan-rescan acquisitions can provide valuable information
to correct for different MRI scanner effects in multi-center longitudinal studies. To
this end, five healthy controls and five patients belonging to various stages of the
AD continuum underwent brain MRI acquisitions on three different MRI systems
(Philips Achieva dStream 1.5T, Philips Ingenia 3T, and GE Discovery MR750w 3T) with
harmonized scan parameters. Each participant underwent two subsequent MRI scans
per imaging system, repeated on three different MRI systems within 2 h. Brain volumes
computed by icobrain dm (v5.0) were analyzed using absolute and percentual volume
differences, Dice similarity (DSC) and intraclass correlation coefficients, and coefficients
of variation (CV). Harmonized scans obtained with different scanners of the same
manufacturer had a measurement error closer to the intra-scanner performance. The
gap between intra- and inter-scanner comparisons grew when comparing scans from
different manufacturers. This was observed at image level (image contrast, similarity, and
geometry) and translated into a higher variability of automated brain volumetry. Mixed
effects modeling revealed a significant effect of scanner type on some brain volumes,
and of the scanner combination on DSC. The study concluded a good intra- and
inter-scanner reproducibility, as illustrated by an average intra-scanner (inter-scanner)
CV below 2% (5%) and an excellent overlap of brain structure segmentation (mean
DSC > 0.88).

Keywords: Alzheimer’s disease, magnetic resonance imaging, automated volumetry, inter- and intra-scanner
variability, biomarkers
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INTRODUCTION

The elderly population is drastically increasing and so does the
prevalence of dementia. In the last decade, magnetic resonance
imaging (MRI) has become an important tool in the diagnostic
work-up for patients with Alzheimer’s disease (AD), where MRI
scans are essential for detecting brain atrophy and atrophy
patterns for differential diagnosis of dementia subtypes (Frisoni
et al., 2010). In this context, the introduction of visual rating
scales to assess hyperintensities, global cortical atrophy, posterior
cortical atrophy, and medial temporal lobe atrophy on brain
MRI scans has helped standardizing radiological reading in
AD and the differential diagnosis in dementia (Albert et al.,
2011; Jack et al., 2011; Dubois et al., 2014; Niemantsverdriet
et al., 2018; Struyfs et al., 2020). However, these rating scales
are based on the visual assessment of 3D structures through
2D slices. As a result, despite the important role of these
scales in the clinical setting, it is known that they are time-
consuming, subjective, not uniformly adopted, and dependent on
the expertise of the radiologist (Vernooij et al., 2019). Therefore,
recent developments in the field of imaging artificial intelligence
(AI) have enabled the automatic extraction of clinically relevant
measures from brain MRI scans (Niemantsverdriet et al.,
2018; Struyfs et al., 2020; Wittens et al., 2021). Thereupon,
it has been shown that automated volumetry, combined with
the expertise of radiologists, can improve the sensitivity and
specificity of assessing AD-related atrophy (Pemberton et al.,
2021). Since combining modern AI technology with radiological
expertise has the potential to detect and monitor abnormalities
more accurately, a strict validation of AI tools is necessary
to assess the validity in a clinical setting. However, within
and between-scanner variability can at least partially neutralize
the added diagnostic value of AI-based automated volumetry
for the (differential) diagnosis of AD. Several studies testing
the repeatability and reproducibility of different automated
volumetric tools for white matter hyperintensity (WMH)
quantifications, as well as for brain volumetric measurements
in other neurological disorders such as multiple sclerosis, have
shown the importance of considering variation when comparing
scans from multi-center and longitudinal studies. In addition,
the consistent appliance of metrics such as the coefficient of
variation (CV), absolute volume differences (AVD), as well as
intra-class correlation and Dice similarity coefficients (DSC) in
studies assessing intra- and inter-scanner variability, facilitate
between study comparisons (Gasperini et al., 2001; Huppertz
et al., 2010; Biberacher et al., 2016; Shinohara et al., 2017;
Guo et al., 2019). We have therefore set up a study to assess
the effect of within- and between-scanner variabilities on three
different MRI systems with harmonized scan parameters, using
automated volumetry computed by the CE-labeled and FDA-
cleared post-processing software icobrain dm (Struyfs et al.,
2020). To this end, 10 subjects were scanned twice during a time-
interval of 2 h, and automatically computed brain volumes were
statistically analyzed to assess intra- and inter-scanner agreement.
The purpose of this study is to determine the extent of intra and
inter-scanner variability with harmonized acquisition parameters
and its implication in routine clinical practice.

MATERIALS AND METHODS

Study Population
The study population included five healthy controls and five
patients in different stages of the AD continuum, resulting
in a total of ten participants (Table 1). Recruitment of all
participants was effectuated at the Neurology and Radiology
departments of UZ Brussel between April 2020 and August
2020. The exclusion criteria consisted of defibrillators,
neurostimulators, pacemakers, and all other standard
MRI contraindications, advanced AD (defined as having a
Mini-Mental State Examination score < 10/30), and brain
tumors or other neurological disorders that could cause
cognitive impairment. Patient classification was effectuated in
compliance with the National Institute on Aging-Alzheimer’s
Association criteria for “MCI due to AD” and “Dementia
due to AD” (Albert et al., 2011; Jack et al., 2011; McKhann
et al., 2011; Sperling et al., 2011; Dubois et al., 2014). Four
MCI patients, and one dementia due to AD patient were
included in this study.

Study Design
For this prospective study, three different MRI imaging
systems were used (section “Image acquisition,” Table 2).
All three MRI scanners are located at the radiology
department of the VUB university hospital (UZ Brussel),
Brussels, Belgium. To test the intra-scanner variability, each
participant underwent two MRI scans per imaging system
in a randomized manner. In between the two scans on the
same MRI system, the participants were repositioned to make
sure that a difference in positioning is considered during
the evaluation. The duration time of each MRI scan varied
between 6 and 10 min per scanner. The time in between scans
was 3–5 min.

To test the inter-scanner variability, this workflow was
repeated on three different MRI systems. A total of sixty MRI
scans were used for downstream comparative analysis. The total
scan time for all systems combined was a maximum of 90 min per
participant. To minimize the variability in brain volume, all scans
were performed in a time span of 2 h.

Ethical Committee
This randomized prospective study was approved by the Ethical
Committee of UZ Brussel in Brussels, Belgium (Reference nr:
2020-079). Written informed consent of all participants and/or
legal representatives (in case of dementia) was obtained.

TABLE 1 | Study population demographics.

Healthy control AD continuum Total p-value

Inclusions (n) 5 5 10 –

Age in years
(mean ± SD)

52.2 ± 17.6 69.0 ± 10.5 60.6 ± 16.3 0.001

Gender (m/f) 3/2 4/1 7/3 0.490

MMSE (n)
0–30

NA 26 ± 2 26 ± 2 –
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TABLE 2 | 3D T1w and FLAIR sequence scan parameters.

3D T1

Achieva Ingenia GE

Sequence TFE TFE BRAVO

Coil 16 channels 32 channels 16 channels

Field of view (mm3) 230 × 230 × 172.8 230 × 230 × 172.8 256 × 256 × 172.8

Phase oversampling 12% 12% /

Acq. resolution (mm3) 1.2 × 1.2 × 1.2 1.2 × 1.2 × 1.2 1.2 × 1.2 × 1.2

Reco. resolution (mm3) 0.6 × 0.6 × 0.6 0.6 × 0.6 × 0.6 1 × 1 × 0.6

Slice orientation Sagittal Sagittal Sagittal

TE (ms) 4.6 2.8 2.8

TR (ms) 8.5 7.6 7.6

TI (ms) 888 800 800

Bandwidth (Hz/pixel) 217.6 309.6 294.8

TFE factor / ETL 144 144 /

Flip angle 8◦ 8◦ 8◦

Acceleration technique Compressed sense Compressed sense SENSE

Acceleration factor 2 2 2 × 1

Scan time 2 min 34 s 2 min 44 s 3 min 45 s

FLAIR

Achieva Ingenia GE

Sequence TSE TSE CUBE

Coil 16 channels 32 channels 16 channels

Field of view (mm3) 230 × 230 × 172.8 230 × 230 × 172.8 256 × 256 × 172.8

Phase oversampling 12% 12% /

Acq. resolution (mm3) 1.2 × 1.2 × 1.2 1.2 × 1.2 × 1.2 1.2 × 1.2 × 1.2

Reco. resolution (mm3) 0.6 × 0.6 × 0.6 0.6 × 0.6 × 0.6 1 × 1 × 0.6

Slice orientation Sagittal Sagittal Sagittal

TE (ms) 154 155 126

TR (ms) 4,800 5,000 5,000

TI (ms) 1,650 1,650 1,466

bandwidth (Hz/pixel) 440 867.1 589.6

TFE factor / ETL 230 230 230

Acceleration technique Compressed sense Compressed sense SENSE

Acceleration factor 4 4 2 × 2

Scan time 4 min 20 s 4 min 35 s 3 min 3 s

Reconstruction parameters were kept similar where possible, with voxel interpolation not exceeding a factor of 2 in any dimension. Achieva: Philips Medical Systems
Achieva dStream 1.5T. Ingenia: Philips Medical Systems Ingenia 3T. GE: GE Discovery MR750w 3T.

Image Acquisition
All subjects were scanned twice on each of the three following
scanners: a 1.5T Achieva dStream (Philips Medical Systems,
Best, Netherlands), 3T Ingenia (Philips Medical Systems, Best,
Netherlands) and a Discovery MR750w 3T (GE Medical Systems,
Milwaukee, WI, United States), and will be further referred
to as “Achieva,” “Ingenia,” and “GE.” Every MRI scan study
consisted of a sagittal 3D T1-weighted (T1w) MR sequence
and a sagittal 3D Fluid Attenuated Inversion Recovery (FLAIR)
sequence. Sequence parameters were harmonized as much as
possible between the vendors, limited by the constraints of each
manufacturer. Priority was given to harmonization of acquisition
parameters over reconstruction parameters. The parameters are
based on the existing clinical routine scans for AD within UZ

Brussel. The 3T Ingenia scanner parameters were taken as a
starting point and were subsequently modified on the 1.5T
Achieva and Discovery MR750w 3T MRI systems to be as alike
as possible. This was done through harmonizing resolution,
timings, flip angles, and bandwidth. Test scans were performed
on volunteers on the various systems and checked by two
radiologists (G-JA and TV). All scans were visually investigated
and feedback was provided. If necessary, the parameters were
adapted and the procedure was repeated. No quantification was
performed during testing since T1 and FLAIR data were already
being quantified by Icometrix as part of the clinical routine and
positive feedback on the scan quality was obtained. Lastly, voxel
interpolation during reconstruction did not exceed a factor 2 in
any dimension. All scan parameters are listed in Table 2.
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Image Processing
A visual assessment was performed to exclude possible causes of
inaccurate measurements, including, but not limited to, motion
artifacts, metal artifacts, and head-coil artifacts.

