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Caterpillar fungus is a well-known fungal Chinese medicine. To reveal molecular changes during early and late stages of adenosine 
biosynthesis, transcriptome analysis was performed with the anamorph strain of caterpillar fungus. A total of 2,764 differentially 
expressed genes (DEGs) were identified (�푝 ≤ 0.05, |log2 Ratio| ≥ 1), of which 1,737 were up-regulated and 1,027 were down-regulated. 
Gene expression profiling on 4–10 d revealed a distinct shi� in expression of the purine metabolism pathway. Differential expression 
of 17 selected DEGs which involved in purine metabolism (map00230) were validated by qPCR, and the expression trends were 
consistent with the RNA-Seq results. Subsequently, the predicted adenosine biosynthesis pathway combined with qPCR and gene 
expression data of RNA-Seq indicated that the increased adenosine accumulation is a result of down-regulation of ndk, ADK, and 
APRT genes combined with up-regulation of AK gene. �is study will be valuable for understanding the molecular mechanisms of 
the adenosine biosynthesis in caterpillar fungus.

1. Introduction

�e Chinese caterpillar fungus, Ophiocordyceps sinensis 
(renamed from Cordyceps sinensis) [1], is one of the most 
outstandingly valued traditional Chinese medicinal fungi [2], 
and generally found on the Tibetan Plateau with high altitude 
ranges from 3,600 to 5,400 m [3]. Previous studies have 
revealed that caterpillar fungus and its anamorph possess a 
variety of biologically effective ingredients, such as purines, 
adenosine, polysaccharides, cordycepic acid, ergosterol, with 
extensive pharmacological effects [4, 5]. Adenosine is 
considered as an ancient extracellular signalling molecule, 
which cloud regulate almost all aspects of tissue function, and 
many previous studies have reported that adenosine plays a 
positive role of immunity, inflammation, and cancer [6, 7]. 
Due to the unique medicinal value, the natural sources of 
shortage and increasing demand, mycelia fermentation of 
Cordyceps fungal species has become a feasible and sustainable 
mean for producing the medicinal fungus and its bioactive 

compounds [8, 9]. On the basis of morphological and 
molecular biology evidences, Hirsutella sinensis is currently 
considered as the only correct anamorph of caterpillar fungus 
[10, 11]. It was reported that mycelia of H. sinensis have similar 
clinical efficacy and less associated toxicity compared with 
wild caterpillar fungus, and they are expected to be substitutes 
of caterpillar fungus [12]. �erefore, with the increasing 
interests of caterpillar fungus both on mycology and 
pharmacology, it is becoming more and more urgent to 
investigate the hereditary information or functional genes of 
caterpillar fungus by omics sequencing technology.

RNA-Seq is considered as one of the most frequently used 
methods for transcriptome analysis and gene expression 
profiling [13], it has many advantages compared with other gene 
expression profiling technologies, such as allowing a 
comprehensive assay that does not require probes for targets to 
be specified in advance [14]. In recent years, the high-
throughput RNA-Seq technique has emerged as a useful tool 
for transcriptome analysis and exploring unknown genes [15]. 
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Gene expression profiles during secondary metabolism are 
complex. RNA-Seq has been applied to investigate active 
ingredient accumulation of several traditional Chinese 
medicine, such as Ganoderma lucidum [16], Paris polyphylla 
[17], and Panax japonicas [18]. �e use of the RNA-Seq 
technique identified many DEGs that were associated with 
secondary metabolism. �ese studies have provided extensive 
insights into the understanding of significant genetic differences 
in secondary metabolism. However, the basic molecular 
mechanism of the active ingredient accumulation in mycelia of 
fungal medicines, particularly in the different stages of 
secondary metabolite accumulation, requires further study [19].

