
1Scientific RepoRtS |         (2019) 9:17311  | https://doi.org/10.1038/s41598-019-53819-6

www.nature.com/scientificreports

target Strength and swimbladder 
morphology of Mueller’s pearlside 
(Maurolicus muelleri)
B. Sobradillo1*, G. Boyra1, U. Martinez1, p. carrera3, M. peña4 & X. irigoien1,2

in the last few years, there has been increasing interest in the commercial exploitation of mesopelagic 
fish and a trawl-acoustic methodology has been recommended to make estimates of abundance 
of these resources. This study provides relevant information on the scattering properties of a key 
mesopelagic fish species in the Bay of Biscay, Mueller’s pearlside (Maurolicus muelleri), necessary 
to convert the acoustic density into numerical abundance. the target strength (TS) of pearlside was 
estimated for the first time at five frequencies commonly used in acoustic surveys. A high-density 
filter was applied to reduce the bias derived from overlapping echoes erroneously assigned to single 
targets. Its relationship with fish length (b20) was also determined (−65.9 ± 2, −69.2 ± 3, −69.2 ± 2, 
−69.5 ± 2.5 and −71.5 ± 2.5 dB at 18, 38, 70, 120 and 200 kHz, respectively). Biomass estimates of 
pearlside in the Bay of Biscay during the four years of study (2014–2017) are given using the 38 kHz 
frequency. Morphological measurements of the swimbladder were obtained from soft X-ray images and 
used in the backscattering simulation of a gas-filled ellipsoid. Pearlside is a physoclist species, which 
means that they can compensate the swimbadder volume against pressure changes. However, the 
best fit between the model and the experimental data showed that they lose that capacity during the 
trawling process, when the swimbladder volume is affected by Boyle’s law.

Mesopelagic fishes constitute an important component of the food web in the oceanic sound scattering layers 
(SSLs)1,2. Despite their small size, they are numerically important in temperate and tropical oceanic waters3–5, 
constituting major forage food for various commercially-fished species6,7. Due to the increasing interest in their 
commercial exploitation8–12, accurate estimates of its abundance are key to evaluate the impact of their exploita-
tion and establish the necessary management measures9,11. Among the mesopelagic species, Mueller’s pearlside 
(Maurolicus muelleri, Gmelin, 1789; pearlside hereafter) is one of the most abundant and potentially accessible 
species to commercial fisheries, as it often resides close to the surface13.

The total abundance of mesopelagic fish in the world oceans is unknown. Biomass estimates published in the 
last 20 years range between 2 and 19.5 Gt. New acoustic estimates are over one order of magnitude above historic 
estimates based on net sampling5,14–17, challenging our understanding of gross ocean carbon production, major 
food chains and ecosystem carbon flow in these deep-water systems. Two main reasons leading to this uncer-
tainty have been identified. First, mesopelagic fish species are difficult to fish due to high avoidance to experimen-
tal pelagic trawls18,19, potentially leading to an underestimation of their biomass. Second, the composition of the 
acoustic scatterers in the deep scattering layers may include other species than fish (e.g. siphonophores), poten-
tially leading to an overestimation of the biomass of interest. To overcome this, a combination of trawl and multi-
frequency acoustic methodologies has been recommended for the estimation of mesopelagic fish abundance20–22.

The Bay of Biscay is in the southern region of the northeast Atlantic and shelters a large and diverse commu-
nity of commercial species. To provide assessment and management advice on fish stocks, estimates of abundance 
are currently provided by expert groups23. However, to date there are no scientific surveys focused on the biomass 
estimation of mesopelagic species in the Bay of Biscay.

To convert acoustic data into biomass estimates, it is necessary to estimate the target strength (TS; dB re 
1 m2), which is a measure of the amount of incident wave reflected by a single target24, and determine its rela-
tionship with fish length. When multifrequency acoustic data is available, it is often useful to measure the 
frequency-dependent difference in mean volume backscattering strength25–29 (ΔMVBS; dB re 1 m−1).
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Global mesopelagic biomass estimations5,14 are reported from single frequency data (38 kHz), so no multifre-
quency analyses are available to date. However, using single frequency data can also be useful. For example, the 
use of low frequencies (i.e. 18 kHz) with long range and high signal to noise ratio30 allows collection of ecosystem 
information from the mesopelagic zone.

Few TS estimates have been reported for mesopelagic species using either in situ31 or ex situ32 measurements, 
modelling techniques33 or a combination of them34,35. For mesopelagic fish, resonance at frequencies ≤ 38 kHz is 
particularly pronounced13,36, however, resonance at frequencies up to 60 kHz have also been described for smaller 
swimbladder sizes of migrating37 and non-migrating fish30. In a study performed on pearlside in Masfjorden 
(Western Norway)38, frequencies around 60 kHz were essential to describe the size distribution of the pearlside 
population due to the small mean body size ranges observed (2.3–8 cm for mature individuals and < 2.9 cm for 
immature and male specimens). A recent study reported TS estimates at 18, 38, 120 and 200 kHz on this species 
in the Osterfjord in Norway35 and presented the first steps towards determining the TS-length relationship. Also, 
the main issues associated in determining TS values were identified there, offering the possibility to address them 
in subsequent studies such as this one.

