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In this article, a highly effective Bayesian sampling algorithm based on auxiliary

variables is proposed to analyze aberrant response and response time data. The

new algorithm not only avoids the calculation of multidimensional integrals by the

marginal maximum likelihood method but also overcomes the dependence of the

traditional Metropolis–Hastings algorithm on the tuning parameter in terms of acceptance

probability. A simulation study shows that the new algorithm is accurate for parameter

estimation under simulation conditions with different numbers of examinees, items, and

speededness levels. Based on the sampling results, the powers of the two proposed

Bayesian assessment criteria are tested in the simulation study. Finally, a detailed analysis

of a high-state and large-scale computerized adaptive test dataset is carried out to

illustrate the proposed methodology.

Keywords: aberrant responses, Bayesian inference, mixture hierarchical model, Pólya-gamma distribution, rapid

guessing behavior, Gibbs sampling algorithm

1. INTRODUCTION

In educational psychological assessments, examinees often perform different types of test-taking
behaviors (Bolt et al., 2002; Boughton and Yamamoto, 2007; Goegebeur et al., 2008; Chang et al.,
2014; Wang and Xu, 2015; Wang et al., 2018; Man et al., 2018; Man and Harring, 2021). One is
the solution behavior, in which the examinee gives a response after careful consideration to each
part of an item (Schnipke and Scrams, 1997; Bolt et al., 2002; Wise and Kong, 2005; Wang and
Xu, 2015). An alternative is the rapid guessing behavior, in which the examinee simply seeks to
obtain an answer quickly without a deep thought process; this behavior often occurs in high-stakes
tests owing to insufficient time and in low-stakes tests owing to lack of motivation. In fact, the
traditional item response theory (IRT) model is based on the assumption that the correct response
probability increases with the ability of the test taker under the solution behavior. The correct
response probability under the rapid guessing behavior is actually rarely dependent on the measure
constructed by the test (Lord and Novick, 1968;Wise and DeMars, 2006; Boughton and Yamamoto,
2007; Goegebeur et al., 2008). Numerous studies have shown that the presence of rapid guessing
behavior inevitably leads to biased inferences of the item and person parameters (Bolt et al., 2002;
Wise and DeMars, 2006; Boughton and Yamamoto, 2007; Goegebeur et al., 2008; Chang et al., 2014;
Wang and Xu, 2015; Wang et al., 2018). Therefore, appropriate models need to be constructed
to capture both solution behavior and rapid guessing behavior to reduce these biased parameter
estimates. Before we analyze aberrant response behavior, we provide an explanation of the change
point, which is the cut-off point at which an examinee adopts different response strategies. By
considering a change point, Bolt et al. (2002) classified examinees in the speeded group before the
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change point and found that they were more likely to adopt
the solution behavior, whereas examinees who transferred from
the speeded group to the non-speeded group after the change
point were more likely to choose the rapid guessing behavior.
In contrast to models using fixed change point locations,
Boughton and Yamamoto (2007) proposed the more flexible
HYBRID model, which allowed different examinees to have
change points at different locations. The model assumes that
examinees’ responses follow a Rasch model until a particular
point in a given examinee’s test, after which the responses to all
items are randomly guessed. Goegebeur et al. (2008) proposed a
speeded model with one change point to characterize the gradual
switch between response strategies by introducing an additional
examinee-specific change-rate parameter. In addition, Wise and
DeMars (2006) proposed an effort-moderated IRT model to
decompose the correct response probability into a mixture of two
sub-models. The two sub-models were used to characterize the
solution behavior and rapid guessing behavior, respectively.

In parallel with the abovementioned item response data,
response time, which is an important type of important auxiliary
information, has been widely used to distinguish between two
different behaviors (Schnipke and Scrams, 1997; Wise and
DeMars, 2006; van der Linden and Guo, 2008; Wang and Xu,
2015). van der Linden and Guo (2008) found that examinees’
response times in a high-stakes achievement test showed a
mixture of two different distributions. Similarly, Schnipke and
Scrams (1997) verified that the distribution of response times
for end-of-test items showed a bimodal pattern in a high-stakes
exam. In the study of (Schnipke and Scrams, 1997), a two-state
mixture model was proposed to decompose the distribution of
response times for each item into two parts. The two parts of
the response times quantified the solution behavior and the rapid
guessing behavior, respectively. Wang and Xu (2015) proposed
a mixture model to consider differences between item responses
and response time patterns resulting from the solution behavior
and rapid guessing behavior. The mixture model used both item
response and response time information and considered multiple
switch points for each examinee.

A variety of estimation methods have been proposed to
estimate the parameters of the IRT and response time models.
In the frequentist framework, the most common method is
the marginal maximum likelihood estimation (MMLE) via
expectation maximization algorithm (Bock and Aitkin, 1981;
Baker and Kim, 2004). However, the main drawback of marginal
maximum likelihood methods is the inevitable need for tedious
approximation of the multidimensional integral using numerical
integration (Bock and Schilling, 1997; Rabe-Hesketh et al., 2002,
2005) or Monte Carlo integration (Kuk, 1999; Skaug, 2002)
when the latent variables are high dimensional. This is because
the number of discrete quadrature points required increases
exponentially as the number of latent variables increases linearly
during the computation (Converse et al., 2021, p. 1465).
Although the adaptive quadrature method has been used to
deal with the computational deficiency by using a small number
of quadrature points, the problem has not been completely
solved (Jiang and Templin, 2019). In addition, the comparison
method of the MMLE is simplistic; comparison methods other

than the root mean square error of approximation are seldom
used (Zhang et al., 2019). Compared with the MMLE method,
first, the Bayesian method allows one to update knowledge by
using proper informative priors based on previous studies, the
posterior distribution being more precise than the likelihood
or the prior alone (Jackman, 2009). The incorporation of
proper informative priors into the Bayesian analysis can be
used to obtain better results in the case of small to moderate
sample sizes. In addition, even if weakly informative inaccurate
priors are used, the performance of the Bayesian method does
not deteriorate. Second, Bayesian estimation does not rely on
asymptotic arguments and can give more reliable results for
small samples (Lee and Song, 2004; Song and Lee, 2012). Third,
another major advantage of Bayesian analysis is the ability to
analyze models that are computationally heavy or impossible
to estimate with MMLE. These include models with categorical
outcomes with many latent variables and, thus, many dimensions
of numerical integrations (Asparouhov and Muthén, 2010b;
Muthén, 2010).

In the current study, an efficient Pólya–gamma Gibbs
sampling algorithm (Polson et al., 2013) in a fully Bayesian
framework is proposed to estimate the parameters of the mixture
model of Wang and Xu (2015). Compared with traditional
Bayesian sampling algorithms, e.g., the Metropolis–Hastings
sampling algorithm (Metropolis et al., 1953; Hastings, 1970;
Tierney, 1994; Chib and Greenberg, 1995; Chen et al., 2000),
Gibbs sampling algorithm (Geman andGeman, 1984; Tanner and
Wong, 1987; Gelfand and Smith, 1990; Albert, 1992; Béguin and
Glas, 2001; Fox and Glas, 2001), and the advantages of the Pólya–
gamma Gibbs sampling algorithm are presented from multiple
perspectives. First, the Pólya–gamma Gibbs sampling algorithm
avoids retrospective tuning in the Metropolis–Hastings sampling
algorithm if we do not know how to choose a proper tuning
parameter or if no value for the tuning parameter is appropriate.
It always keeps the drawn samples accepted, thereby increasing
the sampling efficiency (Zhang et al., 2020). Second, the Pólya–
gamma Gibbs sampling algorithm can transform the non-
conjugate model into the conjugate model by using augmented
auxiliary variables. With the help of the traditional Gibbs
sampling algorithm, posterior sampling is easier to implement
(Polson et al., 2013). Third, in Bayesian estimation, prior
distributions of model parameters and observed data likelihood
produce a joint posterior distribution for the model parameters.
The prior specifications and prior sensitivity are important
aspects of Bayesian inference (Ghosh and A. Ghosh, 2000). In
fact, the Pólya–gamma Gibbs sampling algorithm is not sensitive
to the specification of the prior distribution. It can still obtain
satisfactory results even if the proper or mis-specification priors
are adopted (Zhang et al., 2020).