Previous studies have been investigated to identify DEGs 
[20–24]. High-throughput cDNA synthesis and sequencing 
of poly(A)-enriched RNA were applied to replace microarrays 
as a quantitative platform for measuring gene expression, and 
full length cDNA sequencing to 2-channel gene expression 
microarrays in the context of measuring differential gene 
expression, as well as sequencing data to a highly replicated 
microarray experiment profiling two divergent strains of 
Saccharomyces cerevisiae were compared [20]. �e hippocam-
pal expression profiles of wild-type mice and mice transgenic 
for delta-C-doublecortin-like kinase were compared with 
Solexa/Illumina deep sequencing technology and five different 
microarray platforms, approximately 2.4 million sequence tags 
per sample were obtained, and the changes in expression 
observed by deep sequencing were larger than observed by 
microarrays or quantitative PCR [21]. In addition, Robinson 
et al. [22] developed a bioconductor package (edgeR) for 
examining differential expression of replicated count data, and 
an over-dispersed Poisson model was conducted to account 
for both biological and technical variability. �ese previous 
studies indicated that it is viable to identify DEGs by different 
methods with different efficiencies, and developing an efficient 
method seems meaningful for identifying DEGs.

In the present study, to better understand the molecular 
factors and their regulatory genes involved in accumulation of 
active ingredients, the mRNA expression profiles of mycelia 
between early and late stages of secondary metabolite were 
compared. We gain insights into the purine accumulation 
mechanism of caterpillar fungus, particularly the expression of 
genes in adenosine biosynthesis, as cells transition from early 
into late stages of secondary metabolite. Physiological obser-
vations such as growth and adenosine biosynthesis were linked 
to transcriptional data obtained first by transcriptomic sequenc-
ing, followed by quantitative real-time PCR (qPCR). In addi-
tion, GO enrichment as well as KEGG pathway analyses showed 
that these DEGs were involved in cellular metabolic process, 
catalytic activity, and biosynthesis of secondary metabolites. 
�ese results provide novel insight into understanding the 
molecular mechanisms of adenosine accumulation and aid in 
understanding its biosynthesis pathways, and developing future 
studies on the metabolic regulation of caterpillar fungus.

2. Materials and Methods

2.1. Strains and Materials.  A strain of anamorph of caterpillar 
fungus was isolated and deposited in our laboratory. Submerged 

fermentation was performed at 16°C on a rotary shaker at 
150 rpm, and mycelia were asexual reproduced and harvested 
for 10 days. �e medium was consisted of tryptone (1%), 
powdered corn flour (1%), silkworm pupae (1.5%), glucose 
(1.5%), bran (1.5%), dextrin (0.5%), yeast extract (0.5%), 
KH2PO4 (0.02%), and MgSO4 (0.01%). �e early stage samples 
of secondary metabolite accumulation were collected for 4-day 
fermentation, and the late stage samples of secondary metabolite 
accumulation were collected for 10-day fermentation.

2.2. Determination of Mycelia Biomass and Purine 
Contents.  Caterpillar fungus mycelia were cultured at 16°C 
and collected a�er cultivation in a shake flask. A�er washing 
three times with ultrapure water, the mycelia were dried at 
60°C to a constant weight. Assay of purine contents were 
carried out by HPLC according to a reported procedure 
with some modifications [25], the column temperature was 
maintained at 35°C. �e standards or samples were separated 
using a gradient mobile phase consisting of methyl alcohol (A) 
and ultrapure water (B). �e gradient condition is: 0–3 min, 
15% A; 3.0–3.5 min, 15–25% A; 3.5–8.55 min, 24% A; 8.5–
9.0 min, 24–35% A; 9.0–15.0 min, 35% A; 15.0–16.0 min, 
35–85% A; 16.0–22.0 min, 85% A; 22.0–22.5 min, 85–15% 
A, and 22.5–27.5 min, 15% A. �e column was cleaned by 
100% methyl alcohol for every 10 runs. �e flow rate was set at 
1.0 mL/min. �e peaks were detected at 260 nm and identified 
by comparing the retention times with the standard. Standard 
curves were prepared and the linear regression equation was 
obtained. �e percentage purine extraction yield (mg/g) was 
calculated as the purine content of extraction divided by dried 
sample weight.