Post Processing Technique
All sixty MRI-scans were processed with icobrain dm by
icometrix, Leuven, Belgium. icobrain dm (version 5.0) is a
medical device software providing automated volumetric analysis
of global and local brain region volumes. In short, after skull
stripping and bias field correction, the icobrain pipeline performs
an initial segmentation into gray matter (GM), white matter
(WM), and cerebrospinal fluid (CSF; including WMH if a
FLAIR is available). This step is further refined to obtain
sub-segmentations such as the hippocampi and cortical gray
matter (CGM) volumes.

Brain structure volumes relevant for (differential) AD
diagnosis, such as the frontal cortex (Harper et al., 2017; Sawyer
et al., 2017; Cajanus et al., 2019), parietal cortex (PC; Jacobs
et al., 2012b; Harper et al., 2016; Peng et al., 2016), temporal
cortex (TC; Duara et al., 2008; Vemuri and Jack, 2010; Clerx
et al., 2013; Harper et al., 2016), total hippocampal volume
(HIP-T; Den Heijer et al., 2010; Vemuri and Jack, 2010; Jacobs
et al., 2012a; Rathakrishnan et al., 2014; Halliday, 2017; Martinez-
Torteya et al., 2019), left hippocampus (HIP-L; Lindberg et al.,
2012; Maruszak and Thuret, 2014; Sarica et al., 2018; Martinez-
Torteya et al., 2019; Struyfs et al., 2020; Wittens et al., 2021),
right hippocampus (HIP-R; Maruszak and Thuret, 2014; Sarica
et al., 2018; Struyfs et al., 2020; Wittens et al., 2021), and lateral
ventricles (LVENT; Guptha et al., 2002; Ferrarini et al., 2006;
Apostolova et al., 2012; Struyfs et al., 2020; Wittens et al., 2021),
were analyzed for each of the three scanner types. Larger brain
structure volumes such as whole brain, GM, CGM and WM were
also analyzed to assess differences in measurement error that can
be ascribed to differences in brain structure volumes.

For details regarding icobrain dm’s pipeline, including the
cortical lobe, and hippocampal segmentation procedure, we refer
to Jain et al. (2015), Struyfs et al. (2020), and Wittens et al. (2021).

Statistical Analysis
All data processing was performed using the R environment
(R-Studio, v.1.0.136) for statistical computing and graphics
using the following “packages” and (functions). Demographic
information was reported as mean and standard deviation (SD;
where applicable), with a significance level of <0.05 [R package:
“arsenal” (tableby and write2word)].

Measures of Agreement at Image Level
The similarity between pairs of T1w scans is reported using
an affine similarity index, contrast difference between two T1w
images of the same subject, and a maximum scaling factor.

Affine similarity index
An affine similarity index is defined as the normalized mutual
information (NMI) between any two T1w images of the
same subject after affine registration between the two images
(Studholme et al., 1999). This measure expresses how well two

images match without requiring that the image intensities are
similar, thus it is a measure of scan similarity that can be assessed
in a clinical setting and can be related to the measurement error.
An affine registration allows an image to be mapped to another
image using rotation, translation, scaling and skewing. As it is a
global transformation, the same rotation, translation, scaling, and
skewing parameters are applied for the entire image, meaning
that there are no different parameters for different voxels or
structures. Post alignment, the NMI is calculated, where higher
NMI values express stronger similarity and lower values express
more mismatch. Previously, it was found that the alignment
between two T1w images can be considered reliable when the
affine similarity index is above 0.2 (Sima et al., 2019).

Maximum scaling factor
A maximum scaling factor is also reported as the maximal
stretching along any of the three spatial axes when affinely
registering two T1w images of the same subject. A value above
one might indicate that there are geometric differences between
the two T1w images, while a maximum scaling factor of 1
indicates that no scaling is needed in any of the three directions
to perfectly align the two images. For the sake of simplicity, we
do not differentiate between stretching and shrinking because
these are inverse operations, depending on which image is
considered as reference.

Contrast difference
Besides measuring global image similarity between pairs of T1w
scans with the affine similarity index, the contrast difference
between two T1w images of the same subject is also computed.
The image contrast is defined as the contrast-to-noise ratio
(CNR) between WM and GM image intensities (Magnotta and
Friedman, 2006), computed as:

CNR =
|meanintensityGM − meanintensityWM|√
varianceintensityGM + varianceintensityWM

It is expected that images with similar contrast, as indicated by a
lower absolute difference in WM/GM CNR, would be segmented
more consistently.

Measures of Agreement for Intra- and Inter-Scanner
Brain Volumes and Segmentations
Intraclass correlation coefficient
The intra-scanner variability was analyzed by determining the
intraclass correlation coefficient (ICC, with 95% CI), using
the function “ICC” of R package psych (v. 2.3.0), based on
absolute agreement, single-measurement, and a two-way mixed
model, returning the estimate of ICC and respective confidence
intervals (Shrout and Fleiss, 1979; McGraw and Wong, 1996;
Revelle, 2012). The ICC is a measure of reproducibility between
repeated measurements of the same item, carried out by different
observers and can be calculated using the following formula:

ICC =
S2
A

S2
A + S2

W

with S2
A being the variance amongst groups and S2

W the
variance within groups (Wolak et al., 2012). Having an index
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going from 0 (no agreement) to 1 (absolute agreement), the
ICC value can be interpreted as either poor (<0.50), moderate
(0.50 < x < 0.75), good (0.75 < x < 0.90), or excellent
(>0.90), when looking at the 95% confidence intervals of the
ICC estimate, as suggested by Koo and Li (2016). For the intra-
scanner variability, the ICC expresses the fraction of the variance
in outcome between individuals, divided by the total variance
(Trevethan, 2017). This calculation was carried out separately for
the three MRI systems for each of the brain structures mentioned
in section “Post processing technique.” In addition, the mean
ICC value and confidence intervals were calculated over all brain
structures for each MRI system. For the inter-scanner variability,
four ICCs were calculated based on absolute agreement, single
measurement, and a two-way mixed model, using the mean value
of the test and retest scan per MRI system. First, data from
all scanners were included, by considering all possible pairwise
comparisons. The second, third and fourth ICCs, represented
pairwise comparisons between scanners (Ingenia – Achieva,
Achieva – GE, and Ingenia – GE). As was done for the intra-
scanner measurements, the mean ICC value and confidence
intervals were additonally calculated over all brain structures for
each MRI system. Taken together, we used the ICC to express
the correlation between replicated measurements for the same
subject within the same scanner (intra-scanner variability) and
in between scanners (inter-scanner variability).

Coefficient of variation
Another complementary measure of precision is the CV (%). The
CV expresses within-person variability as the ratio of the SD (σ)
of repeated measurements divided by their mean (µ), and was
calculated by the following formula:

CV (%) =
(
σ

µ

)
× 100

For the intra-scanner variability, we calculated the CV between
the two technical replicates (scan 1 and scan 2) within one
person within one scanner [R package: “matrixStats” (rowMeans
and rowSds)] (Bengtsson et al., 2021). For the inter-scanner
variability, the mean value of the two repeated measurements
from each person was taken for each scanner R package
“tidyverse” (gather, group_by, summarize). Subsequently, four
CVs were calculated. For the first CV, the three mean values of the
two repeated measurements from all scanners were considered
and the ratio of their SD was divided by the mean. For the
second, third and fourth CV, the computations were done in
a pairwise manner for each scanner combination (Ingenia –
Achieva, Achieva – GE, and Ingenia – GE).

Absolute volume differences
Absolute volume differences (mL) between two measurements
were also calculated for both intra- and inter-scanner
comparisons. For intra-scanner variability, the AVD was
calculated as the absolute difference between test (scan one)
and retest (scan two) scans within each person within each
scanner. For the inter-scanner variability, pairwise differences
between scanners were calculated, starting from taking the mean
value of the two repeated measurements from each person. The

AVD was calculated in a similar way as described previously
for the CV, except for the fact that no “all scanner” AVD
calculation was carried out, since AVD calculations only allow
pairwise comparisons.

Dice similarity coefficient
The DSC was calculated to measure the voxel wise overlap
between test and retest scan segmentations within each person
within each scanner (intra-scanner variability) and for pairwise
comparisons between scanners (inter-scanner variability). To this
end, one randomly chosen T1w image in a test-retest pair was
affinely transformed to the other T1w image in the pair, so that the
corresponding brain structure segmentations can be resampled to
the same geometric space prior to computing the DSC overlap as:

DSC (X,Y) =
2(X ∩ Y)
|X| + |Y|

where X is the brain structure segmentation from one scan and
Y is the brain structure segmentation from the other scan after
the corresponding spatial transformation. Each of these measures
of agreement were computed separately for all brain structure
volumes mentioned in subsection “Post processing technique.”

Percentual difference
Despite a direct mathematical relationship [factor sqrt (2)]
between the percentual difference of two measures and the CV
of the same two measurements, percentual differences were
reported to interpret reproducibility in the context of yearly
atrophy. Lastly, actual volumes were reported to determine the
presence of bias between the scanner types.

Significant differences within and between scanners were
evaluated for the actual volumes, CV, AVD, and DSC values using
a mixed model approach correcting for repeated measurements,
with Bonferroni alfa levels of<0.005 [0.05/total number (n = 11)]
of brain structures. A patient pseudonym (anonymous patient
identifier) was included as a random effect to control for
the variation in patients, while the scanner pairs (within of
between scanner pairs) were included as a fixed effect. Significant
differences in actual volumes between the scanner types were
evaluated to assess systematic bias between scanner types, while
significant differences in measures of agreement (CV, AVD, and
DSC) assessed reproducibility.

Intra- and inter-scanner variability on patient level
Quantitative measurements and the limits of agreement (LOA)
were visualized through Bland–Altman plots using the R package
“blandr” to graphically explore individual subject within-scanner
measurements as well as to check for possible heteroscedasticity
and outliers. Here, the difference between a test and retest scan
(y-axis) was plotted against the average of the two scans (x-
axis), including a central horizontal line on the scatter plot
depicting the mean difference or “mean bias.” In addition, the
SD of the mean bias was used to construct the upper and lower
LOA (mean bias± 1.96 SD). The pre-defined maximum allowed
difference was based on a priori clinically defined criteria which
should not exceed the annual pathological whole brain, GM, and
hippocampal atrophy change seen in AD as suggested by Barnes
et al. (2009); Sluimer et al. (2008), and Anderson et al. (2012),
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which is around 2% for larger brain structures and not more than
4.66% for hippocampal volumes. However, it has to be taken into
account that atrophy rates are neither spatially nor temporally
uniform in MCI and AD patients. If the limits do not exceed
the maximum acceptable difference between test and retest scans,
and the measurement is not higher than the upper limit of the
95% confidence interval of the upper LOA, nor lower than the
lower limit of the 95% CI of the lower LOA, the measurements
are considered to be in agreement (Stöckl et al., 2004; Chhapola
et al., 2015; Giavarina, 2015).