The rest of this article is organized as follows. Section 2
contains an introduction to the mixture hierarchical model
and the corresponding identification restrictions. A detailed
implementation of the Pólya–gamma Gibbs sampling algorithm
is described in Section 3. In Section 4, two simulations
focus on the parameter recovery performance of the Bayesian
algorithm using the results of the model assessments. In addition,
the quality of the Bayesian algorithm is investigated using
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high-state and large-scale computerized adaptive test data in
Section 5. We conclude the article with a brief discussion in
Section 6.

2. MODELS

Following Wang and Xu (2015), the mixture model is used to
distinguish solution behavior from rapid guessing behavior. The
correct response probability of examinee i on item j is assumed to
follow a mixture decomposition

P
(
Yij = 1

∣∣ηij
)
=
(
1− ηij

)
P
(
Yij = 1

∣∣ηij = 0
)

+ ηijP
(
Yij = 1

∣∣ηij = 1
)
,

where ηij is a latent response behavior indicator variable,
ηij = 1 denotes the case where examinee i answers item j
by rapid guessing behavior, and ηij = 0 denotes the solution
behavior. P

(
Yij = 1

∣∣ηij = 0
)
quantifies the probability of a

correct response resulting from the solution behavior, whereas
P
(
Yij = 1

∣∣ηij = 1
)
captures the probability of a correct response

with the rapid guessing behavior. We use the two-parameter
logistic (2PL; Birnbaum, 1968) model for the solution behavior,

P
(
Yij = 1

∣∣ηij = 0, θi, aj, bj
)
=

exp
[
aj
(
θi − bj

)]

1+ exp
[
aj
(
θi − bj

)] ,

where aj and bj are the discrimination and difficulty parameters
of item j, and θi denotes the ability of the ithe examinee. The
probability that examinee i answers item j correctly by the rapid
guessing behavior is gj; this is an item-specific probability:

P
(
Yij = 1

∣∣ηij = 1
)
= gj.

In parallel with the mixture item response model, the observed
response time Tobs

ij is

Tobs
ij =

(
1− ηij

)
Tij + ηijCij,

where Tij represents the time required for examinee i to respond
to item j using solution behavior, and Cij represents the time
required for examinee i to respond to item j using rapid
guessing behavior. Therefore, given latent indicator variable ηij,

the density function of observed response time Tobs
ij can be

denoted as

pij
(
tij
∣∣ηij

)
=
(
1− ηij

)
fij
(
tij
)
+ ηijhij

(
tij
)
,

where f and h represent corresponding density functions of Tijv

and Cijv.
Response times on test items have been modeled in

various families of distributions in psychometric applications,
including exponential (Scheiblechner, 1979), gamma (Maris,
1993), Weibull (Rouder et al., 2003), log-normal race (Rouder
et al., 2015), and semi-parametric models (Wang et al., 2013).
Response time data are non-negative, and their distributions tend
to be positively skewed. The log transformation would move

positively skewed distributions toward symmetric shapes. We
chose the log-normal distribution (van der Linden, 2006) for
response times with solution behavior:

log
(
Tij

)
= λj − τi + eij, eij ∼ N

(
0, σ 2

j

)
,

where λj is the time intensity of item j; a higher value of λj
indicates that the item is expected to consume more time. τi is
a speed parameter of examinee i; a higher value of τi means that
the examinee works faster and a lower response time is expected.
σ 2
j allows for differences between the variances of log-times

on different items. Following the “common-guessing” (Schnipke
and Scrams, 1997), the response times of the guessing behavior
have a common log-normal distribution

log
(
Cij

)
∼ N

(
µc, σ

2
c

)
.

To capture across-person relationships between speed and
accuracy, we assume that the ability and speed parameters have a
bivariate normal distribution, to explore whether examinees with
higher ability tend to answer items faster, i.e.,

ξ i = (θi, τi)
′

∼ N (µP,6P) ,

with mean vector

µP = (µθ ,µτ )
′

and covariance matrix

6P =

(
σ 2

θ σθτ

στθ σ 2
τ

)
.

2.1. Model Identification
In the 2PL model, to eliminate the trade-off between ability θ and
difficulty parameter b in location, we only need to fix the mean
population level of ability to zero. That is, µθ = 0. To eliminate
the trade-off between ability θ and discrimination parameter a in
scale, we need to restrict the variance population level of ability
to one. That is, σ 2

θ = 1. For the response time model with
the solution behavior, to eliminate the trade-off between speed
parameter τ and time intensity parameter λ in location, we need
to fix the mean population level of speed to zero. That is, µτ = 0.

There are several widely used identification restriction
methods for two-parameter IRT models. The identification
restrictions of our models are based on the following methods.

(1) Fix the mean population level of ability to zero and the
variance population level of ability to one (Lord and Novick,
1968; Bock and Aitkin, 1981; Fox and Glas, 2001; Fox, 2010).
That is, θ ∼ N (0, 1).

(2) Restrict the sum of item difficulty parameters to zero and the
product of item discrimination parameters to one (Fox and
Glas, 2001; Fox, 2005, 2010). That is,

J∑

j=1

bj = 0 and

J∏

j=1

aj = 1.
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(3) Fix the item difficulty parameter to a specific value, most
often zero and restrict the discrimination parameter to a
specific value, most often one (Fox and Glas, 2001; Fox,
2010). That is, b1 = 0 and a1 = 1.

3. BAYESIAN ESTIMATION USING MCMC
SAMPLING

Let � = (ηij, , θi, aj, bj, λj, τi, σ
2
j ,µa, σ

2
a ,µb, σ

2
b
,µλ, σ

2
λ ,µc, σ

2
c , gj,

σθτ , σ
2
τ ,πi); then, the full joint posterior of person and item

parameters given Y, T, and η is

L (� |Y,T )

=

N∏

i=1

J∏

j=1

[
πigjh

(
tij;µc, σ

2
c

)]ηij .Yij [
πi

(
1− gj

)
h
(
tij;µc, σ

2
c

)]ηij .(1−Yij)

×

[
(1− πi)P

(
Yij = 1

∣∣ηij = 0, aj, bj, θi
)
f
(
tij; λj, τi, σ

2
j

)](1−ηij).Yij

×

[
(1− πi) P

(
Yij=0

∣∣ηij=0, aj, bj, θi
)
f
(
tij; λj, τi, σ

2
j

)](1−ηij).(1−Yij)

×p
(
θi, τi;µp,6p

)
p
(
aj
)
p
(
bj
)
p
(
λj
)
p
(
µp,6p

)
, (1)

where πi is the probability that examinee i uses the rapid guessing
behavior, i.e., πi = P

(
ηij = 1

)
.

3.1. Pólya–Gamma Gibbs Sampling
Algorithm
Polson et al. (2013) proposed a new data augmentation strategy
for fully Bayesian inference in logistic regression. This data
augmentation approach used a new class of Pólya–gamma
distribution, in contrast to the data augmentation algorithm of
Albert and Chib (1993), which was based on a truncated normal
distribution. Here, we introduce the Pólya–gamma distribution.
Definition: Let {Bk}

+∞
k=1

be an independent and identically
distributed random variable sequence from a gamma distribution
with parameters β and 1. That is, Bk ∼ gamma (β , 1). A random
variableW follows a Pólya–gamma distribution with parameters
β > 0 and ̺ ∈ R, denotedW ∼ PG (β , ̺), if

W
D
=

1

2π

+∞∑

k=1

Bk(
k− 1

2

)2
+

̺2

4π2

,

where
D
= denotes equality in distribution. In fact, the

Pólya–gamma distribution is an infinite mixture of gamma
distributions, which provides the ability to sample from
gamma distributions.