2.3. RNA Isolation, Library Construction, and Sequencing.  Total 
RNA of the anamorph of caterpillar fungus was extracted 
using TRIZOL and treated with RNase-free DNase I (TaKaRa) 
according to the manufacturer’s protocols (Invitrogen, CA, 
USA). �e mRNA was isolated from total RNA using Promega 
PolyATtract mRNA Isolation Systems; beads with oligo(dT) 
were used to isolate poly(A) mRNA. Subsequently, random 
hexamer-primers were applied to synthesize the first-strand 
cDNA taking these short fragments as templates, and the 
second-strand cDNA was synthesized. Sequencing libraries 
were generated by NEBNext1 Ultra RNA Library Prep Kit for 
Illumina (NEB, MA, USA). Short fragments were purified 
with QiaQuick PCR extraction kit and resolved with EB 
buffer. And then the short fragments were connected with 
sequencing adapters with respect to the result of agarose 
gel electrophoresis, and suitable fragments were selected as 
templates for amplification with PCR. Finally, the library was 
sequenced using Illumina HiSeq™ 4,000 (Illumina, CA, USA).

2.4. Analysis of RNA-Seq Data.  �e following criteria were 
applied to remove the sequences: more than 10% unknown 
nucleotides (N) reads and adapter, and low quality sequence 
(more than 30% of <Q20 bases). Subsequently, all the clean 
reads were mapped to the genome by HISAT so�ware. 
Transcripts assembly was developed by Trinity (https://
github.com/trinityrnaseq/trinityrnaseq/wiki) [26]. �en, the 
assembly results were optimally filtered by TransRate (http://

https://github.com/trinityrnaseq/trinityrnaseq/wiki
https://github.com/trinityrnaseq/trinityrnaseq/wiki
http://hibberdlab.com/transrate/
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hibberdlab.com/transrate/) [27] and re-evaluated by BUSCO 
(Benchmarking Universal Single-Copy Orthologs, http://
busco.ezlab.org) [28].

�e gene expression level was calculated by the normalized 
number of fragments per kb per million reads (FPKM) method 
[29]. �e DEGs between the early and late stages were identi-
fied by RSEM (RNA-Seq by Expectation-Maximization) so�-
ware by the following filter criteria: �-value ≤0.05 as well as 
absolute value of log2 (FPKM_early/FPKM_late)≥1 [30].

2.5. Gene Ontology and KEGG Pathway Enrichment 
Analysis.  DEGs were annotated by GO database (http://www.
geneontology.org/) using hypergeometric test to examine 
the biological functions and pathways of these genes. GO 
functional enrichment analysis provides GO terms which 
are significantly enriched in DEGs compared to the genome 
background, showing which DEGs are connected to the 
wanted biological functions. �e analysis firstly maps all 
DEGs to GO terms in the database (http://www.geneontology.
org/), calculating gene numbers for every term, then using 
ultra-geometric test to find significantly enriched GO terms 
in DEGs comparing to the genome background [31]. �e 
calculating formula is shown as follows:

where N is the number of all genes with GO annotation, n is 
the number of DEGs in N, M is the number of all genes that 
are annotated to the certain GO terms, m is the number of 
DEGs in M. �e calculated �-value went through Bonferroni 
Correction, taking corrected-�-value ≤0.05 as a threshold. GO 
terms fulfilling this condition were defined as significantly 
enriched GO terms in DEGs.

KEGG is the major public pathway-related database of 
biological systems that integrates genomic, chemical, and sys-
temic functional information [32]. KEGG pathway analyses 
were performed by the KEGG database (http://www.genome.
jp/kegg/), the calculating formula is shown as formula (1). 
�ose with a � value <0.05 were considered the significant 
pathways.