Up to 95% of the backscatter of a swimbladder-bearing fish, is attributable to the swimbladder39 due to the 
density contrast between gas and water40. Changes in the volume or surface area of the swimbladder can influ-
ence the TS significantly41,42 and lead to considerable differences in abundance estimates. When studying TS 
versus length relationships of swimbladder-bearing fish, backscattering simulations derived from swimbladder 
morphology help to interpret and generalise the observed results. In the case of mesopelagic fish, these models 
are even more important due to the non-linearity between TS and length43. Pearlside is a physoclist species, that 
is, able to keep a constant volume of the swimbladder against pressure changes. However, its actual swimbladder 
volume compensation performance during the trawling process is not clear, hampering the interpretation of the 
observed swimbladder size at the surface. In fact, when modelling the swimbladder, there is lack of consensus in 
the literature on whether to consider pearlside as a physostome13,15,35 (the swimbladder volume obeys Boyle’s law) 
or as a physoclist30,33,44,45 species.

The main objective of this study is to provide estimates of TS to convert acoustic densities into biomass of 
pearlside. Acoustic-trawl data was used to determine the TS vs. length relationship estimates at 18, 38, 70, 120 
and 200 kHz frequencies. Also, a comprehensive set of soft X ray images was used to determine the morphology 
of the swimbladder as well as its relationship with fish length. Theoretical TS values were simulated using an 
ellipsoidal approximation for the swimbladder. This work includes comparison of the model behaviour under dif-
ferent swimbladder tilt angle and contraction rate values, optimised by comparison with the experimental ones. 
According to the results, considerations about the physostome or physoclist behaviour of this species are provided 
as well as the most likely mean sizes of the swimbladder at the mean depth ranges of this study.

Material and Methods
Data collection. Acoustic-trawl sampling was performed in September 2014, 2015, 2016 and 2017 in the 
Bay of Biscay during the acoustic-trawl survey JUVENA46 (Fig. 1). Additional sampling was done in year 2018 
to collect biological pearlside samples for morphological measurements and to test the capture efficiency using 
different mesh size codends.

Acoustic data. Acoustic records were collected onboard the research vessel Ramón Margalef (RM hereafter), 
using an EK60 scientific echosounder (Kongsberg Simrad AS, Kongsberg, Norway) with split-beam transducers 

Figure 1. Area of data collection. Bay of Biscay map showing the transects (lines) and hauls (black dots) from 
all the years of study used for the target strength (TS) measurements.
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of 18, 38, 70, 120 and 200 kHz, placed in a drop keel that reached a maximum depth of 6.75 m. All nominal beam 
widths were 7° except for the 18 kHz transducer, with a beam width of 11°. Pulse duration was 1024 µs with a ping 
rate of 0.7 s−1. The transducers were calibrated following standard procedures47 using a tungsten carbide sphere of 
38.1 mm of diameter. The maximum sampling depth was 500 m.

Biological data. Ground-truth trawl samplings were done with a Gloria HOD 352 pelagic trawl with 15 m 
of vertical opening, provided with a 10-mm mesh size (bar length) at the codend. Catches from these hauls were 
used to identify fish species and to determine their size distribution. Fishing trawls were performed between 
15 and 300 m depth at a mean speed of 4 knots. Lengths were obtained from a random sample of each haul and 
measured to 0.5-cm standard length classes (SL; cm) onboard the research vessel.

A random subsample of 283 individuals was frozen in liquid nitrogen immediately after being captured and 
stored in individual plastic bags at −15 °C onboard the research vessel. Four months after being captured, frozen 
samples were carefully removed from the plastic bags and set in order by trawls. This was done in the laboratory 
in a temperature-controlled environment (0 °C) to minimise the damaging effect on the biological structures. 
The three cross-sectional dimensions of the swimbladder length (Lsb; cm), height (Hsb; cm) and width (Wsb; cm) 
and the tilt angle (θsb) were determined based on soft X-ray images (IntechForView CR system) of the lateral and 
dorsal aspects of the fish (Fig. 2). Only the specimens with undamaged swimbladders were considered for the 
measurements (i.e. there were some cases in which these were absent or disfigured and bubbles of air were visible 
elsewhere from the swimbladder). The dimensions of the detector plate were 430 mm × 350 mm with a pixel size 
of 86 µm. Samples were located at a distance of 1 m from the source and exposed to 40 kV per 1.6 mA/sec.

catchability of small length classes. To test whether the mesh size codend was able to efficiently capture 
the whole length distribution of the pearlside population, we used two different codends on the same model of 
pelagic trawl. One codend had the 10 mm minimum mesh used for the samples involved in the TS analyses. The 
other codend had a gradual mesh size, ranging from 8 to 2 mm, specially designed to target micronekton species. 
In total there were 21 positive hauls of pearlside for the experiment; from these, 13 were done with the small 
mesh and 9 with the large one. The experimental procedure consisted of measuring the length of 100 individuals 
from each trawl to compare the length distributions obtained with both gears using statistical analysis of variance 
(ANOVA).

ethics statement. All samples were collected under permission of the corresponding local authorities: 
Ministère des affaires étrangéres (France), Vice. de Agricultura, Pesca y Politicas Alimentarias (Basque Country) 
and by the Spanish Government “Administración del Estado, Ministerio de Agricultura, Alimentación y Medio 
Ambiente, Secretaría General de Pesca”. All methods and research conducted in this study were carried out under 
the guidelines provided by article 5 of the European Convention for the protection of vertebrate animals used for 
experimental and other scientific purposes (Cons 123 (2006) 3)48 in accordance with AZTI’s policies.