Based on Theorem 1 of Polson et al. (2013, page 1341,
Equation 7), the likelihood contribution of the ith examinee
answering the jth item under the solution behavior category ηij =

0 can be expressed as

L
(
aj, bj, θi

)
=

{
exp

[
aj
(
θi − bj

)]}Yij

1+
{
exp

[
aj
(
θi − bj

)]} ∝ exp
{
kij
[
aj
(
θi − bj

)]}

×

∞∫

0

exp

{
−
Wij

[
aj
(
θi − bj

)]2

2

}
p
(
Wij |1, 0

)
dWij,

(2)

where kij = Yij −
1
2 . p

(
Wij |1, 0

)
is the conditional density of

Wij. That is, Wij ∼ PG (1, 0) . The auxiliary variable Wij follows
a Pólya–gamma distribution with parameters (1, 0). Within
the solution behavior category ηij = 0, the full conditional
distribution of a, b, θ given the auxiliary variables, W can be
written as

p (a, b, θ |η,W,Y )

∝





N∏

i=1

J∏

j=1

[
exp

{
kij
[
aj
(
θi − bj

)]}
exp

[
−
Wij

[
aj
(
θi − bj

)]2

2

]]


I(ηij=0)

×

{
N∏

i=1

p (θi |τi,µP,6P )

}I(ηij=0)




J∏

j=1

[
p
(
aj
)
p
(
bj
)]




I(ηij=0)

,

(3)

where p
(
aj
)
and p

(
bj
)
are the prior distributions for aj and bj. It

is known that there are relationships between the latent ability
and speed parameter, which can be constructed by a bivariate

normal prior distribution

(
θi
τi

)
∼ N

((
µθ

µτ

)
,6P

)
. Therefore,

the conditional prior distribution of θi is the normal distribution

θi |τi,µP,6P ∼ N
(
µθ |τ , σ

2
θ |τ

)
,

where µθ |τ = µθ + σθτσ
−2
τ (τi − µτ ) and σ 2

θ |τ = σ 2
θ −

σθτσ
−2
τ στθ .

Step 1: Sample the auxiliary variable Wij, within the solution
behavior category ηij = 0, given the item discrimination
and difficulty parameters aj, bj and the ability θi. According to
Equation (1), the full conditional posterior distribution of the
random auxiliary variableWij is given by

f
(
Wij

∣∣aj, bj, θi
)
∝ exp

[
−
Wij

[
aj
(
θi − bj

)]2

2

]
p
(
Wij |1, 0

)
.

According to Biane et al. (2001) and Polson et al. (2013; p. 1341),
the density function p

(
Wij |1, 0

)
can be written as

p
(
Wij |1, 0

)
=

∞∑

v=0

(−1)v
(
2k+ 1

)
√
2πWij

exp

[
−

(
2k+ 1

)2

8Wij

]
.

Therefore, f
(
Wij

∣∣aj, bj, θi
)
is proportional to

∞∑

v=0

(−1)v
(
2k+ 1

)
√
2πWij

exp

[
−

(
2k+ 1

)2

8Wij
−

Wij

[
aj
(
θi − bj

)]2

2

]
.
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Finally, the specific form of the full conditional distribution of
Wij is as follows:

Wij ∼ PG
(
1,
∣∣aj
(
θi − bj

)∣∣) .

Next, Gibbs samplers are used to draw the item parameters.
Step 2: Sample the discrimination parameter aj for each item

j. The prior distribution of aj is assumed to follow a truncated
normal distribution, i.e., aj ∼ N

(
µa, σ

2
a

)
I
(
aj > 0

)
. Given Y ,

W, bj, and θ , the fully conditional posterior distribution of aj is
given by

p
(
aj
∣∣Y ,W, bj, θ

)

∝

N∏

i=1

{{
exp

[
aj
(
θi − bj

)]}Yij

1+ exp
[
aj
(
θi − bj

)] f
(
Wij

∣∣aj, bj, θi
)
}
p
(
aj
)
,

where f
(
Wij

∣∣aj, bj, θi
)
is given by the following equation (for

details, refer to Polson et al., 2013; p. 1341):

f
(
Wij

∣∣aj, bj, θi
)
=
{
cosh

(
2−1

∣∣aj
(
θi − bj

)∣∣)} 20

Ŵ (1)

×

∞∑

v=0

(−1)v
(
2k+ 1

)
√
2πWij

× exp

[
−

(
2k+ 1

)2

8Wij
−

Wij

[
aj
(
θi − bj

)]2

2

]
.

After rearrangement, the full conditional posterior distribution
of aj can be written as follows:

p
(
aj
∣∣Y ,W, bj, θ

)
∝

N∏

i=1

{{
exp

[
aj
(
θi − bj

)]}Yij

1+ exp
[
aj
(
θi − bj

)]

×
[
cosh

(
2−1

∣∣aj
(
θi − bj

)∣∣)]

× exp

[
−

[
aj
(
θi − bj

)]2
Wij

2

]}
p
(
aj
)
.

Therefore, the fully conditional posterior distribution of aj
follows a normal distribution truncated at 0 with mean

Varaj×



µaσ

−2
a +

[
N∑

i=1

Wij

(
θi − bj

)2
]




[
N∑

i=1

(
1− 2Yij

) (
θi − bj

)
]

2

[
N∑

i=1

Wij

(
θi − bj

)2
]








and variance

Varaj =

{
σ−2
a +

[
N∑

i=1

Wij

(
θi − bj

)2
]}−1

.

Step 3: Sample the difficulty parameter bj for each item j. The
prior distribution of bj is assumed to follow a normal distribution
with mean µb and σ 2

b
. That is, bj ∼ N

(
µb, σ

2
b

)
. Similarly, given

Y , W, aj, and θ , the fully conditional posterior distribution of bj
is given by

p
(
bj
∣∣Y ,W, aj, θ

)
∝

N∏

i=1

{{
exp

[
aj
(
θi − bj

)]}Yij

1+ exp
[
aj
(
θi − bj

)]

×
[
cosh

(
2−1

∣∣aj
(
θi − bj

)∣∣)]

× exp

[
−

[
aj
(
θi − bj

)]2
Wij

2

]}
p
(
bj
∣∣µb, σ

2
b

)
.

Therefore, the fully conditional posterior distribution of bj
follows a normal distribution with mean

Varbj ×



µbσ

−2
b

+

N∑

i=1

[
a2jWij

]




N∑

i=1

(
2a2j θiWij − 2Yijaj + aj

)

2

N∑

i=1

[
a2jWij

]







and variance

Varbj =

{
σ−2
b

+

N∑

i=1

[
a2jWij

]}−1

Step 4: Sample the ability parameter θi for each examinee i.
The conditional prior distribution of θi is assumed to follow a
normal distribution with mean µθ |τ = µθ + σθτσ

−2
τ (τi − µτ )

and σ 2
θ |τ = σ 2

θ −σθτσ
−2
τ στθ . That is, θi ∼ N

(
µθ |τ , σ

2
θ |τ

)
. Given

Y ,W, a and b, the fully conditional posterior distribution of θi is
given by

p (θi |Y ,W, a, b )

∝

J∏

j=1

{{
exp

[
aj
(
θi − bj

)]}Yij

1+ exp
[
aj
(
θi − bj

)] [cosh
(
2−1

∣∣aj
(
θi − bj

)∣∣)]

× exp

[
−

[
aj
(
θi − bj

)]2
Wij

2

]}
p
(
θi

∣∣∣µθ |τ , σ
2
θ |τ

)
.

Therefore, the fully conditional posterior distribution of θi
follows a normal distribution with mean

Varθi×



µθ |τ σ−2

θ |τ +

J∑

j=1

[
a2jWij

]




J∑

j=1

(
2Yijaj + 2a2j bjWij − aj

)

2

J∑

j=1

[
a2jWij

]







and variance

Varθi =



σ−2

θ |τ +

J∑

j=1

[
a2jWij

]




−1

.

Step 5: Sample the response behavior variable ηij. The fully
conditional posterior distribution of ηij is a Bernoulli distribution
with success probability
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πigjh
(
Tij;µc, σ

2
c

)

πigjh
(
Tij;µc, σ 2

c

)
+ (1− πi) P

(
Yij = 1

∣∣θi, aj, bj
)
f
(
Tij; λj, τi, σ

2
j

) , if Yij = 1,

πi

(
1− gj

)
h
(
Tij;µc, σ

2
c

)

πi

(
1− gj

)
h
(
Tij;µc, σ 2

c

)
+ (1− πi) P

(
Yij = 0

∣∣θi, aj, bj
)
f
(
Tij; λj, τi, σ

2
j

) , if Yij = 0.