2.6. qPCR for Verifying DEGs.  Verification of RNA-Seq data 
was performed by qPCR, and 2−ΔΔCt method was conducted to 
calculate the relative expression levels by comparing the cycle 
thresholds (CTs) of the target genes with that of the 18S rRNA 
gene. 17 candidate genes which involved in purine metabolism 
were selected and validated by qPCR. Differences in relative 
transcript expression levels were compared at �푝 < 0.05 level 
among different secondary metabolite accumulation periods 
(early-VS-late) using the Student’s T-test. Primer pairs of 
the candidate genes were designed by Primer Express tool 
(Applied Biosystems, Foster City, USA), and 18S rRNA gene 
was selected as the internal control (Supplementary Table S1).

qPCR mixture (10 μL) was prepared and consisted of 1 μL 
of cDNA from early and late stage samples, respectively, 5 μL 
of SYBR Green PCR Master Mix (2×) (Promega, Wisconsin, 
USA), and 0.5 μL (100 μmol/L) of each forward and reverse 

(1)�푃 = 1 − �푚−1∑
�푖 = 0

[�푁 −�푀
(�푛−�푖)

][�푀
(�푖)
]

[�푁
(�푛)
]

,

primer. qPCR analyses were performed three times with inde-
pendent RNA samples according to the temperature-time 
profile as follows: denaturation of 95°C for 2 min, 40 cycles of 
95°C for 15 sec, 60°C for 1 min.

2.7. Statistical Analysis.  All experiments in this study 
were performed in triplicate if not specifically noted. �e 
experimental data were analyzed by the statistical so�ware 
SPSS (version 9.0, IBM, Chicago). Student’s T-test and the 
analysis of variance (ANOVA) test were performed (�푝 < 0.05).

3. Results and Discussion

3.1. Growth Characteristics and Purine Accumulation.  Cater-
pillar fungus grows slowly by artificial culture under suitable 
conditions, and people attempt to cultivate this fungus for 
producing its fruiting bodies have frequently failed [33, 34]. 
To meet the requirement of market, submerged cultivation of 
caterpillar fungus mycelia provided an environmental-friendly 
way to resolve this demand [35]. �e volatile compound pro-
files from caterpillar fungus mycelia by submerged cultivation 
were extracted, and many kinds of active ingredients in the 
mycelia were observed more abundant than that those in wild 
caterpillar fungus, indicating submerged cultivation of cater-
pillar fungus has the trend of gradually replacing the position 
of caterpillar fungus in market [12].

In this study, H. sinensis was subjected to growth under 
optimal culture conditions, and the identified optimal culture 
conditions were adopted to perform the dynamic profiles of cell 
growth and purine production. As shown in Figure 1, the myce-
lia biomass slightly increased until 4 d with 6.83 g/L, and signif-
icantly increased to 18.54 g/L at 8 d, then maintained a relatively 
stable level until 10 d. Furthermore, adenosine and 3-deoxyaden-
osine production slightly increased until 4 d with 0.342 mg/g 
and 0.086 mg/g, respectively, and significantly increased to 
1.562 mg/g and 0.419 mg/g at 10 d, respectively. Moreover, 
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Figure 1: Time course of purine accumulation. Mycelia biomass and 
purine contents both sharply increased from the early stage (4 d) of 
secondary metabolite accumulation to and late stage (10 d).
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68,661 original assembly transcripts and 52,923 optimized 
assembly transcripts were obtained from the six libraries, and 
the average transcript length was approximately 1,834.40 for 
original assembly and 1,279.18 for optimized assembly, 
respectively. Furthermore, the TransRate score for original 
assembly and optimized assembly was 0.1929 and 0.40042, 
respectively. �e BUSCO score for original assembly and 
optimized assembly was 92.7% (15.5%) and 93.4% (15.5%), 
respectively. Moreover, all transcripts obtained by this RNA-
Seq were compared with six databases (NR, swiss-prot, Pfam, 
COG, GO, and KEGG databases) for functional annotation, 
and the Venn diagram of functional annotation of transcripts 
is shown (Supplementary Figure S1). �e annotation results 
showed that number of common comments to the six database 
was 3,744, and number of unique comments to NR, swiss-prot, 
Pfam, COG, GO, and KEGG were 3,099, 599, 386, 10, 0, and 
137, respectively.