RESULTS

Measurements of Agreement Between
Image Pairs at Image Level
Measurements of agreement between image pairs were reported
within (intra) and between (inter) scanners to assess agreement
at image level (Table 3). There is a very high similarity
between different scan-rescan T1w acquired in each scanner, as
demonstrated by a reliable affine similarity index, low WM/GM
contrast difference, and a maximum scaling factor of 1 for all
comparisons between images of the same scanner. Achieva and
Ingenia also showed a very reliable affine similarity index. When
comparing T1w images of GE and Achieva, the WM/GM contrast
showed a higher difference, which could indicate a less consistent
segmentation. In fact, when looking at the individual image
quality through the absolute CNR values (the CNR value per T1w
image, Supplementary Table 1), it is shown that Achieva has a
higher contrast than GE.

The T1w images of each scanner are visualized for two
randomly selected subjects in Figure 1. Here, the T1w images
of a healthy control (Figure 1A) and a patient with MCI due

TABLE 3 | Pairwise T1w image similarity measures for intra- and
inter-scanner comparisons.

Scanner
comparison
- T1w image

Affine
similarity

(mean ± SD)

WM/GM
contrast

(mean ± SD)

Max scale
factor

(mean ± SD)

Intra-scanner variability

Achieva 0.32 ± 0.02 0.04 ± 0.03 1.00 ± 0.00

Ingenia 0.37 ± 0.03 0.04 ± 0.04 1.00 ± 0.00

GE 0.37 ± 0.03 0.03 ± 0.02 1.00 ± 0.00

Inter-scanner variability

Achieva – Ingenia 0.28 ± 0.01 0.15 ± 0.07 1.01 ± 0.00

Ingenia – GE 0.21 ± 0.02 0.15 ± 0.07 1.01 ± 0.00

Achieva – GE 0.20 ± 0.02 0.30 ± 0.06 1.01 ± 0.00

The scanner models of the considered image pairs, irrelevant of order, i.e., irrelevant
of which image is considered as reference. Affine similarity: mean ± SD of the
affine similarity index where >0.2 corresponds to a reliable affine similarity index.
WM/GM contrast difference: The absolute difference in WM/GM contrast-to-noise
ratio (mean ± SD), with a threshold of acceptability between 0.1 and 0.2. Max
scale factor: The mean ± SD of the maximum scaling factor over the three
spatial directions, where a value of 1.00 indicates that no scaling is needed,
and 1.01 indicates 1% scaling is required. Note that the standard deviation is
approximately 0, showing that the scaling needed in pairwise comparisons is
subject-independent.

to AD (Figure 1B) without segmentation (top), with icobrain
dm’s segmentation of the LVENT (middle), and with icobrain
dm’s segmentation of the cortical brain structures including the
hippocampus (bottom) are depicted. These scans and results are
shown for both scans on the three different MRI systems.

Measures of Agreement for Intra- and
Inter-Scanner Brain Volumes and
Segmentations
Automated volumetric measurements computed by the icobrain
dm segmentation software were determined for each MRI
scanner, for each of the following brain structures: whole
brain, GM, CGM, WM, frontal, parietal and temporal cortices,
hippocampal volumes, and LVENT.

Intra-Scanner Variability
To examine the reproducibility of measurements within each of
the scanners, the CV, AVD, DSC, and the ICC were determined
for all previously mentioned brain structures, calculated with
icobrain dm (Table 4). Here, the CV expresses the difference
between measurements within the same individual, within the
same scanner, while the ICC expresses the between-person
variance with respect to the total variance.

The individual CV values (mean ± SD) were between
0.16 ± 0.12 and 3.14 ± 2.15%. The intra-scanner CVs over all
volumes were similar on the three scanners, with 1.05 ± 0.87%
for Achieva, 1.15 ± 0.81% for Ingenia and 0.95 ± 0.46% for GE.
The AVDs and ICCs showed the same trend as the CV values.
The ICC showed no scores below (mean [CI]) 0.941 [0.823,0.981]
(HIP-L, Ingenia). The ICC scores tended to decrease slightly
when looking at smaller regional brain volumes such as the
hippocampal volumes, except for the right hippocampus. The
DSC values (mean ± SD) went from 0.87 ± 0.02 (PC, Ingenia)
to 0.98 ± 0.00 (WB, GE). The intra-scanner DSC (mean ± SD)
overall volumes were 0.91 ± 0.01 for Achieva, 0.92 ± 0.01 for
Ingenia and 0.93 ± 0.04 for GE. Significant differences in DSC
values were reported for the hippocampal volumes (p < 0.001).
The estimated effect, standard error, z-values, and adjusted
p-values (Bonferroni) per pairwise differences for each brain
structure showing a significant overall difference in DSC values
are reported in Supplementary Table 2.

Inter-Scanner Variability
To examine the inter-scanner variability, the AVD, CV, DSC, and
ICC and were determined for Achieva – Ingenia, Achieva – GE,
Ingenia – GE, and an all-scanner comparison (Table 5). Here,
the CV expresses the differences between the three MRI systems,
while the ICC was used to express how similar the observations
are across the three MRI systems.

The individual CV values (mean ± SD) were between
0.36 ± 0.23 (WB, Achieva – GE) and 5.93 ± 2.31% (WM,
Ingenia – GE). The inter-scanner CV over all volumes were on
average 2.55 ± 1.22% for all-scanner comparisons, 0.99 ± 0.53%
for Ingenia – Achieva, 2.90 ± 1.68% for Achieva – GE, and
2.82 ± 1.63% for Ingenia – GE. The AVDs and ICCs showed
the same trend as the CV values, with the ICC showing no mean
scores below 0.961 [0.901, 0.991] (WM, Ingenia – GE). The DSC

Frontiers in Aging Neuroscience | www.frontiersin.org 6 October 2021 | Volume 13 | Article 746982

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-746982 October 7, 2021 Time: 11:20 # 7

Wittens et al. Inter- and Intra-Scanner Variability of Icobrain dm

FIGURE 1 | Visual representation of T1w images of each scanner type for a healthy control and a patient with MCI due to AD (A) Healthy control. (B) MCI due to AD.
Both figures: without segmentation (top), with icobrain dm’s segmentation of the lateral ventricles (middle), and with icobrain dm’s segmentation of the cortical brain
structures including the hippocampus (bottom). Scanner type (from left to right): “GE Medical Systems Discovery MR750w” – repetition 1, “GE Medical Systems
Discovery MR750w” – repetition 2, “Philips Medical Systems Achieva dStream” – repetition 1, “Philips Medical Systems Achieva dStream” – repetition 2, “Philips
Medical Systems Ingenia” – repetition 1, “Philips Medical Systems Ingenia” – repetition 2.

values (mean± SD) were in between 0.80± 0.02 (WB, Achieva –
GE) and 0.98± 0.00 (WB, Ingenia – Achieva). The inter-scanner
DSCs (mean ± SD) over all volumes were 0.90 ± 0.04 for
all-scanner comparisons, 0.91 ± 0.03 for Ingenia – Achieva,
0.89± 0.05 for Achieva – GE, and 0.89± 0.04 for Ingenia – GE.

Individual Quantitative Intra- and Inter-Scanner
Variability
The quantitative measurements computed by icobrain dm
for the test (scan 1) and retest (scan 2) scans per subject
(color-coded differentiation) and per scanner (symbol-coded
differentiation) were visually (Figure 2) and statistically
(Supplementary Table 3) presented using a Bland–Altman
plot to detect possible deficiencies in individual reliability,
heteroscedasticity, and outliers.

The Y-coordinate of a point shows the difference in mL
between scan one and scan two, while the X-coordinate indicates
the mean between the two volumes. By showing the results of
the three different scanners for each person separately (with
the three different plot characters according to the scanner), we
depicted the inter-scanner variability per subject between the
different scanners.

The within-subject inter-scanner-variability is visible in the
X-axis direction when looking at the inter-scanner means in mL
[(scan one + scan two)/2] differences. Furthermore, between-
subject variation is visible in the X-axis direction, looking at
the difference in means between individuals. Here, the LOA

represents the 95% prediction interval [1.96 SD], where a smaller
range indicates a better agreement.

According to the Bland–Altman plot, the GE result falls
outside of the LLOA for subject 10 for WB and CGM,
and outside of the ULOA for LVENT. To identify if there
is an underlying reason behind this larger intra-scanner
variability, a double-check of the native MRI sequences
was performed for this specific subject 10. Evaluation by a
neuroradiologist (GA) revealed no significant MRI artifacts.
Both acquisitions had a similar gray and WM contrast.
However, evaluation of icobrain dm’s segmentation revealed
a slight oversegmentation of the cortex in the superior
sagittal sinus, which might be a partial explanation for the
increased difference between the two scans. Furthermore,
no heteroscedasticity nor a specific pattern regarding
intra- or inter-scanner variability was found for any of the
regions of interest.

Percentual Differences
Percentual differences are reported in Table 6. When looking
at the intra-scanner variability results, the largest percentual
volume difference was seen for the left hippocampus (mean± SD,
4.47 ± 3.13, and Ingenia), while pairwise comparisons showed
the largest difference for WM (mean ± SD, 8.74 ± 3.47, and
Ingenia – GE). These findings were in line with the intra-CV and
intra-ICC values. The smallest percentual volume difference was
found for gray matter for intra-scanner (mean± SD, 0.22± 0.17,
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TABLE 4 | Intra-scanner variability results per brain structure for three different MRI systems.