Step 6: Sample πi. Given a Beta (ι1, ι2) prior and
J∑

j=1
ηij ∼

Binomial (J,πi), the fully conditional posterior of πi is

πi ∼ Beta


ι1 +

J∑

j=1

ηij, ι2 + J −

J∑

j=1

ηij


 .

Step 7: Sample gj. Given a Beta (ι3, ι4) prior, within the
guessing behavior category ηij = 1, the total number of people

engaging in rapid guessing behavior on item j is
N∑
i=1

ηij, and

the number of correct items is
N∑
i=1

ηijYij; thus,
N∑
i=1

ηijYij ∼

Binomial

(
N∑
i=1

ηij, gj

)
. The fully conditional posterior is

gj ∼ Beta

(
ι3 +

N∑

i=1

ηijYij, ι4 +

N∑

i=1

ηij −

N∑

i=1

ηijYij

)
.

Step 8: Sample τi. The conditional prior distribution of τi
is assumed to follow a normal distribution with mean µτ |θ =

µτ + στθσ
−2
θ (θi − µθ ) and σ 2

τ |θ = σ 2
τ − στθσ

−2
θ σθτ . That is,

τi ∼ N
(
µτ |θ , σ

2
τ |θ

)
. The fully conditional posterior distribution

of τi given Tobs, θ , λ , σ 2
j , µP, 6P, η is proportional to

J∏

j=1

f
(
tij; λjv, τi, σ

2
j

)(1−ηij)
p
(
τi

∣∣∣µθ |τ , σ
2
θ |τ

)
.

The fully conditional posterior distribution of τi is

N


σ 2

τ∗i


 σθτ θi

σ 2
τ − σ 2

θτ

+

J∑

j=1

[(
1− ηij

)
σ−2
j

(
λj − log tij

)]

 , σ 2

τ∗i


 ,

where σ 2
τ∗i

=

(
(
σ 2

τ − σ 2
θτ

)−1
+

J∑
j=1

[(
1− ηij

)
σ−2
j

])−1

.

Step 9: Sample λj. The fully conditional posterior distribution

of the intensity parameter given the parameters Tobs, τ , σ 2
j , µI ,

6I , η is

p
(
λj

∣∣∣Tobs
j , τ , σ 2

j ,µλ, σ
2
λ , η

)

∝

N∏

i=1

f
(
tij; λj, τi, σ

2
j

)(1−ηij)
p
(
λj
∣∣µλ, σ

2
λ

)
,

where λj ∼ N
(
µλ, σ

2
λ

)
. The fully conditional posterior

distribution of λj is

N

(
σ 2

λ∗j

(
µλσ

−2
λ +

N∑

i=1

(
1− ηij

) (
log tij + τi

)
σ−2
j

)
, σ 2

λ∗j

)
,

where σ 2
λ∗j

=

(
σ−2

λ + σ−2
j

N∑
i=1

(
1− ηij

))−1

.

Step 10: Sample σ 2
j . A prior for σ 2

j is an inverse-

gamma distribution, IG (υ1,ω1). The fully conditional posterior
distribution of σ 2

j is

IG


υ1 +

N∑
i=1

(
1− ηij

)

2
,ω1 +

N∑
i=1

[(
1− ηij

) (
log tij − λj + τi

)2]

2


 .

Step 11: Sample µc. We assume a uniform prior p (µc) ∝ 1.
The fully conditional posterior distribution of µc is proportional
to

p (µc |T, η ) ∝

N∏

i=1

J∏

j=1

f
(
tij;µc, σ

2
c

)ηij
p (µc) .

The fully conditional posterior distribution of µc is

µc |T, η ∼ N






N∑

i=1

J∑

j=1

ηij




−1


N∑

i=1

J∑

j=1

ηij log tij


 ,




N∑

i=1

J∑

j=1

ηij




−1

σ 2
c


 .

Step 12: Sample σ 2
c . We assume that the variance parameter

follows an inverse-gamma prior distribution, IG (υ2,ω2).
The fully conditional posterior distribution of σ 2

c given T,
µc, υ2,ω2, η is proportional to

p
(
σ 2
c |T,µc, υ2,ω2, η

)
∝

N∏

i=1

J∏

j=1

f
(
tij;µc, σ

2
c

)ηij
p
(
σ 2
c

)
.

The fully conditional posterior distribution of σ 2
c is

σ 2
c |T,µc, υ2,ω2, η

∼ IG




υ1 +

N∑
i=1

J∑
j=1

ηij

2
,ω1 +

N∑
i=1

J∑
j=1

ηij
(
log tij − µc

)2

2



.
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3.2. Metropolis–Hastings Sampling
Algorithm
In order to estimate the constrained covariance matrix 6P =(

1 σθτ

στθ σ 2
τ

)
(where σ 2

θ is restricted to be equal to 1 owing

to the model identification limitation), we need to update each
element of the constrained covariancematrix separately using the
Metropolis–Hastings algorithm.

Step 13: Sample the correlation σθτ between θ and τ .
The identification constraints induce a restricted covariance
matrix. The new value σ ∗

θτ is sampled from a truncated

normal distributionN
(
σ

(r−1)
θτ , s201

)
I
(
−p01 < σ ∗

θτ < p01
)
, where

p01 =

√
σ
2,(r−1)
τ . Therefore, the probability of acceptance

α
(
σ

(r−1)
θτ , σ ∗

θτ

)
can be written as

min




1,

N∏
i=1

p
(
τi

∣∣∣θ (r)

i , σ
2,(r−1)
τ , σ ∗

θτ

)
p
(
σ ∗

θτ

) (
8

(
p01−σ

(r−1)
θτ

s01

)
− 8

(
−p01−σ

(r−1)
θτ

s01

))

N∏
i=1

p
(
τi

∣∣∣θ (r)

i , σ
2,(r−1)
τ , σ

(r−1)
θτ

)
p
(
σ

(r−1)
θτ

) (
8
(
p01−σ ∗

θτ

s01

)
− 8

(
−p01−σ ∗

θτ

s01

))




;

otherwise, σ
(r−1)
θτ = σ ∗

θτ , where p (τi |θi ) is the conditional
density function of the speed parameter, s201 is the proposal
variance, and p (σθτ ) is the density of the uniform prior.

Step 14: Sample σ 2
τ . The new value σ 2,∗

τ is
sampled from a truncated normal distribution

N
(
σ
2,(r−1)
τ , s202

)
I

(
σ 2,∗

τ >
(
σ ∗

θ (2)τ

)2
= p0

)
. Therefore, the

probability of acceptance α
(
σ
2,(r−1)
τ , σ 2,∗

τ

)
can be written as

min




1,

N∏
i=1

p
(
τi

∣∣∣θ (r)

i , σ 2,∗
τ , σ

(r)
θτ

)
p
(
σ 2,∗

τ ; κ ,ϑ
) (

1− 8

(
p0−σ

2,(r−1)
τ

s02

))

N∏
i=1

p
(
τi

∣∣∣θ (r)

i , σ
2,(r−1)
τ , σ

(r)
θτ

)
p
(
σ
2,(r−1)
τ ; κ ,ϑ

) (
1− 8

(
p0−σ

2,∗
τ

s02

))




;

otherwise, σ 2,∗
τ = σ

2,(r−1)
τ , where s202 is the proposal

variance, and p
(
σ 2

τ ; κ ,ϑ
)
is the density function of the scaled

inverse chi-squared distribution with degrees of freedom and
the scale parameter.

3.3. Bayesian Model Assessment
Two Bayesian model assessment methods were developed
to evaluate the fit of the two models. The new model is
a mixture model that combines responses and response
times to detect rapid guessing behavior. The other model
does not consider the mixture structure. Spiegelhalter et al.
(2002) proposed the deviance information criterion (DIC)
as a way to evaluate model fit based on Bayesian posterior
estimates by considering the trade-off relationship between
the adequacy of the model fitting and the number of model
parameters. Write 3 =

(
3ij, i = 1, ...,N. j = 1, ..., J.