Several studies have reported the transcriptome analysis 
of entomogenous fungi, and conducted the functional anno-
tation of transcripts. Characterization of the O. sinensis tran-
scriptome among three stages of the life cycle was investigated, 
and a total of 14,922 unigenes were identified and categorized 
under three gene ontology categories, which were obviously 
less than those in our study [36]. A previous study detected 
and analyzed the DEGs of H. sinensis growing during 

uridine, vernine, and thymidine production also slightly 
increased until 4 d and then sharply increased until 10 d. �e 
dynamic profiles of mycelia biomass and purine contents were 
similar, which all have the same tendency of significant increase 
a�er 4 d cultivation (Figure 1). �erefore, the dynamic profiles 
of cell growth and purine production support our sampling 
time for early stage of secondary metabolite accumulation at 
4 d fermentation, as well as late stage at 10 d fermentation.

A previous study set the sampling time of mycelia at 3 d for 
growth period of secondary metabolite accumulation and 9 d 
for stable period, which was earlier than that in our study [31]. 
However, the present results showed that secondary metabolite 
increased dramatically from 4 d and maintained a steady level 
at the end of fermentation until 10 d. Furthermore, a fungal 
strain UM01 isolated from natural C. sinensis was sampled a�er 
inoculating for 5 days, while it lacked the investigation on time 
course of mycelia biomass or production [36]. �erefore, it is 
not difficult to perceive that 4 d and 10 d were better sampling 
time points for early and late stages, respectively.

3.2. Summary of RNA-Seq Data for Transcriptome Analy-
sis.  Secondary metabolite accumulation is crucial for active 
ingredients and pesticide effects of traditional Chinese med-
icine. It is well-known that RNA-Seq technique is a powerful 
approach for transcriptome analysis and exploring unknown 
genes [37]. Currently, the RNA-Seq technique has been per-
formed in various fungus medicines, including caterpillar 
fungus, G. lucidum [16] and Cordyceps militaris [38]. �e 
overriding aim of these studies is to elucidate transcriptome 
profile changes caused by metabolite accumulation, through 
comparing results from early and late stages of secondary me-
tabolite accumulation.

In this study, six cDNA libraries from two groups (three 
from early stage, and three from late stage) were constructed 
and sequenced. �e major characteristics of the sequencing 
and annotation data are described in Table 1. Subsequently, 
more than 48 million clean reads for six libraries were obtained 
a�er low quality and adaptor sequences were filtered out. 
Among these clean reads, more than 98.63% and 95.75% had 
quality scores at the ratio of Q20 and Q30 level, respectively. 
Moreover, there were 86.48–88.11% of the clean reads mapped 
onto the reference genome. As shown in Table 2, a total of 

Table 1: Summary of RNA-Seq data statistics and annotation information.

Samples Early_1 Early_2 Early_3 Late_1 Late_2 Late_3
Raw reads number 54,028,688 50,541,530 51,518,828 50,358,610 49,729,670 51,270,900
Raw bases 8,158,331,888 7,631,771,030 7,779,343,028 7,604,150,110 7,509,180,170 7,741,905,900
Clean reads number 53,390,400 48,871,682 50,822,684 49,823,872 49,082,804 50,458,096
Clean bases 7,955,067,632 7,261,806,751 7,576,879,005 7,446,100,035 7,324,579,677 7,530,275,238
Clean rate (%) 98.82 96.70 98.65 98.94 98.70 98.41
Q20 (%) 98.72 98.69 98.65 98.72 98.67 98.63
Q30 (%) 95.92 95.88 95.75 95.9 95.8 95.68
GC content (%) 59.75 59.97 60.04 59.79 59.93 59.91
Filtered clean reads 26,695,200 24,435,841 25,411,342 24,911,936 24,541,402 25,229,048
Mapped reads 23,511,904 21,470,372 22,389,649 21,661,602 21,354,130 21,818,903
Mapped ratio 88.08% 87.86% 88.11% 86.95% 87.01% 86.48%

Table 2: �e evaluation of assembly result.