Data analysis. Single frequency analyses: spatial analysis and biomass estimation. The acoustic backscatter-
ing at 38 kHz collected during the transects was echointegrated annually by 0.1 nmi (elementary distance sam-
pling unit or EDSU) per ~50 m bins, to a maximum depth of 500 m. This part of the survey strategy46 consisted 
in providing spatial distribution and biomass annual estimates of several species at a single frequency (38 kHz). 
Acoustic energy was first cleaned from unwanted signals and then echointegrated using a threshold of −60 dB. 
The software used for this purpose was Movies + (developed by Ifremer, France). The nautical area scattering 
coefficient (sA; m2 nmi−2) was allocated by species and size according to the hauls and the echogram typology. It 
was then used to obtain the mixed species echointegrator conversion factor24. The sA allocated to pearlside was 
used to produce spatial distribution maps and vertical profiles, as well as to examine the effects of daily vertical 

Figure 2. Biological samples. Spatial arrangement of fish samples for the X-ray session (a). Soft X-ray images of 
the lateral and dorsal aspects (b) of a specimen of M. muelleri (standard length, SL = 47 mm). A 1 cm scale bar 
was included.
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migration (DVM). Finally, the abundance in numbers was obtained after dividing sA by the mean backscattering 
coefficient of pearlside and multiplying by the mean weight and EDSU to obtain the annual biomass in the studied 
area.

Multifrequency analyses. Multifrequency analysis was done on acoustic data collected from hauls with more 
than 90% of the catch being pearlside (Fig. 3A) using Echoview software49. The deepest trawl was performed 
at a mean depth of 163 m (Table 1). Due to the range limitation of the high frequencies, background noise that 
registered below 100 m at 200 kHz was removed (Fig. 3B) following the techniques described by De Robertis 
and Higginbottom50 (cells of 20 pings by 5 samples, smoothed via 5 × 5 convolution into the background noise 
removal operator, with maximum noise of −125 dB and minimum signal-to-noise ratio (SNR) = 1.

Frequency dependent dB difference: Echointegrations were done using Echoview49 over cells of 50 m vertical 
x 0.1 nautical mile with a −70 dB minimum threshold; subsequent analyses were performed in R software51. 

Figure 3. Example echograms. Echograms showing the typical pearlside multifrequency scattering layer  
(A) and the background noise correction applied to the 200 kHz frequency, at depths greater than 100 m (B).

Trawl Date

Time Lat Lon Depth Catch Catch% Length

GMT ° ° m g % (g) cm (±sd)

9010 08/09/2014 22:13 44.06 −5.10 70 2713 91 3.0 ± 0.2

9002 31/08/2015 9:05 44.46 −8.20 75 848 100 4.3 ± 0.6

9006 05/09/2016 12:31 44.05 −5.10 153 950 100 2.6 ± 0.3

9012 08/09/2016 12:10 43.54 −2.70 163 13.3 97 4.9 ± 0.9

9020 22/09/2016 12:21 45.70 −2.82 106 1300 100 4.0 ± 0.5

9006 06/09/2017 19:43 44.10 −7.52 120 1500 36* 2.9 ± 0.5

9012 16/09/2017 19:00 44.48 −3.38 51 92000 37* 2.7 ± 0.4

9013 17/09/2017 13:45 45.05 −2.20 120 5850 100 4.7 ± 0.8

9015 18/09/2017 16:00 45.21 −2.45 114 145127 97 3.6 ± 0.6

9017 20/09/2017 9:50 45.94 −3.03 105 92000 100 3.8 ± 0.5

9031 27/09/2017 18:03 46.30 −4.31 55 13.5 97 4.1 ± 0.4

Table 1. Details of the pelagic trawls used for the mean volume backscattering strength (MVBS; dB re 1 m−1) 
differences and target strength (TS; dB re 1 m2) analyses. Time: (UTC + 2), start times of echogram section, 
Depth: mean depth of the echointegrated section, Catch (estimated catch of species), Catch%: percentage of 
the catch being pearlside and Length: mean length (±standard deviation) of the specimens in the catch. *Night 
hauls with mixed composition of krill and pearlside. The echogram sections used for the analyses corresponded 
to daytime (2 hours earlier than the trawls approx.), when the stratification of these species was evident and a 
layer of pure pearlside could be used for processing.
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ΔMVBS between frequencies is often used to discriminate between scattering groups25–29. In this study, ΔMVBS 
was calculated for all frequencies using 38 kHz as the reference frequency. All averaging was performed in the 
linear domain and converted back to the logarithmic scale.

In situ TS analysis: In situ TS values were derived from echosounder data using the Echoview single target 
detection algorithm for split beam echosounders52. A −70 dB minimum threshold was applied with a pulse deter-
mination level of 6 dB. The minimum and maximum normalised pulse lengths were 0.7 and 1.5, respectively, the 
maximum beam compensation applied was 6 dB and the maximum standard deviation of minor and major axis 
angles was 0.6 degrees.

To reduce the bias caused by a poor signal to noise ratio towards the edge of the acoustic beam, the density of 
target detections was examined within each degree ring of the beam. A 3° cut-off angle filter was used to reject 
target detections that were in lower densities (corresponding to −3 dB off axis)35,53.