)
,

where 3ij =

(
ηij, θi, aj, bj, λj, τi, σ

2
j ,µc, σ

2
c , gj,πi

)′
.

Let
{
3(1), ...,3(M)

}
, where 3(m) =

(
η

(m)
ij , θ

(m)
i , a

(m)
j , b

(m)
j , λ

(m)
j , τ

(m)
i , σ

2,(m)
j ,µ

(m)
c , σ

2,(m)
c , g

(m)
j ,π

(m)
i

)′

for m = 1, ...,M, denotes an Markov chain Monte Carlo
(MCMC) sample from the posterior distribution in (1). The
logarithm of the joint likelihood function evaluated at 3(m) is
given by

log f
(
Y ,T

∣∣∣3(m)
)
=

N∑

i=1

J∑

j=1

log f
(
Yij,Tij

∣∣∣3(m)
ij

)
, (4)

where

f
(
Yij,Tij

∣∣3ij

)

=
[
πigjh

(
Tij

∣∣µc, σ
2
c

)]ηij .Yij [
πi

(
1− gj

)
h
(
Tij

∣∣µc, σ
2
c

)]ηij .(1−Yij)

×

[
(1− πi)P

(
Yij = 1

∣∣ηij = 0
)
f
(
Tij

∣∣∣λj, τi, σ 2
j

)](1−ηij).Yij

×

[
(1− πi)P

(
Yij = 0

∣∣ηij = 0
)
f
(
Tij

∣∣∣λj, τi, σ 2
j

)](1−ηij).(1−Yij)
.

As the log-likelihood function log f
(
Yij,Tij

∣∣∣3(r)
ij

)
, i =

1, ...,N. j = 1, ..., J, is readily available from the R outputs,
log f

(
Y ,T

∣∣3(r)
)
in (4) is easy to compute. The DIC can be

calculated as follows:

DIC =D̂ev(3)+ 2PD = D̂ev(3)+ 2
[
Dev(3)− D̂ev(3)

]
, (5)

where

Dev(3) = −
2

M

M∑

m=1

log f
(
Y ,T

∣∣∣3(m)
)
and

D̂ev(3) = −2 max
1≤m≤M

log f
(
Y ,T

∣∣∣3(m)
)
.

In (5), Dev(3) is a Monte Carlo estimate of the
posterior expectation of the deviance function Dev(3) =

−2 log f (Y ,T |3 ) . D̂ev(3) is an approximation of Dev(3̂),

where 3̂ is the posterior mode, when the prior is relatively

non-informative, and PD = Dev(3) − D̂ev(3) is the effective
number of parameters. The model with a smaller DIC value fits
the data better.
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Another method to compare the fit of the two models is
to use the logarithm of the pseudomarginal likelihood (LPML;
Geisser and Eddy, 1979; Ibrahim et al., 2001) by calculating the
conditional predictive ordinates (CPO) index. Next, the formulas
for computing the CPO and LPML are given. Letting Uij,max =

max
1≤m≤M

{
− log f

(
Yij,Tij

∣∣∣3(m)
ij

)}
, a Monte Carlo estimate of the

CPO (Gelfand et al., 1992; Chen et al., 2000) is given by

log ̂(CPOij) = −Uij,max

− log

[
1

M

M∑

m=1

exp
{
− log f

(
Yij,Tij

∣∣∣3(m)
ij

)
− Uij,max

}]
.(6)

Note that the maximum value adjustment used in log ̂(CPOij)
plays an important part in numerical stabilization when

computing exp
{
− log f

(
Yij,Tij

∣∣∣3(m)
ij

)
− Uij,max

}
in (6). A

summary statistic of the ĈPOij is the sum of their logarithms,
which is called the LPML and given by

LPML =

N∑

i=1

J∑

j=1

log ̂(CPOij).

A model with a larger LPML has a better fit to the data.

4. SIMULATION STUDIES

4.1. Simulation 1
This simulation study was conducted to evaluate the recovery
performance of the Pólya–gamma Gibbs sampling algorithm
under different simulation conditions.
Simulation Designs

The following conditions were manipulated: (a) test length,
J = 20 or 40, where the 20-item test is within 40 min,
and the 40-item test is within 80 min; (b) the number of
examinees, N = 1, 000 or 2, 000; and (c) the speededness
level, low speededness level (LSL) or high speededness level
(HSL). The speededness level is controlled by the intensity
parameter λj. That is, a larger time intensity parameter
corresponds to a longer average testing time. Fully crossing
the different values of these four factors yielded eight
conditions (two test lengths × two sample sizes × two
speededness levels).
True Values and Prior Distributions

For the 2PL model, true values of item discrimination
parameters aj are generated from a truncated normal
distribution, i.e., aj ∼ N (0, 1) I (0,+∞), j = 1, 2, ..., J,
where the indicator function I (A) takes a value of 1 if A is true
and 0 if A is false. The item difficulty parameters bj are generated
from a standardized normal distribution. For the RT model, the
response times of the rapid guessing behavior, Cij, are generated
from a log-normal distribution (Wang and Xu, 2015, p. 464),
i.e., logCij ∼ N (−2, 0.25). The correct response probability of
the rapid guessing behavior, gj, is set to 0.25 for all items (Wang
and Xu, 2015). Although the variances of the RT model, σ 2

j , can

vary across items in the process of model setting and algorithm

TABLE 1 | The proportions of examinees and items in the simulation study 1.

No. of items = 20

No. of examinees 1,000 No. of examinees 2,000

Item intensity Proportion of examinees who can

not finish a 20 item test within 40 min

λ ∼ U (−0.25, 0.25) 14.2% 12.3%

λ ∼ U (0.25, 0.75) 46.6% 40.5%

Item intensity Proportion of items that are answered

by rapid guessing

λ ∼ U (−0.25, 0.25) 3.31% 2.88%

λ ∼ U (0.25, 0.75) 14.86% 12.59%

No. of items = 40

No. of examinees 1,000 No. of examinees 2,000

Item intensity Proportion of examinees who can not

finish a 40 item test within 80 min

λ ∼ U (−0.25, 0.25) 13.4% 15.4%

λ ∼ U (0.25, 0.75) 44.1% 47.9%

Item intensity Proportion of items that are

answered by rapid guessing

λ ∼ U (−0.25, 0.25) 3.05% 3.43%

λ ∼ U (0.25, 0.75) 13.90% 14.61%

implementation, for convenience, we assume that the variance
of the RT model, σ 2

j , is set to 0.5 for all items. We controlled

the speededness level by adjusting the time intensity parameter,
that is, low speededness distribution λ ∼ U (−0.25, 0.25)
and high speededness distribution λ ∼ U (0.25, 0.75) . The
proportion of examinees who could not finish a test within the
allocated time is shown in Table 1. The proportion of items
that were answered by guessing is also shown in Table 1. For
the population distribution of person parameters, the ability

and speed parameters (θ , τ)
′

were generated from a bivariate

normal distribution with mean vector (0, 0)
′

and covariance

matrix

(
1 0.5
0.5 0.25

)
. The responses and response times were

generated from the 2PL model and log-normal distribution.
The following method was used to generate the guessing
behavior indicator ηij. For all items, examinees could finish
a given test within the allotted time having ηij = 0, where
j = 1, ..., J. Other ηij were generated by the following two
steps. Assuming that the generated response time data has
no time limit for all items, then we replace Tij with Cij from
the last item backward until the total response time is less
than or equal to the allocated time. Therefore, given the eight
simulation conditions, the RT paths for the examinees are shown
in Figures 1, 2. Figures 3, 4 show the histograms of response
times obtained from all item–person combinations. The
non-informative priors and hyperpriors for the parameters
were chosen as follows: p

(
aj
)

∼ N
(
0, 105

)
I (0,+∞) ,
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FIGURE 1 | Response time paths for 1,000 examinees at different speededness levels in the simulation study 1. (A) items 20 and low speededness, (B) items 20 and

high speededness, (C) items 40 and low speededness, and (D) items 40 and high speededness.

p
(
bj
)
∼ N

(
0, 105

)
, p
(
gj
)
∼ Beta (5, 17), p

(
λj
)
∼ N

(
0, 105

)
,

p (πi) ∼ Beta (1, 5), p (µc) ∼ N
(
−3, 105

)
, p

(
σ 2
c

)
∼Inv-

Gamma(0.0001, 0.0001) , p
(
σ 2

τ

)
∼ Inv-Gamma(0.0001, 0.0001) ,

and σθτ ∼ U
(
−
√

σ 2
τ ,
√

σ 2
τ

)
, where σ 2

τ = 1. Fifty replications

were considered in each simulation condition.
Convergence diagnostics

In order to evaluate the convergence of parameter estimates,
we only considered convergence in the case of minimum sample
sizes with HSLs owing to space limitations. That is, the test length
was fixed at 20, and the number of examinees was 1,000. Two
methods were used to check the convergence of our algorithm:
the “eyeball” method to monitor the convergence by visually
inspecting the history plots of the generated sequences; and the
Gelman–Rubin method (Gelman and Rubin, 1992; Brooks and
Gelman, 1998).