Source Original assembly Optimized assembly
Total transcripts num 68,661 52,923
Total unigenes num 42,289 39,336
Total sequence base 125,951,552 67,697,788
Largest 20,659 20,280
Smallest 201 201
Average length 1,834.40 1,279.18
N50 5,014 3,524
E90N50 3,490 3,914
GC percent 58.44 57.56
Mean mapped reads 1,914.28125609 2,699.98525834
TransRate score 0.1929 0.40042
BUSCO score 92.7% (15.5%) 93.4% (15.5%)
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analyzed and a total of 34,289 unigenes were obtained, but 
the unigenes involved in growth and development stages 
were not analyzed [39]. In this study, the DEGs from early 
and late stages were identified and analyzed, which would be 
useful for the further study of secondary metabolite 
accumulation.

3.3. Expression Analysis and Identification of DEGs.  Because 
of the importance of RNA-Seq, a lot of methods have been 
conducted to analyze RNA-Seq data for identification of DEGs 
in recent years, including edger [22], bay_Seq [40], DE_Seq 
[41], and NBP_Seq [42]. �e majority of these methods are 
based on Poisson or negative binomial distributions when they 
are dealing with RNA-Seq count data [43]. However, FPKM is 
the most frequently used measure of mRNA abundance based 
on RNA-Seq data [44], it is calculated from the number of 
fragments mapped to a particular gene region with a feature 
length, which is the number of nucleotides in a capable region 
of a gene [24].

In this study, a FPKM method for identification of DEGs 
with RNA-Seq data was developed, and the FPKM of each 
unigene/transcript for early and late samples wes calculated, 
as well as the value of log2 (late_FPKM/early_FPKM), �-value 
of statistical test and FDR were calculated, if the value of log2 
(late_FPKM/early_FPKM) > 0, then this gene is up-regulated 
at late stage, or else it is down. Overall distribution of unigene/
transcript expression in each sample is shown (Supplementary 
Figure S2). �e box plot of expression distribution presented 
that each box graph corresponds to five expression statistics 
(maximum, upper quartile, median, lower quartile, and min-
imum). Meanwhile, the violin plot of expression distribution 

different days, while each of the growth and development 
stages did not be compared [31]. In another study, the tran-
scriptome of the medicinal O. sinensis fruiting body was 

Figure 2: Expression analysis between early and late samples based on the expression matrix. (a) Venn analysis between early and late samples, 
the intersecting areas of the circles represent the number of unigene/transcript common to each group, inter-sample Venn analysis can obtain 
co-expression and specific expression genes/transcripts between samples and groups. (b) Inter-sample correlation analysis, different colors 
represent the size of the correlation coefficient between samples. Correlation analysis helps to understand the correlation between samples, 
especially among biological duplicates.
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updated controlled vocabulary and a strictly defined concept 
to comprehensively describe properties of DEGs and their 
products in any organism, GO functional classification 
annotation, which includes three ontologies (molecular 
function, cellular component and biological process) were 
conducted [45].

As shown in Figure 4, in the GO category of biological 
process, DEGs were involved in metabolic process (513 DEGs), 
cellular process (485 DEGs), single-organism process (268 
DEGs), localization (127 DEGs), biological regulation (99 
DEGs), cellular component organization or biogenesis (98 
DEGs), regulation of biological process (84 DEGs), and 
response to stimulus (75 DEGs). Among the DEGs related to 
the biological process, the most significant term was metabolic 
process, indicating that metabolic process was extremely active 
during secondary metabolite accumulation. In the GO 
category of molecular functions, DEGs were involved in 
membrane (452 DEGs), membrane part (430 DEGs), cell (408 
DEGs), cell part (404 DEGs), organelle (317 DEGs), 
macromolecular complex (135 DEGs), organelle part (135 
DEGs), and membrane-enclosed lumen (55 DEGs). It was 
indicated that the enriched terms were potentially associated 
with the secondary metabolite accumulation, and the most 
significant term located in the membrane played the most 
important role during secondary metabolite accumulation. In 
the GO category of molecular functions, DEGs were involved 

presented that enlarged portion of the image represents the 
region with the highest concentration of unigene/transcript 
expression in the sample.