Brain structures CV (%;
mean ± SD)

AVD (mL;
mean ± SD)

ICC
[95% CI]

DSC
(mean ± SD)

Whole brain

Achieva 0.18 ± 0.14 3.11 ± 2.50 1.000 [0.999,1.000] 0.92 ± 0.00

Ingenia 0.21 ± 0.14 3.32 ± 2.17 1.000 [0.999,1.000] 0.98 ± 0.00

GE 0.29 ± 0.29 4.70 ± 4.60 0.999 [0.996,1.000] 0.98 ± 0.00

p-value 0.418 0.453 0.144

Gray matter

Achieva 0.16 ± 0.12 1.49 ± 1.13 1.000 [0.999,1.000] 0.93 ± 0.01

Ingenia 0.52 ± 0.42 5.07 ± 4.27 0.997 [0.991,0.999] 0.92 ± 0.01

GE 0.43 ± 0.42 3.82 ± 3.62 0.998 [0.995,1.000] 0.93 ± 0.01

p-value 0.051 0.045 0.822

Cortical gray matter

Achieva 0.29 ± 0.19 2.61 ± 1.75 0.999 [0.998,1.000] 0.93 ± 0.01

Ingenia 0.54 ± 0.38 4.96 ± 3.74 0.997 [0.992,0.999] 0.92 ± 0.01

GE 0.38 ± 0.48 3.24 ± 3.82 0.998 [0.995,0.999] 0.93 ± 0.02

p-value 0.287 0.229 0.893

White matter

Achieva 0.46 ± 0.18 2.97 ± 1.24 0.998 [0.995,0.999] 0.94 ± 0.01

Ingenia 1.06 ± 0.80 6.64 ± 4.61 0.991 [0.971,0.997] 0.94 ± 0.01

GE 0.74 ± 0.34 5.16 ± 2.29 0.994 [0.983,0.998] 0.94 ± 0.01

p-value 0.034 0.028 0.088

Frontal cortex

Achieva 0.60 ± 0.35 1.46 ± 0.77 0.998 [0.993,0.999] 0.90 ± 0.01

Ingenia 0.63 ± 0.55 1.52 ± 1.32 0.996 [0.989,0.999] 0.90 ± 0.02

GE 0.99 ± 0.57 2.36 ± 1.41 0.994 [0.982,0.998] 0.89 ± 0.02

p-value 0.132 0.164 0.940

Parietal cortex

Achieva 1.58 ± 1.19 2.44 ± 1.69 0.980 [0.936,0.994] 0.87 ± 0.01

Ingenia 1.52 ± 1.24 2.33 ± 1.71 0.981 [0.940,0.994] 0.87 ± 0.02

GE 1.78 ± 1.22 2.73 ± 2.17 0.980 [0.938,0.994] 0.87 ± 0.03

p-value 0.829 0.850 0.464

Temporal cortex

Achieva 1.94 ± 1.19 3.16 ± 1.88 0.964 [0.890,0.989] 0.89 ± 0.02

Ingenia 1.56 ± 1.30 2.61 ± 2.16 0.974 [0.921,0.992] 0.90 ± 0.01

GE 1.11 ± 0.74 1.82 ± 1.15 0.990 [0.970,0.997] 0.90 ± 0.02

p-value 0.148 0.151 0.165

Hippocampus, total

Achieva 1.44 ± 0.87 0.14 ± 0.09 0.986 [0.957,0.996] 0.90 ± 0.01∧

Ingenia 1.63 ± 0.91 0.16 ± 0.08 0.985 [0.953,0.995] 0.91 ± 0.01•

GE 0.95 ± 0.67 0.09 ± 0.06 0.994 [0.981,0.998] 0.93 ± 0.01∧•

p-value 0.142 0.119 <0.001

Hippocampus, left

Achieva 2.90 ± 1.87 0.14 ± 0.09 0.956 [0.865,0.986] 0.90 ± 0.01∧

Ingenia 3.14 ± 2.15 0.15 ± 0.10 0.941 [0.823,0.981] 0.90 ± 0.02•

GE 1.46 ± 1.14 0.07 ± 0.05 0.988 [0.963,0.996] 0.92 ± 0.01∧•

p-value 0.049 0.063 <0.001

Hippocampus, right

Achieva 1.35 ± 1.45 0.06 ± 0.06 0.988 [0.963,0.996] 0.91 ± 0.01∧

Ingenia 1.11 ± 0.88 0.05 ± 0.04 0.992 [0.974,0.997] 0.91 ± 0.01

GE 1.16 ± 0.71 0.06 ± 0.04 0.992 [0.973,0.997] 0.93 ± 0.01∧

p-value 0.848 0.957 <0.001

Lateral ventricles

Achieva 0.66 ± 0.84 0.28 ± 0.29 0.999 [0.998,1.000] 0.96 ± 0.01

(Continued)
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TABLE 4 | (Continued)

Brain structures CV (%;
mean ± SD)

AVD (mL;
mean ± SD)

ICC
[95% CI]

DSC
(mean ± SD)

Ingenia 0.75 ± 1.09 0.34 ± 0.46 0.999 [0.997,1.000] 0.96 ± 0.01

GE 1.13 ± 1.33 0.55 ± 0.78 0.997 [0.973,0.997] 0.97 ± 0.01

p-value 0.407 0.475 0.054

All volumes Mean CV (%;
mean ± SD)

Mean AVD
(mL;

mean ± SD)

Mean ICC
[95% CI]

Mean DSC
(mean ± SD)

Achieva 1.05 ± 0.87 1.63 ± 1.29 0.988 [0.977,0.998] 0.91 ± 0.01

Ingenia 1.15 ± 0.81 2.47 ± 2.30 0.987 [0.975,0.998] 0.92 ± 0.01

GE 0.95 ± 0.46 2.24 ± 1.88 0.993 [0.989,0.997] 0.93 ± 0.04

Brain volumes used to calculate measurements of precision were computed by the icobrain dm segmentation software. Coefficients of variation (CV, %), AVD (mL),
intraclass correlation coefficients (ICC, [95% CI]), and Dice similarity coefficients (DSC, mean ± SD) were reported. The highest CV and lowest ICC and DSC values
amongst all structures were highlighted in “bold.” Achieva: Philips Medical Systems Achieva dStream 1.5T. Ingenia: Philips Medical Systems Ingenia 3T. GE: GE Discovery
MR750w 3T. p-value < 0.005 for “all scanners” differences were highlighted in “bold.” ∧p-value < 0.005 between Achieva and GE ·p-value < 0.005 between Ingenia
and GE.

Achieva) and whole brain for inter-scanner variability results
(mean± SD, 0.52± 0.32, Achieva – GE).

Actual Brain Structure Volumes
Actual volumes for all brain structures were reported as
mean± SD (Table 7). To assess systematic bias between the three
MRI systems, a mixed model approach correcting for repeated
measures with post-hoc Bonferroni correction was employed.
Intra-scanner variability results showed no significant within-
scanner differences for any of the brain structure volumes. For
Achieva – Ingenia, whole brain and LVENT were significantly
different (p< 0.001). For Achieva – GE, GM, CGM, WM, frontal,
parietal, and temporal cortices, as well as the right hippocampus
showed significant differences (p< 0.001). Significant differences
for all brain volumes (p < 0.001), except the TC, total, and
left hippocampus, were found for Ingenia – GE. The estimated
effect, standard error, z-values and adjusted p-values (Bonferroni)
per pairwise differences for each brain structure showing a
significant overall difference in actual volumes are reported in
Supplementary Table 4.

DISCUSSION

As the potential added diagnostic value of AI-based automated
volumetry on brain MRI scans might at least in part be
neutralized by intra- and inter-scanner variability, a thorough
evaluation of the measurement error and variability in clinical
routine circumstances is crucial. In the current study, the intra-
and inter-scanner variability of global, cortical, and subcortical
brain volumes was evaluated using the CE marked and FDA
cleared icobrain dm software on three different MRI systems.

It is known that intra-scanner variability exists and depends
on several uncontrollable (short-term physiological fluctuations),
semi-controllable (head motion, subject-positioning, noise, and
measurement error) and controllable (impact of day-to-day,
time of day, and medication) factors. Previous studies have
reported a time-of-day dependence of MRI-based global brain

volume calculations (Trefler et al., 2016; Dieleman et al.,
2017). In this study, all patients were scanned in the morning,
eliminating both the impact of day-to-day and morning/night
differences as additional variables. Subject-positioning variation
was minimized, by placing the subject in the MRI scanner
by the same operator, through a standardized procedure.
Nevertheless, when comparing brain structure segmentations
of repeated (intra- or inter-scanner) scans using Dice overlap,
affine image alignment and resampling was still required. This
post-processing step typically leads to an additional variability,
which is an unavoidable limitation of this type of agreement
measurement between repeated scans.

Overall, low intra-scanner variability of the MRI measures
was found. The ICC showed no scores below (mean [CI]) 0.941
[0.823, 0.981] (HIP-L, Ingenia), indicating a good intra-scanner
agreement for all intra-scanner comparisons. The largest intra-
scanner variability was observed in the left hippocampus, which
can be explained by the smaller size of this brain structure (Struyfs
et al., 2020) and the complexity of its delineation. In addition,
a higher variability compared to other larger brain regions was
demonstrated for the LVENT, related to the CSF presence and
existing short-term physiological fluctuations (Dieleman et al.,
2017). Similar to the intra-scanner variability, a low inter-scanner
variability of the icobrain dm measures was observed. The
ICC showed no mean scores below 0.961 [0.901, 0.991] (WM,
Ingenia – GE). In addition, significant differences between the
actual volumes and the visual assessment of Bland–Altman plots
did not reveal any systematic pattern regarding intra or inter-
scanner bias. The mixed modeling approach showed that the
significance came from the DSC measures and actual volumes,
while CV and AVD differences were not statistically significant.
This might indicate that DSC are more sensitive than volumetric
criteria, since the overlap between two segmentations is assessed,
while an imperfect overlap might be compensated for when
calculating volumes.

However, statistical significance and clinical relevance should
not be mistakenly conflated since one does not necessarily
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TABLE 5 | Inter-scanner variability results per brain structure for three different MRI systems.

Brain structures CV (mean ± SD, in %) ICC [95% CI]

All scanners Ingenia – Achieva Achieva – GE Ingenia – GE All scanners Ingenia – Achieva Achieva – GE Ingenia – GE

Whole brain 0.53 ± 0.27 0.49 ± 0.43 0.36 ± 0.23 0.58 ± 0.35 0.999 [0.997,0.999] 0.998 [0.995, 0.999] 0.999 [0.996, 1.000] 0.999 [0.996, 0.999]

Gray matter 2.88 ± 1.30 0.44 ± 0.62 3.73 ± 1.73 3.30 ± 1.59 0.990 [0.976,0.996] 0.998 [0.993, 0.999] 0.985 [0.954, 0.995] 0.985 [0.954, 0.995]

Cortical gray matter 2.69 ± 1.18 0.57 ± 0.62 3.49 ± 1.64 3.02 ± 1.27 0.992 [0.981,0.997] 0.997 [0.991, 0.999] 0.988 [0.961, 0.996] 0.988 [0.961, 0.996]

White matter 4.75 ± 1.76 0.76 ± 0.43 5.46 ± 1.91 5.93 ± 2.31 0.972 [0.934, 0.990] 0.995 [0.985,0.999] 0.971 [0.910, 0.991] 0.961 [0.901, 0.991]

Frontal cortex 3.71 ± 1.38 0.49 ± 0.39 4.72 ± 1.75 4.39 ± 1.76 0.992 [0.981, 0.997] 0.998 [0.994, 0.999] 0.989 [0.966, 0.997] 0.989 [0.966, 0.997]

Parietal cortex 3.85 ± 1.98 0.74 ± 0.37 4.70 ± 2.62 4.65 ± 2.60 0.983 [0.959, 0.994] 0.996 [0.987, 0.999] 0.978 [0.932, 0.993] 0.978 [0.932, 0.993]