The convergence of the Bayesian algorithm was checked by
monitoring the trace plots of the parameters for consecutive
sequences of 20,000 iterations. The first 10,000 iterations were

set as the burn-in period. As an illustration, four chains started
at overdispersed starting values were run for each replication.
The trace plots of item parameters randomly selected are shown
in Figure 5. In addition, the potential scale reduction factor
(PSRF; Brooks and Gelman, 1998) values for all item parameters
are shown in Figure 6. We found that the PSRF values for all
parameters were less than 1.2, which ensured that all chains
converged as expected.

5. RESULTS

As shown in Table 2, the bias was between 0.0098 and 0.1411 for
the discrimination parameters a, between −0.0335 and 0.0010
for the difficulty parameters b, between −0.0206 and 0.0115 for
the rapid guessing parameters g, between −0.0271 and 0.0386
for the time intensity parameters λ, between−0.0105 and 0.0314
for the time discrimination parameters σ 2, between 0.0196 and
0.0313 for the ability parameters θ , between 0.0058 and 0.0377 for
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FIGURE 2 | Response time paths for 2,000 examinees at different speededness levels in the simulation study 1. (A) items 20 and low speededness, (B) items 20 and

high speededness, (C) items 40 and low speededness, and (D) items 40 and high speededness.

the speed parameters τ , between −0.0259 and 0.0202 for the µc,
between −0.0373 and 0.0136 for the σ 2

c , between −0.0671 and
−0.0102 for the σθτ , and between −0.0201 and 0.0056 for the
σ 2

τ . In addition, the MSE was between 0.0125 and 0.0413 for the
discrimination parameters a, between 0.0041 and 0.0138 for the
difficulty parameters b, between 0.0009 and 0.0026 for the rapid
guessing parameters g, between 0.0001 and 0.0017 for the time
intensity parameters λ, between 0.0001 and 0.0005 for the time
discrimination parameters σ 2, between 0.0873 and 0.1920 for the
ability parameters θ , between 0.0068 and 0.0693 for the speed
parameters τ , between 0.0000 and 0.0007 for the µc, between
0.0000 and 0.0009 for the σ 2

c , between 0.0010 and 0.0045 for the
σθτ , and between 0.0002 and 0.0009 for the σ 2

τ . In summary,
the Pólya–gamma Gibbs sampling algorithm provides accurate
estimates of the parameters for various numbers of examinees
and items.

5.1. Simulation 2
In this simulation study, we focus on the model fitting data for
the mixture model and non-mixture model based on different
simulation conditions from the perspective of Bayesian model
assessment. Two Bayesian model assessment tools, DIC and
LPML, are used to identify the true models.
Simulation Designs

For purposes of illustration, the numbers of examinees and
items were fixed at 1,000 and 40, respectively. The true value
settings for the item parameters in the 2PLIRT model and
response time model were the same as in simulation study 1.
The first factor is the correlation coefficient. Three correction
coefficients ρθτ were considered in this simulation. That is,
(1) ρθτ = 0.3 (θ and τ have weak correlation; WC); (2)
ρθτ = 0.8 (θ and τ have a strong correlation; SC). Furthermore,
the true values of θ and τ can be drawn from a bivariate
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FIGURE 3 | Histogram of 1,000 examinees’ response times based on all item–person combinations in the simulation study 1. (A) items 20 and low speededness, (B)

items 20 and high speededness, (C) items 40 and low speededness, and (D) items 40 and high speededness.

normal distribution with mean vector 0 and covariance matrix(
1 ρθτ

ρθτ 1

)
. The second factor is the speededness level, which

was varied by adjusting the time intensity parameter λ: (1) LSL,
λ ∼ U (−0.25, 0.25) ; (2) HSL, λ ∼ U (0.25, 0.75). The third
factor is the choice of fitting model: (1) mixture model; (2)
non-mixture model (hierarchical structure model of van der
Linden, 2007). Based on the abovementioned test conditions,
the item responses and response time data were respectively
generated from the 2PLIRT model and response time model.
Therefore, the true models and the fitted models were designed
as follows.

(i) True model, i.e., mixture model with WC (ρθτ =

0.3)⊕LSL vs. fitted model, i.e., mixture model with WC
(ρθτ = 0.3)⊕LSL, and non-mixture model with WC
(ρθτ = 0.3)⊕LSL.

(ii) True model, i.e., mixture model with SC (ρθτ = 0.8)⊕LSL
vs. fitted model, i.e., mixture model with SC (ρθτ =

0.8)⊕LSL, and non-mixture model with SC (ρθτ =

0.8)⊕LSL.
(iii) True model, i.e., mixture model with WC (ρθτ =

0.3)⊕HSL vs. fitted model, i.e., mixture model with WC
(ρθτ = 0.3)⊕HSL, and non-mixture model with WC
(ρθτ = 0.3)⊕HSL.

(iv) True model, i.e., mixture model with SC (ρθτ = 0.8)⊕HSL
vs. fitted model, i.e., mixture model with SC (ρθτ =

0.8)⊕HSL, and non-mixture model with SC (ρθτ =

0.8)⊕HSL.
(v) True model, i.e., non-mixture model with WC (ρθτ =

0.3)⊕LSL vs. fitted model, i.e., mixture model with WC
(ρθτ = 0.3)⊕LSL, and non-mixture model with WC
(ρθτ = 0.3)⊕LSL.
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FIGURE 4 | Histogram of 2,000 examinees’ response times based on all item–person combinations in the simulation study 1. (A) items 20 and low speededness, (B)

items 20 and high speededness, (C) items 40 and low speededness, and (D) items 40 and high speededness.

(vi) True model, i.e., non-mixture model with SC (ρθτ =

0.8)⊕LSL vs. fitted model, i.e., mixture model with SC
(ρθτ = 0.8)⊕LSL, and non-mixture model with SC (ρθτ =

0.8)⊕LSL.
(vii) True model, i.e., non-mixture model with WC (ρθτ =

0.3)⊕HSL vs. fitted model, i.e., mixture model with WC
(ρθτ = 0.3)⊕HSL, and non-mixture model with WC
(ρθτ = 0.3)⊕HSL.

(viii) True model, i.e., non-mixture model with SC (ρθτ =

0.8)⊕HSL vs. fitted model, i.e., mixture model with SC
(ρθτ = 0.8)⊕HSL, and non-mixture model with SC
(ρθτ = 0.8)⊕HSL.

The priors of parameters were also the same as those used in
simulation 1. That is, the non-informative priors were used
in this simulation study. To implement the MCMC sampling
algorithm, chains of length 10,000 with an initial burn-in period

of 20,000 were chosen. There were 50 replications for each
simulation condition. The PSRF (Brooks and Gelman, 1998)

values for all item and person parameters for each simulation

condition were less than 1.2.
Results

As shown inTables 3, 4, regardless of whether the speededness

levels were low or high, and whether the correlation coefficients

were weak (ρθτ = 0.3) or strong (ρθτ = 0.8), both Bayesian

model assessment criteria could accurately identify the true

models when the data were generated from the mixture models
and non-mixture models. More specifically, under the LSL and

WC conditions, when the mixture model was the true model, the

mixture model fitted the data better, as expected. The median

DIC of the mixture model (185007.092) was smaller than that

of the non-mixture model (201335.596), and the median LPML

of the mixture model (−91302.451) was larger than that of
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FIGURE 5 | The trace plots of three randomly selected items for the simulation study 1.
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FIGURE 6 | The trace plots of R̂ for item parameters in the simulation study 1.