Based on the expression matrix, Venn and correlation 
between samples were analyzed. As shown in Figure 2(a), there 
were 9,679 common elements between early and late stages, 
indicating co-expression and specific expression genes/tran-
scripts between samples could be obtained by inter-sample 
Venn analysis shown. As shown in Figure 2(b), correlation 
analysis helps to understand the correlation between samples, 
especially among biological duplicates. Among the six cDNA 
libraries, a total of 39,336 genes were detected and the FPKM 
method was utilized to evaluate the gene expression level 
(Figure 3). In order to analyze the transcriptome differences 
between early and late stages of secondary metabolite accu-
mulation, the late stage was compared to the early stage. A 
total of 2,764 significant DEGs were identified, of which 1,737 
genes were up-regulated and 1,027 genes were down-regulated 
(� value ≤0.05 and |log2 FC| ≥1).

3.4. Gene Ontology Functional Annotation and Enrichment of 
DEGs.  GO is an international standardized gene functional 
classification system which offers a dynamic-updated 
controlled vocabulary and a strictly defined concept to 
comprehensively describe properties of genes and their 
products in any organism [30]. In order to offer a dynamic-
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whole genome background [43]. A KEGG pathway analysis 
was developed to identify the pathways of the DEGs involved 
in secondary metabolite accumulation. Among the 2,764 late-
VS-early DEGs, there were 636 DEGs with pathway annota-
tion, and the results of main pathway enrichment analysis of 
late-VS-early DEGs are shown in Figure 5. Totally, 636 DEGs 
were mapped to 104 KEGG pathways, and 22 pathways were 
significantly enriched (�푝 ≤ 0.05). In the significant pathways, 
several main pathways were represented, including amino acid 
metabolism, carbohydrate metabolism, energy metabolism, 
metabolism of cofactors and vitamins, translation, transport, 
and catabolism.

KEGG pathway enrichment analysis was carried out on 
genes/transcripts in gene concentration by Fisher’s exact test. 
When the adjusted � value (� adjust) was <0.05, this KEGG 
function was considered to be significantly enriched. As 
shown in Supplementary Figure S4, cell cycle-yeast, phenyla-
lanine metabolism, tyrosine metabolism, glycerophospholipid 
metabolism, pantothenate and CoA biosynthesis, and various 
types of N-glycan biosynthesis were significantly enriched. 
Among them, cell cycle-yeast had the minimum � value, indi-
cating that cell cycle-yeast was most significantly enriched and 
played the most important role in cell growth and secondary 
metabolite accumulation.

in catalytic activity (754 DEGs), binding (646 DEGs), 
transporter activity (96 DEGs), and nucleic acid binding 
transcription factor activity (63 DEGs). �e major molecular 
function category was catalytic activity, indicating that a large 
number of enzymes were involved in the synthesis of secondary 
metabolites.

Furthermore, GO functional enrichment of genes/tran-
scripts in gene concentration was analyzed by Fisher’s exact 
test. When the adjusted � value (� adjust) was <0.05, this GO 
function was considered to be significantly enriched. As 
shown in Supplementary Figure S3, DNA integration, peptide 
biosynthetic process, cellular protein metabolic process, and 
biosynthetic process were significantly enriched. Among 
them, DNA integration had the maximal rich factor, indicating 
that DNA integration played an important role in cell growth 
and secondary metabolite accumulation.

3.5. KEGG Pathway Annotation and Enrichment of DEGs.  Dif-
ferent genes usually cooperate with each other to exercise 
their biological functions, and pathway-based analysis helps 
to further understand genes biological functions [46]. KEGG 
is the major public pathway-related database. Pathway enrich-
ment analysis could significantly enrich metabolic pathways 
or signal transduction pathways in DEGs compared with the 
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(ADE5), 3′,5′-cyclic-nucleotide phosphodiesterase (cpdP) and 
RNA polymerase III subunit RPC6 (RPC6), were validated by 
qPCR. Among them, there were 5 up-regulated DEGs, including 
RPB1 (3.70-fold), POLR2A (7.94-fold), RPC2 (2.75-fold), alc 
(3.25-fold) and cpdp (2.39-fold), and 12 down-regulated DEGs, 
including nudF (0.40-fold), nudF (0.44-fold), ADK (0.33-fold), 
ADK1 (0.32-fold), purL (0.49-fold), APA1_2 (0.45-fold), ndk 
(0.46-fold), APRT (0.50-fold), POLE1 (0.28-fold), RPA2 (0.41-
fold), ADE5 (0.46-fold), and RPC6 (0.47-fold). Although the 
fold change varied between the two methods, the trends in the 
expression of the 17 genes were consistent with the RNA-Seq 
results, suggesting that the RNA-Seq results were reliable.