A high-density filtering method54 was applied to reduce the multiple target bias55. This was necessary since 
small pelagic fish occur in high packing densities that are likely to prevent the successful detection of single target 
echoes56. Target strength measures were rejected when the number of fish per acoustic reverberation volume (Nv), 
calculated following the procedure described by Ona and Barange55, surpassed an empirically-determined den-
sity threshold. This was located at the inflection point of the number of targets per sample volume (Tv) on the Nv, 
where the target density is such that multiple target echoes are likely to be produced54. The effect of the horizontal 
measurement scale on the threshold value was examined by filtering the TS detections by the different thresholds 
calculated at intervals of 100, 50, 25, 10 and 5 pings (1 ping ≈ 1.8 m) per 5-m depth cells.

After being filtered for the SNR and multiple targets, the TS dataset was used to estimate b20 from Eq. (1) at 
five frequencies (18, 38, 70, 120 and 200 kHz) by the least-squares fitting procedure described in MacLennan and 
Menz57. The filtered TS dataset was fit to a normal distribution derived from the fish size histogram of the catches 
(modelled TS distribution assuming 20 log SL) to evaluate the mean, standard deviation (SD) and b20 of the best 
fit, given by the coefficient of determination (R2).

= + ⋅TS log SL b20 ( ) (1)20

Acoustic scattering models. Since gas-filled swimbladders reflect 90% or more of the backscattered energy39, 
only these were considered for modelling the backscattering strength. The effects of depth and size on the swim-
bladder target strength were analysed using a scattering model that applied an ellipsoidal approximation for the 
swimbladder58–62.

The semi-major (a = Lsb/2) and semi-minor axes in the lateral (b = Hsb/2) and dorsal (c = Wsb/2) aspects were 
used to calculate the equivalent sphere radius aesr

63:

= ⋅a a b c( ) (2)esr
1/3

All the equations used in this study, as well as the environmental and material properties, were adopted from 
Andreeva58 and Love60 (see Supplementary Table 1). The sequence in which the different equations of the model 
were used followed the same structure as in Scoulding et al.35.

Although pearlside is a physoclist species64, different assumptions related to the depth dependence of swimblad-
der volume were compared. (1) Swimbladder dimensions were independent of depth due to volume compensation 
associated with physoclist species30,33,36,44; thus, we assume no effect of Boyle’s law. (2) A pressure-induced volume 
reduction of the swimbladder was considered according to Boyle’s law13,15,35 by which the dimensions at the fishing 
depth were expected to be smaller than those observed at the surface. In this case, the following model was used:

σ σ=


 +





αz1
10

,
(3)z 0

where σz is the backscattering cross-section at depth z, σ0 at the surface and 𝛼 is the estimated contraction rate 
parameter (−0.67 for a free ellipsoid)65. (3) This assumption accounted for the mechanical stress of the fish 
derived from the trawling process, where 𝛼 was treated as a floating parameter of values ranging from 0 to −0.67. 
Values for mean (θ ) and standard deviation (σθ) of tilt angle were obtained from the X-ray images. (4) The whole 
space of combined parameters was explored, using γ, θ  and σθ as floating parameters. Except for the third variant 
of the model, in which the tilt angle parameters were determined from the RX images, the other three assump-
tions explored normal distributions with mean values ranging from 0–70° and standard deviations of 0–30°.

The Akaike information criteria (AIC) was used to select the best variant of the model because it takes into 
account the goodness of fit of the model and penalises the use of optimised parameters over the use of parameters 
with fixed values.

= + + −AIC nlog SS p nlog n( ) 2( 1) ( ) (4)res

where n is the number of observations and p is the number of floating parameters used. The optimal model was 
then used to interpret the actual swimbladder behaviour of pearlside.

Results
Biological sampling. A total of 11 trawls where M. muelleri was the dominant species were used for the 
analyses (Table 1). Krill Meganyctiphanes norvegica contributed on average 3.6% of the total numbers, while squid 
(Loligo vulgaris), salps (Salpasalpa) and jellyfish (Rhopilema spp.) contributed to the catches to a lesser extent. 
Standard length distributions of pearlside ranged from 2.6 ± 0.3 cm to 4.9 ± 0.9 cm. A total of 63 individuals with 
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apparently undamaged swimbladders were finally used for the morphological measurements. The pearlside swim-
bladder appeared as a regular-shaped single-chamber ellipsoid with a long (a = Lsb/2) and short (b = Hsb/2) lateral 
semi-axis and a short dorsal semi-axis (c = Wsb/2) and an average tilt angle of 24° ± 7° (Fig. 2, Table 2). Results 
indicate that for an increase in fish length, there is an increase in swimbladder volume (r2 = 0.6, p < 0.001), length 
(r2 = 0.07, p < 0.05) and equivalent radius (r2 = 0.6, p < 0.05) (Fig. 4). As for the aspect ratio, data suggest a posi-
tive correlation with fish length, although this was not significant (r2 = 0.02, p > 0.05).

Capture efficiency vs mesh size experiment. The mean ± standard deviation body length of the fish captured with 
the 8 to 2 mm mesh was 3.3 cm ± 0.8 cm whereas for the 10 mm mesh it was 2.7 cm ± 0.7 cm, with the minimum 
sizes caught being ~1.5 cm in both cases (N = 1201). To further assess this, in one particular site, we were able to 
repeat two trawls consecutively, targeting the same aggregation using both mess sizes. In this case, the mean sizes 
were 3.5 cm ± 0.4 cm and 3.6 cm ± 0.4 cm for the 8–2 mm and 10 mm mesh sizes, respectively, and the statistical 
tests provided non-significant differences between means (p > 0.05). According to this result both trawls seem 
equally able to perform sampling of small sizes in the range of this study and hence the biological sampling for the 
TS analysis was considered to be unbiased and representative of the true pearlside size distribution.