Temporal cortex 1.77 ± 1.04 1.42 ± 0.98 2.29 ± 1.56 1.22 ± 0.74 0.984 [0.961, 0.995] 0.989 [0.964, 0.996] 0.972 [0.915, 0.991] 0.972 [0.915, 0.991]

Hippocampus, total 1.64 ± 0.90 1.14 ± 0.94 1.52 ± 0.85 1.80 ± 1.48 0.986 [0.959, 0.996] 0.992 [0.973, 0.997] 0.987 [0.961, 0.996] 0.988 [0.961, 0.996]

Hippocampus, left 2.64 ± 1.79 2.08 ± 1.92 2.68 ± 1.57 2.43 ± 2.74 0.968 [0.924, 0.989] 0.968 [0.902, 0.990] 0.980 [0.940, 0.994] 0.980 [0.940, 0.993]

Hippocampus, right 2.12 ± 1.37 1.16 ± 1.18 2.27 ± 1.62 2.16 ± 2.11 0.979 [0.945, 0.993] 0.989 [0.967, 0.997] 0.976 [0.925, 0.992] 0.975 [0.925, 0.992]

Lateral ventricles 1.45 ± 0.98 1.54 ± 1.28 0.70 ± 0.76 1.56 ± 1.29 0.997 [0.994, 0.999] 0.996 [0.988, 0.999] 0.999 [0.998, 1.000] 0.999 [0.998, 0.999]

All volumes Mean CV (mean ± SD, in %) Mean ICC [95% CI]

2.55 ± 1.22 0.99 ± 0.53 2.90 ± 1.68 2.82 ± 1.63 0.986 [0.979, 0.992] 0.992 [0.986, 0.998] 0.984 [0.977, 0.990] 0.983 [0.990, 0.975]

Brain structures AVD (mean ± SD, in mL) DSC (mean ± SD)

All scanners Ingenia – Achieva Achieva – GE Ingenia – GE All scanners Ingenia – Achieva Achieva – GE Ingenia – GE

Whole brain – 7.91 ± 6.66 5.80 ± 3.41 9.56 ± 5.97 0.97 ± 0.01 0.98 ± 0.00 0.97 ± 0.00 0.97 ± 0.00

Gray matter – 4.12 ± 5.35 33.91 ± 14.45 30.03 ± 12.56 0.89 ± 0.02 0.91 ± 0.01 0.88 ± 0.02 0.89 ± 0.02

Cortical gray matter – 5.12 ± 5.18 30.24 ± 12.95 26.16 ± 9.77 0.90 ± 0.02 0.92 ± 0.01 0.88 ± 0.02 0.89 ± 0.02

White matter – 4.97 ± 3.01 36.35 ± 3.01 39.58 ± 3.00 0.92 ± 0.01 0.93 ± 0.01 0.91 ± 0.01 0.92 ± 0.01

Frontal cortex – 1.30 ± 1.17 11.35 ± 3.63 10.42 ± 3.28 0.86 ± 0.02 0.89 ± 0.01 0.84 ± 0.01 0.85 ± 0.01

Parietal cortex – 1.19 ± 0.63 6.74 ± 3.29 0.67 ± 3.33 0.82 ± 0.03 0.85 ± 0.02 0.80 ± 0.02 0.82 ± 0.02

Temporal cortex – 2.24 ± 1.49 3.59 ± 2.39 1.93 ± 1.12 0.87 ± 0.02 0.89 ± 0.01 0.86 ± 0.02 0.86 ± 0.02

Hippocampus, total – 0.10 ± 0.06 0.14 ± 0.06 0.17 ± 0.12 0.90 ± 0.01 0.91 ± 0.01 0.89 ± 0.01 0.90 ± 0.01

Hippocampus, left – 0.09 ± 0.09 0.13 ± 0.07 0.11 ± 0.11 0.89 ± 0.02 0.90 ± 0.01 0.89 ± 0.01 0.89 ± 0.01

Hippocampus, right – 0.05 ± 0.06 0.11 ± 0.08 0.11 ± 0.10 0.90 ± 0.01 0.91 ± 0.01 0.90 ± 0.01 0.90 ± 0.01

Lateral ventricles – 0.86 ± 0.99 0.32 ± 0.31 0.90 ± 0.90 0.95 ± 0.01 0.96 ± 0.01 0.95 ± 0.01 0.95 ± 0.01

All volumes Mean AVD (mean ± SD, in mL) Mean DSC (mean ± SD)

– 2.55 ± 2.61 11.70 ± 14.49 10.88 ± 14.34 0.90 ± 0.04 0.91 ± 0.03 0.89 ± 0.05 0.89 ± 0.04

Brain volumes used to calculate measurements of precision were computed by the icobrain dm segmentation software. Coefficient of variation (CV, %), intraclass correlation coefficients (ICC, [95% CI]), absolute volume
differences (AVD, mL) and Dice similarity coefficients (DSC, mean ± SD) was reported for all pairwise comparisons and three-scanner comparisons (“All scanners”). The highest CV and lowest ICC and DSC values
amongst all structures were highlighted in bold. Achieva: Philips Medical Systems Achieva dStream 1.5T. Ingenia: Philips Medical Systems Ingenia 3T. GE: GE Discovery MR750w 3T.
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FIGURE 2 | Bland–Altman plots for individual brain structures. Variability results (intra- and inter-scanner, as well as intra- and inter-subject variability) presented in a
Bland–Altman plot per brain structure for three different MRI systems; Philips Medical Systems Achieva dStream 1.5T, Philips Medical Systems Ingenia 3T, and GE
Discovery MR750w 3T, computed by icobrain dm. The y-axis represents the difference in mL [test (scan 1) – retest (scan 2)]. The x-axis represents the mean in mL of
scan 1 and scan 2 [(scan 1 + scan 2)/2]. The quantitative measurements are presented per subject (color-coded differentiation) and per scanner (symbol-coded
differentiation). Here, the limit of agreement (LOA, upper LOA in yellow and lower LOA in green) represents the 95% prediction interval [1.96 SD].
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TABLE 6 | Percentual volume differences per brain structure.

Brain structures Percentage (mean ± SD, in %)

Intra-scanner Inter-scanner

Achieva Ingenia GE All intra-scanner All scanners Ingenia – Achieva Achieva – GE Ingenia – GE

Whole brain 0.26 ± 0.20 0.30 ± 0.21 0.42 ± 0.41 0.32 ± 0.28 – 0.69 ± 0.60 0.52 ± 0.32 0.82 ± 0.49

Gray matter 0.22 ± 0.17 0.73 ± 0.59 0.61 ± 0.60 0.52 ± 0.53 – 0.63 ± 0.86 5.11 ± 2.34 4.52 ± 2.01

Cortical gray matter 0.41 ± 0.27 0.76 ± 0.53 0.55 ± 0.69 0.57 ± 0.53 – 0.81 ± 0.87 4.79 ± 2.22 4.14 ± 1.71

White matter 0.65 ± 0.25 1.51 ± 1.16 1.05 ± 0.48 1.06 ± 0.79 – 1.08 ± 0.60 8.06 ± 2.92 8.74 ± 3.47

Frontal cortex 0.85 ± 0.49 0.88 ± 0.77 1.41 ± 0.81 1.05 ± 0.72 – 0.68 ± 0.55 6.43 ± 2.32 5.98 ± 2.34

Parietal cortex 2.48 ± 1.71 2.14 ± 1.72 2.52 ± 1.72 2.17 ± 1.58 – 1.04 ± 0.53 6.38 ± 3.49 6.31 ± 3.47

Temporal cortex 2.75 ± 1.71 2.19 ± 1.80 1.57 ± 1.07 2.31 ± 1.67 – 1.98 ± 1.35 3.17 ± 2.14 1.68 ± 0.99

Hippocampus, total 2.02 ± 1.22 2.31 ± 1.29 1.35 ± 0.95 1.90 ± 1.20 – 2.16 ± 1.22 2.16 ± 1.22 2.56 ± 2.10

Hippocampus, left 4.02 ± 2.52 4.47 ± 3.13 2.09 ± 1.65 3.53 ± 2.64 – 2.97 ± 2.77 3.88 ± 2.32 3.47 ± 3.87

Hippocampus, right 1.92 ± 2.09 1.56 ± 1.22 1.63 ± 0.99 1.71 ± 1.46 – 1.65 ± 1.66 3.15 ± 2.20 3.03 ± 2.91

Lateral ventricles 0.93 ± 1.16 1.04 ± 1.49 1.59 ± 1.88 1.20 ± 1.53 – 2.22 ± 2.21 0.99 ± 0.99 2.23 ± 2.23

All volumes 1.48 ± 1.21 1.63 ± 1.16 1.34 ± 0.65 1.48 ± 1.01 – 1.45 ± 0.79 4.06 ± 2.36 3.95 ± 2.32

Percentual volume difference [Percentage (%), mean ± SD] for each individual brain volume. All intra scanner volumes represent the mean percentual volume difference of
all three scanner types combined, since percentual volume differences only allow pairwise comparisons. The largest percentual volume differences (intra- and inter-scanner
variability) were highlighted in bold.

TABLE 7 | Actual volumes per brain structure for all three MRI systems.

Brain structures Volumes (mean ± SD, in mL)

Achieva Ingenia GE All scanners p-value

Whole brain 1139.77 ± 130.19# 1132.64 ± 129.54#• 1142.20 ± 132.82• 1138.20 ± 126.33 < 0.001

Gray matter 683.08 ± 80.55∧ 679.19 ± 81.76• 649.16 ± 87.20∧• 670.47 ± 81.77 < 0.001

Cortical gray matter 650.81 ± 79.06∧ 646.72 ± 80.56• 620.57 ± 85.32∧• 639.37 ± 79.99 < 0.001

White matter 456.69 ± 52.48∧ 453.45 ± 50.43• 493.04 ± 53.18∧• 467.73 ± 53.43 < 0.001

Frontal cortex 180.02 ± 24.40∧ 179.09 ± 23.39• 168.67 ± 24.96∧• 175.93 ± 23.99 < 0.001

Parietal cortex 111.81 ± 14.35∧ 111.75 ± 14.45• 105.07 ± 17.05∧• 109.54 ± 15.14 < 0.001

Temporal cortex 118.04 ± 13.45∧ 116.31 ± 14.46 115.25 ± 15.29∧ 116.54 ± 13.97 < 0.001

Hippocampus, total 6.89 ± 1.00 6.92 ± 0.99 6.92 ± 0.93 6.91 ± 0.94 0.716

Hippocampus, left 3.35 ± 0.49 3.38 ± 0.50 3.46 ± 0.47 3.40 ± 0.47 0.006

Hippocampus, right 3.54 ± 0.54∧ 3.55 ± 0.51• 3.45 ± 0.48∧• 3.51 ± 0.49 < 0.001

Lateral ventricles 34.67 ± 12.13# 35.44 ± 12.91#• 34.55 ± 12.12• 34.89 ± 11.96 < 0.001