Indeed, there were few studies that focused on the purine 
metabolism in the anamorph of caterpillar fungus. �e purine 
metabolic pathway in C. militaris was constructed based on 
the KEGG annotations, and the genes putatively involved in 
purine metabolism were obtained, while the verification of the 
putative genes was not conducted [50]. In addition, purine 
biosynthesis pathway of H. sinensis was predicted, which starts 
from adenosine and ends with urate a�er 7 steps of catalysis, 
but the pathway was not systematic and the DEGs involved in 
purine biosynthesis were not analyzed [31]. In the present 
study, purine metabolism was more systematically analyzed, 
and the DEGs involved in purine metabolism were investi-
gated and validated, which could provide useful information 
for further metabolic regulation.

3.7. Construction of Adenosine Metabolic Pathway.  Furthermore, 
based on KEGG purine metabolism (map00230), the predicted 
adenosine metabolic pathway and gene expression profiles in 

3.6. Verification of DEGs Involved in Purine Metabolism.  Dif-
ferential expression analysis was frequently conducted to 
screen DEGs, and qPCR was commonly applied in relative 
expression levels analysis for decades to verify DEGs [47–49]. 
Gene annotation and differential expression analysis by qPCR 
identified 464 transcripts that may be involved in catabolism 
and metabolism of phytohormone, and relative expression 
levels analysis showed that eleven phytohormone-related 
genes have different expression patterns in the seed stratifi-
cation process of P. polyphylla [47]. Two proteases which are 
known to be directly involved in the process of pathogenesis 
in entomopathogenic fungi Beauveria bassiana were identified 
through a comparative analysis of gene expression patterns 
and verified them by qPCR [48]. �e differential expression 
of thirteen PHB accumulation related genes was investigated 
by qPCR, indicating thirteen most up-regulated genes played 
important roles in PHB metabolism in Acidiphilium cryptum 
[49]. �ese previous studies suggested that qPCR is a reliable 
way to verify the DEGs involved in metabolic pathway.

In this study, verification of the selected DEGs was 
conducted by qPCR, and the results are shown in Figure 6. �e 
17 candidate genes which involved in purine metabolism 
(map00230), including ADP-ribose pyrophosphatase (nudF, 
nudF1), RNA polymerase (RPB1, POLR2A), adenosine kinase 
(ADK, ADK1), phosphoribosylformylglycinamidine synthase 
(purL), ATP adenylyltransferase (APA1_2), RNA polymerase 
III subunit RPC2 (RPC2), nucleoside-diphosphate kinase (ndk), 
adenine phosphoribosyltransferase (APRT), DNA polymerase 
epsilon subunit 1 (POLE), allantoicase (alc), RNA polymerase 
I subunit RPA2 (RPA2), phosphoribosylamine–glycine ligase 
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pathway could be converted to adenosine, adenine, and 
cordycepin, respectively. Among these key genes involved in 
this pathway, ndk, ADK and, APRT genes were significantly 
down-regulated, while AK gene was significantly up-regulated, 
which indicated that ndk, ADK, and APRT genes play roles 
of retro-regulation, while AK gene plays the role of positive 
regulation in the process of adenosine accumulation.

caterpillar fungus were conducted according to the results 
of annotation and expression analysis. RNA-Seq and qPCR 
expression analysis of DEGs at late stage compared with early 
stage of secondary metabolites biosynthesis were carried 
out. In adenosine biosynthesis pathway (Figure 7), ATP is 
converted to ADP by ndk, and ADP is converted to AMP by 
AK, AMP as an important intermediate in purine metabolism 
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