Symbol Units Range Mean ± SD

Standard body length L f cm 1.41–5.23 2.87 ± 0.78

Length Lsb cm 0.25–0.98 0.45 ± 0.14

Height Hsb cm 0.07–0.35 0.20 ± 0.07

Width Wsb cm 0.03–0.31 0.12 ± 0.06

Dorsal area Asb.D cm2 0.006–0.17 0.05 ± 0.03

Lateral area Asb.L cm2 0.01–0.18 0.06 ± 0.04

Long lateral semi-axis a cm 0.13–0.49 0.22 ± 0.07

Short lateral semi-axis b cm 0.03–0.16 0.08 ± 0.02

Short dorsal semi-axis c cm 0.01–0.15 0.06 ± 0.03

Swimbladder ratio a/Lf — 0.05–0.12 0.08 ± 0.02

Aspect ratio Ɛ — 0.09–0.47 0.26 ± 0.09

Tilt angle θ ° 11.4–43.6 24 ± 7

Table 2. Results of the morphological measurements of the swimbladder (n = 63).

Figure 4. Swimbladder morphological measurements. Relationship between standard length (mm) and the 
swimbladder volume, aspect ratio (Ɛ = c/a), swimbladder length and equivalent radius of the 63 specimens with 
gas-filled swimbladders. The shadowed area represents the 95% confidence intervals.
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Spatial distribution patterns of Mueller’s pearlside in the Bay of Biscay. Mueller’s pearlside was 
predominantly found off the shelf or at the outer part of the continental shelf, although it reached the 100 m iso-
bath on the French shelf. Its vertical distribution during daytime ranged from 50 m down to the maximum depth 
sampled in this study (500 m). The location of the acoustic detections of pearlside in the water column varied with 
time being on average about 50 m shallower during nighttime (Fig. 5).

Frequency dependent dB difference. Pearlside ΔMVBS38 showed a general decreasing trend towards 
high frequencies. The observed pattern described the highest difference at 18 kHz with a sharp decline towards 
38 kHz, consistent with the presence of a resonance peak at frequencies below 38 kHz. There was an approxi-
mately similar response at 38 and 70 kHz and a final decay for the 120 and 200 kHz frequencies (Fig. 6).

In situ tS. Even if the Nv values varied within the scale of measurement, the averaged TS values were constant 
regardless of the grid size, showing differences of less than 0.2 dB within scales. The smallest scale size (5 pings 
× 5 meters) was chosen for the Nv threshold determination. The point of inflection of the number of Tv on the 
fish number Nv (Fig. 7) was observed at threshold values of 0.12, 0.07, 0.16, 0.06 and 0.04 fish per m3 at 18, 38, 
70, 120 and 200 kHz frequencies, respectively, meaning that only cells that passed those thresholds were retained 
for subsequent analysis. The filtered TS datasets consisted of 109, 154, 578, 255 and 158 targets at each respective 
frequency, on which the b20 fitting procedure was based.

The best-fit b20 values derived from the Nv-filtered TS and SL distributions were −65.9, −69.2, −69.2, −69.5 
and −71.5 dB for the 18, 38, 70, 120 and 200 kHz, respectively, with coefficients of determination (R2) ranging 
from 53 to 73% (Fig. 8). These TS-length relationships correspond to the depth range of the filtered dataset 
(17–143 m) and standard fish length ranging from 2.7 to 4.3 cm.

Figure 5. Vertical migration. Diurnal vertical migration patterns of M. muelleri with mean depth (m) plotted 
against local time of day in hours. The density of points is proportional to the nautical area scattering coefficient 
(sA; m2 nmi−2). Loess smoother represented as solid line.

Figure 6. Averaged in situ dB difference ΔMVBS38 of pearlside. A general decreasing trend was observed with 
increasing frequency. Error bars indicate 95% confidence interval.
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Biomass estimation. The biomass of pearlside in the Bay of Biscay was calculated with single frequency 
data registered at 38 kHz over the four years analysed in this study. It followed a decreasing trend from 2014 to 
2016, but reached maximum numbers in 2017. The minimum and maximum estimates were 70.7 and 161.7 thou-
sand tons in years 2016 and 2017, respectively (Table 3).

Acoustic scattering model. The general behaviour of the backscattering model used was illustrated by 
simulating the TS-length and TS-depth relationships for swimbladder contraction rates 𝛼 = 0 and 𝛼 = −0.67 
(Fig. 9). Regarding the size effect, modelled TS values decreased with decreasing swimbladder size, but the res-
onance frequency increased. The effect of size on the resonance frequency was clearly seen when 𝛼 = −0.67, 
but smaller when 𝛼 = 0 (estimated to be below 50 kHz for all the examined sizes). The effect of depth on the 
resonance frequency was minimal when 𝛼 = 0, but clearly observed when 𝛼 = −0.67. Maximum TS values at res-
onance decreased with depth, having a major effect when 𝛼 = −0.67. Depth variations produced major changes 
on smaller swimbladder sizes.