Actual volumes (Volumes, mL) computed by icobrain dm were reported as mean ± SD. Achieva: Philips Medical Systems Achieva dStream 1.5T. Ingenia: Philips Medical
Systems Ingenia 3T. GE: GE Discovery MR750w 3T. p-value: Difference between the three scanner types. Post-hoc comparison: ∧p-value < 0.005 between Achieva and
GE. •p-value < 0.005 between Ingenia and GE. #p-value < 0.005 between Achieva and Ingenia.

imply the other. Previous studies based on longitudinal data
have reported annual rates of atrophy [in % of atrophy/year,
mean (95% CIs)] for several brain volumes, including whole
brain [0.32% (0.10–0.54)], temporal lobes [0.68% (0.42–0.93)],
hippocampi [0.82% (0.53–1.11)], and LVENT [650 mm3/y (333–
968)] due to normal aging (Good et al., 2001; Scahill et al.,
2003; Biberacher et al., 2016; Schippling et al., 2017; Vinke
et al., 2018). Annual atrophy rates of around 2% have been
observed in Alzheimer’s patients for whole brain (Sluimer
et al., 2008) and GM volumes (Anderson et al., 2012). In
addition, a meta-analysis on hippocampal atrophy rates in AD
patients and controls reported annualized hippocampal atrophy
rates of 4.66% (3.92–5.40) for AD patients, while an atrophy
rate of 1.41% (0.52–2.30) was reported for healthy individuals

(Barnes et al., 2009). According to our study, the within-scanner
difference in percentage for whole brain volumes, taken within a
time span of 3 h, are similar to the previously reported annual
volume decline for healthy individuals, although a pathologic
whole brain volume change, as seen in AD, would go beyond
the observed intra- and inter-scanner measurement error. In the
light of these events, attention needs to be paid when comparing
MRI scans obtained with different protocols, since even with
the same vendor, harmonized protocols, and elimination of
the previously mentioned controllable influencing factors, a
volumetric bias remains. On the other hand, our volumetric
analysis was performed in a “cross-sectional” way, where each
individual scan was segmented independently. It is known that
“longitudinal” methods, which simultaneously analyze two or
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more brain scans, have a significantly lower measurement error,
and should be preferred over cross-sectional measurements, for
computing atrophy of brain structures.

Harmonization
The three MRI systems that were used in this study had a
difference in coils and channels per coil between the systems
(16 channels vs. 32 channels), resulting in differences in the
signal-to-noise (SNR) ratio. In this study design we used coils
that were directly purchased from the manufacturer. In addition,
the difference in FOV between the three MRI systems can be
explained by the fact that there was no phase oversampling
available for the GE. To compensate for this, a large FOV was
employed, enabling the acquirement of the same resolution and
number of phase-encoded lines as for the other vendors, and
hence SNR was not affected. Furthermore, the reconstruction
resolution for GE was slightly lower compared to the other MRI
systems, as this could not be chosen freely and interpolation
factors > 2 were avoided. Nevertheless, the in-plane image
resolution of 1 mm× 1 mm is well suited for brain segmentation.
The difference in image resolution could have a slight effect on the
segmentation of some regions which contain a lot of complicated
borders. The total duration of the scan was also larger for GE than
for the other systems, since GE does not offer TFE sequence, but
has its own BRAVO sequence, a TFE sequence that is optimized
for brain recording. The disadvantage, in our case, is that the
adjustable parameters are limited, including control over the
scan duration. Another potential cause of variability that was not
investigated in this study, are the scanner-specific differences in
post processing of the raw data. For example, the GE scanner
that was utilized in this study ended up with 280 instead of 288
slices (as with Achieva and Ingenia). This was the consequence
of an implicit oversampling and the “throwing away” of the
outer slices during the reconstruction, which is GE specific.
Additional efforts are needed to deepen our understanding of the
effects on inter-scanner variability of these scanner-specific post
processing differences.

An additional limitation of this study was the small sample
size (n = 10) that was not sufficient to draw realistic conclusions
regarding disease related variability, but, however, producing
a total of 60 MRI scans which allowed for the analysis of
within-subject differences. In addition, since only one automated
volumetric software tool was utilized in this study, it would
be beneficial to investigate the effect of different automated
volumetric software’s on the intra and inter-variability across
different MRI systems.

Follow-up of brain MRI scans can aid in tracking disease
progression, which may be relevant for research purposes. In
addition, MRI can display the presence of typical brain atrophy
patterns correlated to specific neurodegenerative diseases.
Analyzing and subsequently improving intra- and inter-scanner
variability can bring us closer to comparing MRI scans from
the same individual, taken from different centers. Being able to
compare multi-center MRI scans is also useful in clinical trials,
where MRI scans from different scanners can then be pooled
for data analysis. Harmonizing inter-center MRI scans might
aid multi-center research, but its application in a clinical setting

remains challenging. Therefore, techniques which allow for the
harmonization of MRI data, e.g., based on AI, would be very
valuable to overcome these obstacles. This approach might allow
comparison of recent MRI scans with older MRI scans (using
different acquisition techniques) over a longer period.

In conclusion, harmonized acquisition sequences were able
to produce good quality brain scans on different MRI scanners
and were suitable for automated brain segmentation. In addition,
observed intra- and inter-scanner measurement error was smaller
than the annual pathologic whole brain volume change, as seen
in AD. Harmonized scans obtained with different scanners of
the same manufacturer had a measurement error closer to the
intra-scanner performance. The gap between intra- and inter-
scanner comparisons grew when comparing scans from different
manufacturers. This was observed at image level in terms of
image contrast, image similarity and geometry, and translated
into a higher variability of automated brain volumetry. However,
on average, intra and inter-scanner variability results showed a
good overlap of brain structure segmentation (mean DSC> 0.88)
and good reproducibility within- (mean CV< 2%) and between-
scanners (mean CV< 5%) was obtained over global, cortical, and
subcortical brain structures.

DATA AVAILABILITY STATEMENT

All data are available from the corresponding author on
reasonable request.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by this randomized prospective study was approved
by the Ethical Committee of UZ Brussel in Brussels, Belgium
(Reference nr: 2020-079). Written informed consent of all
participants and/or legal representatives (in case of dementia)
was obtained. The patients/participants provided their written
informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

G-JA: conceptualization, investigation, resources, data curation,
and writing – original draft. MW: conceptualization,
investigation, resources, data curation, formal analysis,
validation, visualization, and writing – original draft. DMS:
methodology, software, validation, formal analysis, and
writing – review and editing. MN: data curation, and writing –
review and editing. TV: writing – review and editing. A-MV,
YD, and GN: conceptualization. NB: conceptualization,
and writing – review and editing. HR: methodology,
resources, supervision, and validation. EF: formal analysis,
and writing – review and editing. DS: conceptualization
and software. WH: conceptualization, validation, and
writing – review and editing. MB: supervision, and writing –
review and editing. JM: conceptualization, resources,
supervision, funding acquisition, and writing – review and

Frontiers in Aging Neuroscience | www.frontiersin.org 13 October 2021 | Volume 13 | Article 746982

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-746982 October 7, 2021 Time: 11:20 # 14

Wittens et al. Inter- and Intra-Scanner Variability of Icobrain dm

editing. SE: conceptualization, resources, supervision, project
administration, funding acquisition, and writing – review and
editing. All authors critically revised and approved the content
of the final manuscript before submission.

FUNDING

This research was in part supported by the agency of Flanders
Innovation and Intrepreneurship (VLAIO) and the Interreg
V programme Flanders-Netherlands of the European Regional

Development Fund (ERDF; Herinneringen/Memories project).
Icobrain dm is a proprietary software, developed by icometrix for
the automated quantification of brain volumes and white matter
hyperintensities.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnagi.
2021.746982/full#supplementary-material

REFERENCES
Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox,

N. C., et al. (2011). The diagnosis of mild cognitive impairment due to
Alzheimer’s disease: recommendations from the National Institute on Aging-
Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s
disease. Alzheimers Dement. 7, 270–279. doi: 10.1016/j.jalz.2011.03.008

Anderson, V. M., Schott, J. M., Bartlett, J. W., Leung, K. W., Miller, D. H., and Fox,
N. C. (2012). Gray matter atrophy rate as a marker of disease progression in
AD. Neurobiol. Aging 33, 1194–1202.

Apostolova, L. G., Green, A. E., Babakchanian, S., Hwang, K. S., Chou, Y. Y.,
Toga, A. W., et al. (2012). Hippocampal atrophy and ventricular enlargement
in normal aging, mild cognitive impairment (MCI), and Alzheimer disease.
Alzheimer Dis. Assoc. Disord. 26, 17–27. doi: 10.1097/WAD.0b013e3182163b62

Barnes, J., Bartlett, J. W., van de Pol, L. A., Loy, C. T., Scahill, R. I., Frost, C., et al.
(2009). A meta-analysis of hippocampal atrophy rates in Alzheimer’s disease.
Neurobiol. Aging 30, 1711–1723. doi: 10.1016/j.neurobiolaging.2008.01.010

Bengtsson, H., Ahlmann-Eltze, C., Corrada Bravo, H., Gentleman, R., Gleixner,
J., Hickey, P., et al. (2021). Functions that Apply to Rows and Columns
of Matrices (and to Vectors). Packag. “matrixStats” 0.60.1. Available at:
https://github.com/HenrikBengtsson/matrixStats (Accessed August 24, 2021).