TABLE 2 | Evaluating the accuracy of parameters based on mixture model in simulation study 1.

N = 1, 000,J = 20 N = 1, 000,J = 40 N = 2, 000,J = 20 N = 2, 000,J = 40

LSL HSL LSL HSL LSL HSL LSL HSL

Bias

a 0.0320 0.0814 0.0098 0.0291 0.1002 0.1411 0.0253 0.0472

b –0.0149 –0.0162 –0.0252 –0.0335 –0.0203 –0.0194 0.0010 –0.0030

g –0.0136 –0.0203 –0.0193 –0.0166 –0.0005 –0.0022 –0.0206 0.0115

λ 0.0195 –0.0169 0.0386 0.0160 0.0077 –0.0271 0.0152 –0.0100

σ 2 –0.0105 0.0058 –0.0062 –0.0041 –0.0092 0.0123 –0.0080 0.0314

θ 0.0268 0.0295 0.0210 0.0220 0.0286 0.0313 0.0196 0.0260

τ 0.0214 0.0137 0.0377 0.0218 0.0098 0.0058 0.0168 0.0152

µc –0.0259 0.0092 –0.0108 0.0078 –0.0226 0.0069 0.0041 0.0202

σ 2
c –0.0373 0.0132 –0.0371 0.0115 –0.0371 0.0063 –0.0331 0.0136

σθτ –0.0474 –0.0671 –0.0373 –0.0501 –0.0324 –0.0552 –0.0119 –0.0102

σ 2
τ –0.0182 –0.0201 –0.0049 –0.0103 –0.0057 –0.0054 0.0037 0.0056

(Continued)
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TABLE 2 | Continued

N = 1, 000,J = 20 N = 1, 000,J = 40 N = 2, 000,J = 20 N = 2, 000, J = 40

LSL HSL LSL HSL LSL HSL LSL HSL

MSE

a 0.0252 0.0355 0.0287 0.0375 0.0413 0.0527 0.0125 0.0167

b 0.0071 0.0085 0.0105 0.0138 0.0084 0.0108 0.0041 0.0058

g 0.0026 0.0018 0.0014 0.0011 0.0013 0.0010 0.0015 0.0009

λ 0.0007 0.0011 0.0017 0.0006 0.0001 0.0013 0.0003 0.0015

σ 2 0.0001 0.0004 0.0001 0.0002 0.0001 0.0005 0.0001 0.0003

θ 0.1587 0.1841 0.0943 0.1107 0.1711 0.1920 0.0873 0.1155

τ 0.0133 0.0557 0.0080 0.0141 0.0148 0.0693 0.0068 0.0099

µc 0.0006 0.0000 0.0001 0.0000 0.0005 0.0000 0.0000 0.0007

σ 2
c 0.0003 0.0001 0.0006 0.0001 0.0005 0.0000 0.0009 0.0001

σθτ 0.0022 0.0045 0.0014 0.0025 0.0010 0.0030 0.0015 0.0026

σ 2
τ 0.0003 0.0004 0.0002 0.0005 0.0002 0.0006 0.0005 0.0009

Note that the Bias andMSE denote the average Bias andMSE for the interested parameters. a represents all discrimination parameters, b represents all difficulty parameters, g represents

all rapid guessing parameters, λ represents all time intensity parameters, σ 2 represents all time discrimination parameters, θ represents all ability parameters, and τ represents all speed

parameters.

TABLE 3 | The results of Bayesian model assessment in simulation study 2.

Low speededness level (LSL)

Fitted model Mixture model with WC Non-mixture model with WC

Q1 183970.082 200906.367

Mixture model DIC Median 185007.092 201335.596

True with WC Q3 185472.819 201700.856

model (ρθτ = 0.3) Q1 –91433.366 –103949.160

LPML Median –91302.451 –103871.796

Q3 –91095.166 –103782.198

Low speededness level (LSL)

Fitted model Mixture model with SC Non-mixture model with SC

Q1 182423.016 200490.494

Mixture model DIC Median 182806.907 200960.661

True with SC Q3 183285.554 201204.742

Model (ρθτ = 0.8) Q1 –91270.116 –103687.867

LPML Median –91213.797 –103584.228

Q3 –91100.563 –103419.208

High speededness level (HSL)

Fitted model Mixture model with WC Non-mixture model with WC

Q1 159487.663 175985.981

Mixture model DIC Median 159985.584 176499.862

True with WC Q3 161227.782 176989.732

Model (ρθτ = 0.3) Q1 –80685.663 –87906.257

LPML Median –80474.893 -87782.508

Q3 –80332.172 –87673.533

High speededness level (HSL)

Fitted model Mixture model with SC Non-mixture model with SC

Q1 159235.762 175815.800

Mixture model DIC Median 159629.846 176335.113

True with SC Q3 160570.239 176859.457

Model (ρθτ = 0.8) Q1 –80840.626 –87917.891

LPML Median –80736.678 –87714.244

Q3 –80570.342 –87638.130

Note that the mixture model is the model in Section 2. The non-mixture model is the hierarchical structure model in van der Linden (2007).
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TABLE 4 | The results of Bayesian model assessment in simulation study 2.

Low speededness level (LSL)

Fitted Mixture model Non-mixture model

model with WC with WC

Q1 191642.341 187822.030

Non-mixture model DIC Median 192051.824 188057.725

True with WC Q3 192465.323 188289.444

Model (ρθτ = 0.3) Q1 –95287.618 –93306.447

LPML Median –95204.235 –93222.498

Q3 –95146.751 –93168.033

Low speededness level (LSL)

Fitted Mixture model Non-mixture model

model with SC with SC

Q1 191663.580 187582.329

Non-mixture model DIC Median 192059.746 187868.073

True with SC Q3 192341.397 187988.874

Model (ρθτ = 0.8) Q1 –95293.492 –93319.285

LPML Median –95177.928 -93224.461

Q3 –95127.793 –93132.479

High speededness level (HSL)

Fitted Mixture model Non-mixture model

model with WC with WC

Q1 191880.178 187523.642

Non-mixture model DIC Median 192161.323 187831.945

True with WC Q3 192528.860 188102.832

Model (ρθτ = 0.3) Q1 –95194.438 –93202.085

LPML Median –95108.402 -93129.144

Q3 –94999.978 –93038.260

High speededness level (HSL)

Fitted Mixture model Non-mixture model

model with SC with SC

Q1 191396.999 187321.113

Non-mixture model DIC Median 191702.770 187686.570

True with SC Q3 192171.363 187941.382

Model (ρθτ = 0.8) Q1 –95202.124 –93221.728

LPML Median –95101.015 –93157.626

Q3 –95012.373 –93028.099

Note that the mixture model is the model in Section 2. The non-mixture model is the hierarchical structure model in van der Linden (2007).

the non-mixture model (−103871.796). Similarly, under the
HSL and SC conditions, when the mixture model was the
true model, the mixture model also fitted the data best. The
differences in themedians of DIC and LPML between themixture
model and non-mixture model were −16705.267 and 6977.566,
respectively. In addition, under the LSL and WC conditions,

when the non-mixture model was the true model, the non-
mixture model fitted the data better. The median DIC of the non-
mixture model (188057.725) was smaller than that of the mixture
model (192051.824), and the median LPML of the non-mixture
model (−93222.498) was larger than that of the mixture model
(−95204.235). Similarly, under the HSL and SC conditions, when
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FIGURE 7 | The response time path for the examinees and the histogram of response times obtained from all item-person combinations.

TABLE 5 | The estimation results of discrimination and difficulty parameter for the real data.