When 𝛼 was set to 0 (no pressure effect) and the tilt angle was used as a floating parameter, the optimised tilt 
angle was 70° ± 5 (Table 4a). The lowest AIC value was achieved when using a fixed 𝛼 = −0.67 (Boyle’s law effect), 
and the mean tilt angle (θ) that minimised the distance between the modelled and experimental TS values fol-
lowed a normal distribution with a mean of 10° ± 5 (Table 4b). The model simulation that assumed the measured 
θ ± σθ from the RX images (24° ± 7), produced an optimised contraction rate of −0.66 (Table 4c). The highest 
AIC value was obtained when the three variables were treated as floating parameters, and the whole space of 
combinations among parameters was evaluated with the ranges defined above (Table 4d).

The optimal model (𝛼 = −0.67 and θ = 10° ± 5) was plotted for a range of frequencies from 0 to 250 kHz, for 
a mean depth of 84.5 m and mean SL of 3.68 cm (Fig. 10). Additional curves were included using the mean depth 
and length from all the trawls used in this study (in grey). The in situ filtered TS data at the five frequencies of 
study (black points) fit the model curve closely (Fig. 10).

Discussion
This study provides the basic elements necessary to estimate the biomass of an important mesopelagic species, 
Maurolicus muelleri, as well as an estimation of its biomass during the years of study. Although pearlside has its 
mean vertical distribution within the epipelagic zone, it can reach more than 400 m depth during the day. This 
variation in vertical distribution seems to be dependent on water temperature and oxygen availability66. There 
were two sources of information used for these analyses: multifrequency acoustic data associated with pure or 
almost pure monospecific catches of pearlside, and single frequency data allocated to layers homogeneous in spe-
cies and size composition. Acoustic data was subjected to a thorough cleaning and filtering process by removing 
the two main sources of bias that could affect the mean in situ TS values55: a low SNR ratio and the acceptance of 
multiple targets as single target detections. The latter is derived from the suboptimal performance of the single 
target detection algorithm that accepts overlapping echoes, affecting the TS distributions and, therefore, biasing 
the mean TS.

Following a similar procedure as in Boyra et al.67, the performance of several methods was tested as part of a 
preliminary analysis of data: variation of the maximum standard phase deviation52, a multiple-frequency method 
to retain only targets detected by more than one frequency68,69 and a high-density filtering method using an 
empirically-determined density threshold54,70.

Figure 7. Example of the number of targets per sample volume (Tv) against number of fish per acoustic 
reverberation volume (Nv) at 38 kHz. Grey points are the b20 values averaged for every Nv threshold value. Black 
point indicates filtered b20 value at Tv/Nv inflexion point, that corresponds to a 0.075 Nv threshold.
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Figure 8. Predicted and observed TS fitting procedure. The filtered TS dataset (black vertical solid lines) was 
fit with a normalized length distribution (solid curve) to evaluate the mean (dashed vertical line), standard 
deviation (2, 3, 2, 2.5 and 2.5 for 18, 38, 70, 120 and 200 kHz, respectively) and b20 (topright corner of each 
panel) of the best fit, given by coefficient of determination (R2) of observed versus modelled TS distributions. N 
stands for the number of targets that passed the filtering process and were used in the optimization.

Year

<sA> Area
Mean 
weight

Mean 
length

Biomass 
@ 38 kHz CV

(m2nm−2) (nm2) (gr) (cm) (Tn) (%)

2014 309.3 21,073 0.51 3.42 142,242 30

2015 630.79 8,663 0.58 3.96 127,447 35.3

2016 348.96 7,189 0.36 3.44 70,784 68.2

2017 511.30 13,313 0.53 3.68 161,713 35.7

Table 3. Time series of biomass estimation of pearlside in the Bay of Biscay.

Figure 9. Scattering model simulations. Resonance scattering model behavior for simulations of different sizes 
and depths, considering swimbladder contraction rates 𝛼 = 0 (left) and 𝛼 = −0.67 (right). In these theoretical 
simulations, broadside incidence (θ = 0°) was assumed.

Swimbladder 
contraction rate (γ)

Mean tilt 
angle (θ)

SD tilt 
angle (σθ)

Number of optimized 
parameters (*) AIC

(a) −0.66* 24** 7** 1 16

(b) 0 70* 5* 2 15

(c) −0.67 10* 5* 2 8

(d) −0.62* 65* 10* 3 19

Table 4. Performance comparison (AIC, Akaike Information Criteria) of the different backscattering model 
variants tested. Mean depth and fish length averaged from filtered dataset: *optimized parameters in each 
model variant. **values measured from the RX images.
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These methods were evaluated according to their filtering potential and the number of targets that were availa-
ble for the subsequent b20 estimation. From the applied methods, the standard phase deviation did not affect mean 
TS values (varied less than 0.5 dB) and was thus discarded. The multiple frequency and the high-density filtering 
methods provided rather similar results (differing in 2, 0.8, ~3, ~3 and 2.5 dB at 18, 38, 70, 120 and 200 kHz fre-
quencies, respectively). However, since the maximum distance between the spatial coordinates of the detections 
at different frequencies was larger than the typical size of the target species, the multiple frequency method was 
not considered reliable. The authors therefore focussed on the high-density filtering method. Using this method, 
the mean TS value was independent of the horizontal scale used, hence proving robust results. Also, based on 
the methodology applied, the mean TS value obtained was independent from the initial TS value used for the Nv 
determination as this did not affect the location of the inflection point relative to the “x” axis of the plot (Fig. 7).