Biberacher, V., Schmidt, P., Keshavan, A., Boucard, C. C., Righart, R., Sämann, P.,
et al. (2016). Intra- and interscanner variability of magnetic resonance imaging
based volumetry in multiple sclerosis. Neuroimage 142, 188–197. doi: 10.1016/
j.neuroimage.2016.07.035

Cajanus, A., Solje, E., Koikkalainen, J., Lötjönen, J., Suhonen, N. M., Hallikainen,
I., et al. (2019). The association between distinct frontal brain volumes and
behavioral symptoms in mild cognitive impairment, Alzheimer’s disease, and
frontotemporal dementia. Front. Neurol. 10:1059. doi: 10.3389/fneur.2019.
01059

Chhapola, V., Kanwal, S. K., and Brar, R. (2015). Reporting standards for
Bland–Altman agreement analysis in laboratory research: a cross-sectional
survey of current practice. Ann. Clin. Biochem. 52, 382–386. doi: 10.1177/
0004563214553438

Clerx, L., van Rossum, I. A., Burns, L., Knol, D. L., Scheltens, P., Verhey, F.,
et al. (2013). Measurements of medial temporal lobe atrophy for prediction
of Alzheimer’s disease in subjects with mild cognitive impairment. Neurobiol.
Aging 34, 2003–2013. doi: 10.1016/j.neurobiolaging.2013.02.002

Den Heijer, T., Van Der Lijn, F., Koudstaal, P. J., Hofman, A., Van Der Lugt, A.,
Krestin, G. P., et al. (2010). A 10-year follow-up of hippocampal volume on
magnetic resonance imaging in early dementia and cognitive decline. Brain 133,
1163–1172. doi: 10.1093/brain/awq048

Dieleman, N., Koek, H. L., and Hendrikse, J. (2017). Short-term mechanisms
influencing volumetric brain dynamics. Neuroimage Clin. 16, 507–513. doi:
10.1016/j.nicl.2017.09.002

Duara, R., Loewenstein, D. A., Potter, E., Appel, J., Greig, M. T., Urs, R., et al.
(2008). Medial temporal lobe atrophy on MRI scans and the diagnosis of
Alzheimer disease. Neurology 71, 1986–1992. doi: 10.1212/01.wnl.0000336925.
79704.9f

Dubois, B., Feldman, H. H., Jacova, C., Hampel, H., Molinuevo, J. L., Blennow,
K., et al. (2014). Advancing research diagnostic criteria for Alzheimer’s disease:
the IWG-2 criteria. Lancet Neurol. 13, 614–629. doi: 10.1016/S1474-4422(14)
70090-0

Ferrarini, L., Palm, W. M., Olofsen, H., van Buchem, M. A., Reiber, J. H. C.,
and Admiraal-Behloul, F. (2006). Shape differences of the brain ventricles in
Alzheimer’s disease. Neuroimage 32, 1060–1069. doi: 10.1016/j.neuroimage.
2006.05.048

Frisoni, G. B., Fox, N. C., Jack, C. R., Scheltens, P., and Thompson, P. M. (2010).
The clinical use of structural MRI in Alzheimer disease. Nat. Rev. Neurol. 6,
67–77. doi: 10.1038/nrneurol.2009.215

Gasperini, C., Rovaris, M., Sormani, M. P., Bastianello, S., Pozzilli, C., Comi,
G., et al. (2001). Intra-observer, inter-observer and inter-scanner variations in
brain MRI volume measurements in multiple sclerosis. Mult. Scler. J. 7, 27–31.
doi: 10.1177/135245850100700106

Giavarina, D. (2015). Understanding Bland Altman analysis. Biochem. Medica 25,
141–151. doi: 10.11613/BM.2015.015

Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N. A., Friston, K. J., and
Frackowiak, R. S. J. (2001). A voxel-based morphometric study of ageing in 465
normal adult human brains. Neuroimage 14, 21–36. doi: 10.1006/nimg.2001.
0786

Guo, C., Niu, K., Luo, Y., Shi, L., Wang, Z., Zhao, M., et al. (2019).
Intra-scanner and inter-scanner reproducibility of automatic white matter
hyperintensities quantification. Front. Neurosci. 13:679. doi:10.3389/fnins.2019.
00679

Guptha, S. H., Holroyd, E., and Campbell, G. (2002). Progressive lateral ventricular
enlargement as a clue to Alzheimer’s disease [6]. Lancet 359:2040. doi: 10.1016/
S0140-6736(02)08806-2

Halliday, G. (2017). Pathology and hippocampal atrophy in Alzheimer’s disease.
Lancet Neurol. 16, 862–864. doi: 10.1016/S1474-4422(17)30343-5

Harper, L., Bouwman, F., Burton, E. J., Barkhof, F., Scheltens, P., O’Brien, J. T., et al.
(2017). Patterns of atrophy in pathologically confirmed dementias: a voxelwise
analysis. J. Neurol. Neurosurg. Psychiatry 88, 908–916. doi: 10.1136/jnnp-2016-
314978

Harper, L., Fumagalli, G. G., Barkhof, F., Scheltens, P., O’Brien, J. T., Bouwman, F.,
et al. (2016). MRI visual rating scales in the diagnosis of dementia: evaluation
in 184 post-mortem confirmed cases. Brain 139, 1211–1225. doi: 10.1093/brain/
aww005

Huppertz, H.-J., Kröll-Seger, J., Klöppel, S., Ganz, R. E., and Kassubek, J. (2010).
Intra- and interscanner variability of automated voxel-based volumetry based
on a 3D probabilistic atlas of human cerebral structures. Neuroimage 49,
2216–2224. doi: 10.1016/j.neuroimage.2009.10.066

Jack, C. R., Albert, M. S., Knopman, D. S., McKhann, G. M., Sperling, R. A.,
Carrillo, M. C., et al. (2011). Introduction to the recommendations from the
National Institute on Aging-Alzheimer’s Association workgroups on diagnostic
guidelines for Alzheimer’s disease. Alzheimers Dement. 7, 257–262. doi: 10.
1016/j.jalz.2011.03.004

Jacobs, H. I. L., Van Boxtel, M. P. J., Heinecke, A., Gronenschild, E. H. B. M.,
Backes, W. H., Ramakers, I. H. G. B., et al. (2012a). Functional integration
of parietal lobe activity in early Alzheimer disease. Neurology 78, 352–360.
doi: 10.1212/WNL.0b013e318245287d

Jacobs, H. I. L., Van Boxtel, M. P. J., Jolles, J., Verhey, F. R. J., and Uylings,
H. B. M. (2012b). Parietal cortex matters in Alzheimer’s disease: an overview
of structural, functional and metabolic findings. Neurosci. Biobehav. Rev. 36,
297–309. doi: 10.1016/j.neubiorev.2011.06.009

Jain, S., Sima, D. M., Ribbens, A., Cambron, M., Maertens, A., Van Hecke, W., et
al. (2015). Automatic segmentation and volumetry of multiple sclerosis brain

Frontiers in Aging Neuroscience | www.frontiersin.org 14 October 2021 | Volume 13 | Article 746982

https://www.frontiersin.org/articles/10.3389/fnagi.2021.746982/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnagi.2021.746982/full#supplementary-material
https://doi.org/10.1016/j.jalz.2011.03.008
https://doi.org/10.1097/WAD.0b013e3182163b62
https://doi.org/10.1016/j.neurobiolaging.2008.01.010
https://github.com/HenrikBengtsson/matrixStats
https://doi.org/10.1016/j.neuroimage.2016.07.035
https://doi.org/10.1016/j.neuroimage.2016.07.035
https://doi.org/10.3389/fneur.2019.01059
https://doi.org/10.3389/fneur.2019.01059
https://doi.org/10.1177/0004563214553438
https://doi.org/10.1177/0004563214553438
https://doi.org/10.1016/j.neurobiolaging.2013.02.002
https://doi.org/10.1093/brain/awq048
https://doi.org/10.1016/j.nicl.2017.09.002
https://doi.org/10.1016/j.nicl.2017.09.002
https://doi.org/10.1212/01.wnl.0000336925.79704.9f
https://doi.org/10.1212/01.wnl.0000336925.79704.9f
https://doi.org/10.1016/S1474-4422(14)70090-0
https://doi.org/10.1016/S1474-4422(14)70090-0
https://doi.org/10.1016/j.neuroimage.2006.05.048
https://doi.org/10.1016/j.neuroimage.2006.05.048
https://doi.org/10.1038/nrneurol.2009.215
https://doi.org/10.1177/135245850100700106
https://doi.org/10.11613/BM.2015.015
https://doi.org/10.1006/nimg.2001.0786
https://doi.org/10.1006/nimg.2001.0786
https://doi.org/10.3389/fnins.2019.00679
https://doi.org/10.3389/fnins.2019.00679
https://doi.org/10.1016/S0140-6736(02)08806-2
https://doi.org/10.1016/S0140-6736(02)08806-2
https://doi.org/10.1016/S1474-4422(17)30343-5
https://doi.org/10.1136/jnnp-2016-314978
https://doi.org/10.1136/jnnp-2016-314978
https://doi.org/10.1093/brain/aww005
https://doi.org/10.1093/brain/aww005
https://doi.org/10.1016/j.neuroimage.2009.10.066
https://doi.org/10.1016/j.jalz.2011.03.004
https://doi.org/10.1016/j.jalz.2011.03.004
https://doi.org/10.1212/WNL.0b013e318245287d
https://doi.org/10.1016/j.neubiorev.2011.06.009
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-746982 October 7, 2021 Time: 11:20 # 15

Wittens et al. Inter- and Intra-Scanner Variability of Icobrain dm

lesions from MR images. NeuroImage Clin. 8, 367–375. doi: 10.1016/j.nicl.2015.
05.003

Koo, T. K., and Li, M. Y. (2016). A guideline of selecting and reporting intraclass
correlation coefficients for reliability research. J. Chiropr. Med. 15, 155–163.
doi: 10.1016/j.jcm.2016.02.012

Lindberg, O., Walterfang, M., Looi, J. C. L., Malykhin, N., Ostberg, P., Zandbelt,
B., et al. (2012). Hippocampal shape analysis in Alzheimer’s disease and
frontotemporal lobar degeneration subtypes. J. Alzheimers. Dis. 30, 355–365.
doi: 10.3233/JAD-2012-112210

Magnotta, V. A., and Friedman, L. (2006). Measurement of signal-to-noise and
contrast-to-noise in the fBIRN multicenter imaging study. J. Digit. Imaging 19,
140–147. doi: 10.1007/s10278-006-0264-x

Martinez-Torteya, A., Rivera-Davila, M., Celaya-Padilla, J. M., Tamez-Peña, J. G.,
and Rodríguez-Cantú, F. E. (2019). “Measuring hippocampal neuroanatomical
asymmetry to better diagnose Alzheimer’s disease,” in Proceedings of the SPIE-
Intl Soc Optical Eng, San Diego, CA, 28.

Maruszak, A., and Thuret, S. (2014). Why looking at the whole hippocampus is not
enough-a critical role for anteroposterior axis, subfield and activation analyses
to enhance predictive value of hippocampal changes for Alzheimer’s disease
diagnosis. Front. Cell. Neurosci. 8:95. doi: 10.3389/fncel.2014.00095

McGraw, K. O., and Wong, S. P. (1996). Forming inferences about some
intraclass correlation coefficients. Psychol. Methods 1, 30–46. doi: 10.1037/1082-
989X.1.1.30

McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R.,
Kawas, C. H., et al. (2011). The diagnosis of dementia due to Alzheimer’s
disease: recommendations from the National Institute on Aging-Alzheimer’s
Association workgroups on diagnostic guidelines for Alzheimer’s disease.
Alzheimers Dement. 7, 263–269. doi: 10.1016/j.jalz.2011.03.005

Niemantsverdriet, E., Ribbens, A., Bastin, C., Benoit, F., Bergmans, B., Bier, J. C.,
et al. (2018). A retrospective Belgian Multi-Center MRI biomarker study in
Alzheimer’s disease (REMEMBER). J. Alzheimers Dis. 63, 1509–1522. doi: 10.
3233/JAD-171140

Pemberton, H. G., Goodkin, O., Prados, F., Das, R. K., Vos, S. B., Moggridge, J.,
et al. (2021). Automated quantitative MRI volumetry reports support diagnostic
interpretation in dementia: a multi-rater, clinical accuracy study. Eur. Radiol.
31, 5312–5323. doi: 10.1007/s00330-020-07455-8

Peng, G., Wang, J., Feng, Z., Liu, P., Zhang, Y., He, F., et al. (2016). Clinical
and neuroimaging differences between posterior cortical atrophy and typical
amnestic Alzheimer’s disease patients at an early disease stage. Sci. Rep. 6:29372.
doi: 10.1038/srep29372

Rathakrishnan, B. G., Murali Doraiswamy, P., and Petrella, J. R. (2014). Science
to practice: translating automated brain MRI volumetry in Alzheimer’s disease
from research to routine diagnostic use in the work-up of dementia. Front.
Neurol. 4:216. doi: 10.3389/fneur.2013.00216

Revelle, W. (2012). An Introduction to Psychometric Theory with Applications
in R. Personal. Proj. 1–262. Available at: papers://dee23da0-e34b-4588-b624-
f878b46d7b3d/Paper/p728.