Para. EAP SD HPDI

a b â b̂ SDa SDb HPDIa HPDIb

a1 b1 0.8182 −0.8649 0.0009 0.0008 [0.7591, 0.8832] [−0.9234,−0.8073]

a2 b2 0.7302 −1.1924 0.0007 0.0015 [0.6809, 0.7862] [−1.2680,−1.1134]

a3 b3 0.4409 −1.2129 0.0003 0.0028 [0.4034, 0.4786] [−1.3152,−1.1096]

a4 b4 0.2000 −1.0279 0.0000 0.0030 [0.1863, 0.2036] [−1.1353,−0.9183]

a5 b5 0.6192 −0.7536 0.0007 0.0010 [0.5652, 0.6715] [−0.8159,−0.6888]

a6 b6 0.5618 −1.0134 0.0005 0.0016 [0.5150, 0.6075] [−1.0982,−0.9389]

a7 b7 0.6946 −1.8531 0.0005 0.0027 [0.6518, 0.7405] [−1.9656,−1.7591]

a8 b8 0.3710 −1.3215 0.0003 0.0042 [0.3350, 0.4046] [−1.4438,−1.1925]

a9 b9 0.5969 −0.6650 0.0008 0.0010 [0.5441, 0.6552] [−0.7280,−0.6072]

a10 b10 0.6228 −0.9849 0.0007 0.0015 [0.5738, 0.6769] [−1.0609,−0.9129]

a11 b11 0.5124 −0.1673 0.0008 0.0004 [0.4601, 0.5719] [−0.2073,−0.1293]

a12 b12 0.7251 −0.8260 0.0008 0.0009 [0.6674, 0.7812] [−0.8851,−0.7662]

a13 b13 0.3342 −1.5034 0.0002 0.0058 [0.3011, 0.3663] [−1.6613,−1.3594]

a14 b14 0.5786 −0.0406 0.0008 0.0003 [0.5179, 0.6319] [−0.0784,−0.0093]

a15 b15 0.3464 −1.2434 0.0003 0.0045 [0.3140, 0.3846] [−1.3769,−1.1141]

a16 b16 1.0816 −0.8625 0.0006 0.0006 [1.0050, 1.1628] [−0.9109,−0.8092]

a17 b17 0.4434 −1.3966 0.0003 0.0035 [0.4070, 0.4823] [−1.5151,−1.2828]

a18 b18 0.6631 −0.2462 0.0010 0.0003 [0.6023, 0.7263] [−0.2826,−0.2071]

a19 b19 0.5072 −0.8406 0.0005 0.0015 [0.4600, 0.5525] [−0.9186,−0.7620]

a20 b20 0.2638 −0.7837 0.0003 0.0042 [0.2251, 0.2972] [−0.9173,−0.6637]

a21 b21 0.5548 −0.7497 0.0006 0.0012 [0.5030, 0.6056] [−0.8212,−0.6832]

a22 b22 0.6791 −0.4723 0.0010 0.0006 [0.6150, 0.7403] [−0.5235,−0.4273]

a23 b23 0.4225 −0.7727 0.0005 0.0019 [0.3803, 0.4670] [−0.8579,−0.6881]

a24 b24 0.7590 −0.5959 0.0011 0.0006 [0.6925, 0.8225] [−0.6477,−0.5447]

a25 b25 0.8798 −0.6894 0.0012 0.0006 [0.8136, 0.9525] [−0.7414,−0.6393]

a26 b26 0.7344 −0.4227 0.0011 0.0005 [0.6680, 0.7990] [−0.4683,−0.3774]

a27 b27 0.5176 −0.6252 0.0007 0.0013 [0.4685, 0.5720] [−0.6943,−0.5492]

a28 b28 0.7185 −0.7225 0.0009 0.0009 [0.6601, 0.7822] [−0.7846,−0.6619]

(Continued)
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TABLE 5 | Continued

Para. EAP SD HPDI

a b â b̂ SDa SDb HPDIa HPDIb

a29 b29 0.7444 −0.7613 0.0009 0.0009 [0.6797, 0.8024] [−0.8245,−0.7029]

a30 b30 0.5110 −0.4083 0.0007 0.0008 [0.4550, 0.5658] [−0.4709,−0.3542]

a31 b31 0.4307 −0.0292 0.0007 0.0009 [0.3775, 0.4843] [−0.0911, 0.0303]

a32 b32 0.7277 −0.4895 0.0011 0.0008 [0.6624, 0.7954] [−0.5451,−0.4327]

a33 b33 0.5667 0.0485 0.0009 0.0004 [0.5097, 0.6253] [0.0035, 0.0905]

a34 b34 0.2024 −0.7727 0.0000 0.0067 [0.2000, 0.2152] [−0.9325,−0.6074]

a35 b35 0.6925 −0.6144 0.0012 0.0029 [0.6239, 0.7624] [−0.7182,−0.5086]

a36 b36 0.6983 −0.2498 0.0014 0.0064 [0.6228, 0.7744] [−0.3874,−0.0890]

a37 b37 0.4374 0.4227 0.0017 0.0097 [0.3525, 0.5189] [0.1555, 0.6958]

Para. denotes the interest parameters. EAP denotes the expected a priori estimation. SD denotes the standard deviation. HPDI denotes the 95% highest posterior density intervals.

the non-mixture model was the true model, the mixture model
also fitted the data better. The differences in the medians of DIC
and LPML between the non-mixture model and mixture model
were −4016.200 and 1943.389, respectively. Refer to Tables 3, 4
for more detailed results of the model assessment. In summary,
the Bayesian assessment criteria were effective for identifying
the true models and could, thus, be used in the subsequent
real data study.

6. EMPIRICAL EXAMPLE

This section presents an application of the mixture model
with an empirical example. The data set was from a high-
state, large-scale, standardized computerized adaptive test that
was previously analyzed by Wang and Xu (2015). The data
set included 37 dichotomous items, and the test time was
75 min. The sample size was 2,106. The mixture model and
non-mixture model were used to fit the item response and
response time data of the 37 dichotomous items. The response
time path for the examinees is shown in Figure 7. In addition,
Figure 7 shows a histogram of response times obtained from all
item–person combinations.

In the Bayesian computation, we used 20,000 MCMC samples
after a burn-in of 10,000 iterations to compute all posterior
estimates. The convergence of the chains was checked using the
PSRF. The PSRF values of all item parameters were less than 1.2.
We used the DIC and LPML to fit the mixture model and non-
mixture model. The mixture model resulted in a smaller DIC
value (350696.11) than the non-mixture model (365690.66), and
the LPML of the mixture model (−175027.99) was larger than
that of the non-mixture model (−181062.48). This indicates that
the mixture model better fitted the data. Based on the results of
the model assessment, we used the mixture model to analyze real
data in detail.
Analysis of item parameters

The estimated results for the discrimination and difficulty
parameters are shown in Table 5. As shown in the table,
the expected a posteriori (EAP) estimates of the one-item

discrimination parameters were greater than 1. This indicated
that the items could well distinguish the differences between
abilities. The three items with the lowest discrimination were
items 4, 34, and 20. The EAP estimates of discrimination
parameters for these three items were 0.2000, 0.2024, and 0.2638.
In addition, another three items had the lowest EAP estimates of
the difficulty parameters, indicating that these items were easier
than the other items. These were items 7, 13, and 8. The EAP
estimates of gj had a range of 0.1334 to 0.2945. The EAP estimates
of λj had a range of−0.3322 to 0.7634.

7. CONCLUSION

In this article, we propose a novel and efficient Bayesian
algorithm (Pólya–gamma Gibbs sampling algorithm) based on
the auxiliary variables for estimating the mixture hierarchical
model. The new algorithm avoids the tedious multidimensional
integral operation of the MMLE. Within a fully Bayesian
framework, the Pólya–gamma Gibbs sampling algorithm not
only avoids the heavy reliance of the traditional Metropolis–
Hastings algorithm on the tuning parameters of the proposed
distributions for different data sets but also overcomes the
disadvantage of the Metropolis–Hastings algorithm being
sensitive to step size. However, the computational burden of
the Pólya–gamma Gibbs sampling algorithm becomes excessive
especially when there are a large number of examinees, the
items or the abnormal response and response time data are
considered, or a large number MCMC sample size is used.
Therefore, it would be desirable to develop a stand-alone R
package associated with Fortran software for a more extensive
large-scale assessment program.
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