After the filtering process, there were sufficient target detections to compare the observed TS histogram with 
the size distribution of the insonified fish57 (Fig. 8). Further filtering was not considered necessary since it did not 
vary the mean TS estimate and the remaining targets were insufficient for a subsequent b20 optimisation.

The ΔMVBS38 of pearlside showed a general decreasing trend (Fig. 6), which is in agreement with the presence 
of a resonance frequency below 38 kHz. This fits with the expected response of the observed fish sizes (>2.5 cm, 
Fig. 9). The largest variability in the ΔMVBS38 was observed at 18 kHz, probably due to the higher slope caused by 
the proximity to the resonance frequency. This decreasing trend agreed with previous works on this35 and other 
bladdered species71. The most used frequencies in multifrequency studies are 18, 38, 120 and 200 kHz. However, 
in this study, the 70 kHz was also included.

The present results agree with TS estimates of pearlside from previous studies (Table 5): values ranging from 
−60.4 to −52.5 dB at 38 kHz were reported for a total length of 4.5–5.7 cm at 10–50 m depth72, −70 to −50 dB 
was estimated for 2–4 cm specimens between 10–60 m depth31. Target strength estimates for 2.3 and 3.5 cm spec-
imens at 20–64 m depth varied from −60.3 to −60.8 dB at 38 kHz according to Scoulding et al.35. This is 0.5–1 dB 
higher than our results. In comparison with the reported multifrequency TS estimates of that study, our results 
were inside their range at 18 kHz, but 2–4.5 dB higher at high frequencies. One possible explanation for this dis-
crepancy could be due to the effect of tilt angle on high frequencies33,35. Variable fish behaviours during the TS 
measurements could result in a high variability of tilt angles. However, our results imply a smaller difference than 
studies analysing other similar species32.

The derived TS versus length relationships in this study show consistency with the positive and significant 
correlation found between standard fish length and volume of swimbladder (Fig. 8). This represents a step for-
ward compared to a recent study of the same species35 where a consistent TS-length relationship was not achieved 
because no clear relationships were found between standard length and swimbladder volume.

One of the remaining uncertainties about pearlside is the major effect that changes in depth associated with 
capture may have on swimbladder size. It is commonly assumed that pearlside, being a physoclist species, can 
absorb and secrete gas from the swimbladder to maintain a constant buoyancy while moving through the water 
column24. However, it remains unclear whether pearlside can compensate the swimbladder volume during the 
trawling process. The swimbladder can be overexpanded and even damaged due to decompression73 or mechan-
ical stress. When modelling swimbladder backscattering, some studies used smaller sizes than those measured 
at the surface, compressed according to Boyle’s law13,15,35. However, other studies used swimbladder dimensions 
measured at the surface and therefore considered pearlside as strict physoclists30,33,36,44. Furthermore, it remains 
unknown if pearlsides allow swimbladder gas to expand and compress with changes in depth in undisturbed con-
ditions74. Additionally, gas volume measurements at the surface are problematic due to the differences in pressure 
and temperature conditions between the surface and the depth of capture43. To address this issue, we simulated 

Figure 10. Model vs filtered in situ TS data. Optimal model (𝛼 = −0.67 and θ = 10° ± 5) plotted for frequencies 
from 0 to 250 kHz using mean depth 84.5 m and mean length 3.68 cm (black line). Additional curves show the 
model behavior using depths and standard lengths associated to the trawls used in the study (grey lines). Black 
dots are the in situ filtered TS values with error bars showing the standard deviation from the mean values.
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swimbladder backscattering response under different ranges of fish length, depth, tilt angle and swimbladder 
contraction rates. We then compared the simulated TS values to the experimental ones. The best model fit was 
achieved when a free ellipsoid was simulated (i.e. no volume compensation) with an incidence angle of 10° ± 5 
(Table 4b). These results support the hypothesis that fish in the process of dying cannot compensate for the rapid 
pressure changes derived from capture. Therefore, the swimbladder volume seems to obey Boyle’s law13,15,35. Even 
if the physiological mechanisms lying behind these results may be more complex, it can now be assumed that the 
acoustic backscatter of captured pearlside must be modelled under a constant-mass assumption. Therefore, our 
modelling results support the hypothesis that the equivalent radius of the swimbladder at the mean depth of the 
trawls (84.5 m) would be 47% smaller than that measured at the surface (Table 2), which implies a 90% reduction 
of swimbladder volume.

This study shows significant positive correlations between the length of pearlside and three of the studied 
morphological parameters (swimbladder length, volume and equivalent sphere radius) (Fig. 4). The swimbladder 
volume relationship with fish length was already assessed in a previous study35, although no clear relationship 
was reported. The positive correlation between aspect ratio and fish length suggested that the swimbladder tends 
to be more elongated for smaller individuals. On a study focussed on similar species (M. japonicus)33, positive 
correlations were described for swimbladder length and equivalent radius with fish length. However, no correla-
tion between the aspect ratio and fish length was reported. The swimbladder mean tilt angle measured from the 
X-ray images (24° ± 7) fit within the range of values published for similar33 and same species35, being 0–24.8° and 
0–55°, respectively.