Sarica, A., Vasta, R., Novellino, F., Vaccaro, M. G., Cerasa, A., and Quattrone,
A. (2018). MRI asymmetry index of hippocampal subfields increases through
the continuum from the mild cognitive impairment to the alzheimer’s disease.
Front. Neurosci. 12:576. doi: 10.3389/fnins.2018.00576

Sawyer, R. P., Rodriguez-Porcel, F., Hagen, M., Shatz, R., and Espay, A. J. (2017).
Diagnosing the frontal variant of Alzheimer’s disease: a clinician’s yellow brick
road. J. Clin. Mov. Disord. 4:2. doi: 10.1186/s40734-017-0052-4

Scahill, R. I., Frost, C., Jenkins, R., Whitwell, J. L., Rossor, M. N., and Fox, N. C.
(2003). A longitudinal study of brain volume changes in normal aging using
serial registered magnetic resonance imaging. Arch. Neurol. 60, 989–994. doi:
10.1001/archneur.60.7.989

Schippling, S., Ostwaldt, A. C., Suppa, P., Spies, L., Manogaran, P., Gocke, C., et al.
(2017). Global and regional annual brain volume loss rates in physiological
aging. J. Neurol. 264, 520–528. doi: 10.1007/s00415-016-8374-y

Shinohara, R. T., Oh, J., Nair, G., Calabresi, P. A., Davatzikos, C., Doshi, J., et al.
(2017). Volumetric analysis from a harmonized multisite brain MRI study of a
single subject with multiple sclerosis. AJNR. Am. J. Neuroradiol. 38, 1501–1509.
doi: 10.3174/ajnr.A5254

Shrout, P. E., and Fleiss, J. L. (1979). Intraclass correlations: uses in assessing rater
reliability. Psychol. Bull. 86, 420–428. doi: 10.1037/0033-2909.86.2.420

Sima, D. M., Horáková, D., Nguyen, A.-L., Van Hecke, W., Kalincik, T., Barnett,
M. H., et al. (2019). Assessing the reliability of longitudinal MRI examinations
in multiple sclerosis follow-up. ECTRIMS Online Libr. 278907:547.

Sluimer, J. D., Vrenken, H., Blankenstein, M. A., Fox, N. C., Scheltens,
P., Barkhof, F., et al. (2008). Whole-brain atrophy rate in Alzheimer
disease: identifying fast progressors. Neurology 70, 1836–1841. doi:
10.1212/01.wnl.0000311446.61861.e3

Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S.,
Fagan, A. M., et al. (2011). Toward defining the preclinical stages of
Alzheimer’s disease: recommendations from the National Institute on
Aging-Alzheimer’s Association workgroups on diagnostic guidelines for
Alzheimer’s disease. Alzheimers Dement. 7, 280–292. doi: 10.1016/j.jalz.2011.
03.003

Stöckl, D., Rodríguez Cabaleiro, D., Van Uytfanghe, K., and Thienpont, L. M.
(2004). Interpreting method comparison studies by use of the Bland-Altman
plot: reflecting the importance of sample size by incorporating confidence limits
and predefined error limits in the graphic [3]. Clin. Chem. 50, 2216–2218.
doi: 10.1373/clinchem.2004.036095

Struyfs, H., Sima, D. M., Wittens, M., Ribbens, A., Pedrosa de Barros, N., Phan,
T. V., et al. (2020). Automated MRI volumetry as a diagnostic tool for
Alzheimer’s disease: validation of icobrain dm. Neuroimage Clin. 26:102243.
doi: 10.1016/j.nicl.2020.102243

Studholme, C., Hill, D. L. G., and Hawkes, D. J. (1999). An overlap invariant
entropy measure of 3D medical image alignment. Pattern Recognit. 32, 71–86.
doi: 10.1016/S0031-3203(98)00091-0

Trefler, A., Sadeghi, N., Thomas, A. G., Pierpaoli, C., Baker, C. I., and Thomas,
C. (2016). Impact of time-of-day on brain morphometric measures derived
from T1-weighted magnetic resonance imaging. Neuroimage 133, 41–52. doi:
10.1016/j.neuroimage.2016.02.034

Trevethan, R. (2017). Intraclass correlation coefficients: clearing the air, extending
some cautions, and making some requests. Heal. Serv. Outcomes Res. Methodol.
17, 127–143. doi: 10.1007/s10742-016-0156-6

Vemuri, P., and Jack, C. R. (2010). Role of structural MRI in Alzheimer’s disease.
Alzheimers Res. Ther. 2:23. doi: 10.1186/alzrt47

Vernooij, M. W., Pizzini, F. B., Schmidt, R., Smits, M., Yousry, T. A., Bargallo, N.,
et al. (2019). Dementia imaging in clinical practice: a European-wide survey of
193 centres and conclusions by the ESNR working group. Neuroradiology 61,
633–642. doi: 10.1007/s00234-019-02188-y

Vinke, E. J., de Groot, M., Venkatraghavan, V., Klein, S., Niessen, W. J., Ikram,
M. A., et al. (2018). Trajectories of imaging markers in brain aging: the
Rotterdam Study. Neurobiol. Aging 71, 32–40. doi: 10.1016/j.neurobiolaging.
2018.07.001

Wittens, M. M. J., Sima, D. M., Houbrechts, R., Ribbens, A., Niemantsverdriet, E.,
Fransen, E., et al. (2021). Diagnostic performance of automated MRI volumetry
by icobrain dm for Alzheimer’s disease in a clinical setting: a REMEMBER
study. J. Alzheimers Dis. 1–17. doi: 10.3233/jad-210450 pre-press

Wolak, M. E., Fairbairn, D. J., and Paulsen, Y. R. (2012). Guidelines for estimating
repeatability. Methods Ecol. Evol. 3, 129–137. doi: 10.1111/J.2041-210X.2011.
00125.X

Conflict of Interest: DMS, DS, and WH are employed by icometrix. SE serves as
a consultant for icometrix, and served as consultant for Biogen, Danone, Eisiai,
Novartis, Nutricia, Pfizer, and Roche.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Wittens, Allemeersch, Sima, Naeyaert, Vanderhasselt, Vanbinst,
Buls, De Brucker, Raeymaekers, Fransen, Smeets, van Hecke, Nagels, Bjerke, de
Mey and Engelborghs. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s)
and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Aging Neuroscience | www.frontiersin.org 15 October 2021 | Volume 13 | Article 746982

https://doi.org/10.1016/j.nicl.2015.05.003
https://doi.org/10.1016/j.nicl.2015.05.003
https://doi.org/10.1016/j.jcm.2016.02.012
https://doi.org/10.3233/JAD-2012-112210
https://doi.org/10.1007/s10278-006-0264-x
https://doi.org/10.3389/fncel.2014.00095
https://doi.org/10.1037/1082-989X.1.1.30
https://doi.org/10.1037/1082-989X.1.1.30
https://doi.org/10.1016/j.jalz.2011.03.005
https://doi.org/10.3233/JAD-171140
https://doi.org/10.3233/JAD-171140
https://doi.org/10.1007/s00330-020-07455-8
https://doi.org/10.1038/srep29372
https://doi.org/10.3389/fneur.2013.00216
papers://dee23da0-e34b-4588-b624-f878b46d7b3d/Paper/p728
papers://dee23da0-e34b-4588-b624-f878b46d7b3d/Paper/p728
https://doi.org/10.3389/fnins.2018.00576
https://doi.org/10.1186/s40734-017-0052-4
https://doi.org/10.1001/archneur.60.7.989
https://doi.org/10.1001/archneur.60.7.989
https://doi.org/10.1007/s00415-016-8374-y
https://doi.org/10.3174/ajnr.A5254
https://doi.org/10.1037/0033-2909.86.2.420
https://doi.org/10.1212/01.wnl.0000311446.61861.e3
https://doi.org/10.1212/01.wnl.0000311446.61861.e3
https://doi.org/10.1016/j.jalz.2011.03.003
https://doi.org/10.1016/j.jalz.2011.03.003
https://doi.org/10.1373/clinchem.2004.036095
https://doi.org/10.1016/j.nicl.2020.102243
https://doi.org/10.1016/S0031-3203(98)00091-0
https://doi.org/10.1016/j.neuroimage.2016.02.034
https://doi.org/10.1016/j.neuroimage.2016.02.034
https://doi.org/10.1007/s10742-016-0156-6
https://doi.org/10.1186/alzrt47
https://doi.org/10.1007/s00234-019-02188-y
https://doi.org/10.1016/j.neurobiolaging.2018.07.001
https://doi.org/10.1016/j.neurobiolaging.2018.07.001
https://doi.org/10.3233/jad-210450
https://doi.org/10.1111/J.2041-210X.2011.00125.X
https://doi.org/10.1111/J.2041-210X.2011.00125.X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles

	Inter- and Intra-Scanner Variability of Automated Brain Volumetry on Three Magnetic Resonance Imaging Systems in Alzheimer's Disease and Controls
	Introduction
	Materials and Methods
	Study Population
	Study Design
	Ethical Committee
	Image Acquisition
	Image Processing
	Post Processing Technique

	Statistical Analysis
	Measures of Agreement at Image Level
	Affine similarity index
	Maximum scaling factor
	Contrast difference

	Measures of Agreement for Intra- and Inter-Scanner Brain Volumes and Segmentations
	Intraclass correlation coefficient
	Coefficient of variation
	Absolute volume differences
	Dice similarity coefficient
	Percentual difference
	Intra- and inter-scanner variability on patient level



	Results
	Measurements of Agreement Between Image Pairs at Image Level
	Measures of Agreement for Intra- and Inter-Scanner Brain Volumes and Segmentations
	Intra-Scanner Variability
	Inter-Scanner Variability
	Individual Quantitative Intra- and Inter-Scanner Variability
	Percentual Differences
	Actual Brain Structure Volumes


	Discussion
	Harmonization

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