The optimisation of the model parameters produced a mean tilt angle of 10° ± 5. Therefore, one might con-
clude that the mean orientation of fish that best explains our data is −14° (±9°) (obtained from subtracting the 
tilt angle of the swimbladder from the modelled optimal tilt angle). This would suggest that fish from the hauls 
used in this study were predominantly exhibiting a downwards swimming behaviour. However, mesopelagic 
species and in particular pearlside, can adopt a wide range of orientation angles along the diel cycle performing 
DVM13,75,76. This behaviour has been described as response to diverse hypothesised adaptive values76 includ-
ing predator avoidance77,78, optimal temperatures79 and improving feeding conditions80. Other factors that may 
induce variations of the tilt angle are time of day and time of year of data collection70, swimming behaviour41, 
schooling density39,81 and dispersion or position65 in the water column. This suggests that the variability of data 
belonging to different trawls, as done in this study, might be greater than reflected here. However, even if the effect 
that this variability has on the modelled TS increases with frequency and size, it is minimal at lower frequen-
cies33,35. This implies a minimal effect on the frequency typically used for biomass estimation (38 kHz).

Mesopelagic fish are known to avoid or escape from fishing trawls18,19,22,82 which might bias the length dis-
tribution of the population83–85. In this study, the result of the mesh size experiment proved that the fishing gear 
used was able to sample size ranges found in our area of study (1.5–6.5 cm). However, it is recommended to test 
the capture efficiency of each sampling area before performing studies on mesopelagic fish and, if significant dif-
ferences are found, minimise the associated bias by applying a capture efficiency correction factor85.

Absolute abundance estimates are very sensitive to the TS value and are therefore a major source of uncer-
tainty for such estimations24. Several aspects need to be considered in order to evaluate the most suitable fre-
quency for estimating abundance. First, the effect of resonance is a major problem affecting the lower frequencies 
(below 38 kHz) because small variations in size and depth lead to great differences in the TS values. Second, the 
low depth of penetration of the higher frequencies limits the maximum depth of study for biomass estimation. 
Finally, the acoustic contribution from other scatterers may have major effects at frequencies above 70 kHz. The 
use of the 120 kHz frequency has been recommended33 as it seems to be free from the resonance effect. The effect 
that slight changes in size and depth have on TS are less noticeable other than near or at the resonance frequency. 
This is valid even if it is subject to tilt angle variation. However, using frequencies ≥ 120 kHz is inappropriate43, 
especially for mesopelagic species, due to the noise derived from the low penetration depth associated with higher 
frequencies. In agreement with previous studies, the choice of the 38 kHz over 18 and 70 kHz is a compromise 
between reducing the effect of resonance, maximising depth of penetration and minimising the acoustic contri-
bution from zooplankton43.

Reference Specie
Depth 
(m)

Length 
(cm)

TS (dB)

18 kHz 38 kHz 70 kHz 120 kHz 200 kHz

This study M. muelleri 17–137 2.7–4.3 −56.9 −59.8 −59.9 −60 −62

Scoulding et al. (2015) M. muelleri 20–64 3.5 −53.6 −60.8 — −62.9 −66.4

Scoulding et al. (2015) M. muelleri 20–64 2.3 −57.1 −60.3 — −62 −65

Benoit-Bird and Au (2001) Myctophids 0–200 3.7–6.1 — — — — −58.8

Sawada et al. (2011) D. Theta 150 5.4–5.5 — — −55.8 — —

Torgersen and Kaartvedt (2001) M. muelleri 10–60 2–4 — −70 to 
−50 — — —

Yoon et al. (1999) M. Muelleri 10–30 4.5–5.7 — −60.4 to 
−52.7 — — —

Yoon et al. (1999) M. muelleri 30–50 4.5–5.7 — −59.2 to 
−52.5 — — —

Table 5. Summary table with relevant TS estimates published in the last 20 years.
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conclusions
In this work, we present acoustic measurements and dedicated pelagic trawls suitable to estimate biomass of 
pearlside. Vertical and horizontal distribution of pearlside as well as the daily migration patterns were obtained 
based on the acoustic measurements. We obtained measured TS and frequency-dependent dB differences at five 
different frequencies, including at 70 kHz, not published before for this species. The obtained results show a gen-
eral decreasing response with frequency, consistent with a resonance below 38 kHz. In addition, we present for the 
first time TS-length relationships (b20) (−65.9 ± 2, −69.2 ± 3, −69.2 ± 2, −69.5 ± 2.5 and −71.5 ± 2.5 dB at 18, 
38, 70, 120 and 200 kHz, respectively). An extensive set of morphological measures was obtained describing the 
general shape patterns of the swimbladder of this species for a wide range of fish lengths. A positive correlation 
was found between swimbladder size and body length, in agreement with the increasing TS-length relation-
ship observed. The best agreement was obtained using a model that allowed full contraction of the swimbladder 
according to Boyle’s law, thus showing that, during the trawls, pearlside does not compensate swimbladder vol-
ume. Consequently, the actual equivalent sphere radius of pearlside at depth should be about 50% smaller than 
observed at the surface for the range of depths found in this study. The set of results reported in this study are 
essential for future pearlside biomass estimations and theoretical simulations, and key to evaluating the impact of 
their exploitation and establishing the necessary management measures.

Data availability
Datasets generated and/or analysed during this study are available from the corresponding author upon 
reasonable request.
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