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Ontogenesis is the development of an organism from its earliest stage to maturity, including homeostasis
maintenance throughout adulthood despite environmental perturbations. Almost all cells of a multicel-
lular organism share the same genomic information. Nevertheless, phenotypic diversity and complex
supra-cellular architectures emerge at every level, starting from tissues and organs. This is possible
thanks to a robust and dynamic interplay of regulative mechanisms.
To study ontogenesis, it is necessary to consider different levels of regulation, both genetic and epige-

netic. Each cell undergoes a specific path across a landscape of possible regulative states affecting both its
structure and its functions during development. This paper proposes using the Nets-Within-Nets formal-
ism, which combines Petri Nets’ simplicity with the capability to represent and simulate the interplay
between different layers of regulation connected by non-trivial and context-dependent hierarchical rela-
tions.
In particular, this work introduces a modeling strategy based on Nets-Within-Nets that can model sev-

eral critical processes involved in ontogenesis. Moreover, it presents a case study focusing on the first
phase of Vulval Precursor Cells specification in C.Elegans. The case study shows that the proposed model
can simulate the emergent morphogenetic pattern corresponding to the observed developmental out-
come of that phase, in both the physiological case and different mutations. The model presented in the
results section is available online at https://github.com/sysbio-polito/NWN_CElegans_VPC_model/
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Ontogenesis is one of the key concepts at the base of develop-
mental biology [68], defined as ‘‘[. . .] the development of a single
individual, or a system within the individual, from the fertilized egg
to maturation and death” [62]. Ontogenetic processes comprise
complex and intertwined mechanisms at different levels, from
the embryonic development of the organism as a whole to the dif-
ferentiation of single cells.

When modeling ontogenesis, a particularly challenging task is
to predict the outcome of a developmental process, simulating
the formation of emergent morphological and phenotypic patterns
from local inter-cellular interactions. A model serving this purpose
must describe the cellular organization in space and the consecu-
tive temporal stages characterizing the process. Each stage corre-
sponds to a different conformation and regulative set-up
involving multiple interacting cells. Since the regulatory states of
these cells depend on their neighbors’ relations, such conforma-
tions dictate the communication schemes they engage in [31]. This
complexity contributes to creating a multi-dimensional and
dynamic landscape of inter-dependent regulative states in which
cells can fall into [53,33]. Moreover, one has to consider that phys-
iology and phenotype not only emerge from the system’s subparts.
The subparts themselves self-reproduce, determining internal and
system-level regulative and structural changes.

To holistically consider the dynamic properties of this hierarchi-
cal regulative environment, a computational model must explicitly
account for their evolution in space and time. Moreover, it must
quantitatively simulate the underlying non-linear regulatory
dynamics across different system levels. This requirement imposes
the need to model the hierarchical organization of the system.
Eventually, biological systems are intrinsically stochastic, i.e., mod-
eling of their complexity must include stochastic behaviors.

Several modeling approaches for Systems Biology based on dif-
ferent formalisms exist, and each of them has strengths that better
fit specific aspects of the target problem [7,24].
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Mathematical models have been among the first proposed to
represent continuous biological quantities in chemical reactions
at the metabolic level and still prevail in Systems Biology
[19,36,27].

This is particularly true for the sub-molecular scale, which relies
on natural laws and is typically modeled based on Ordinary Differ-
ential Equations (ODEs), and is true also for the level beyond mole-
cules, for example, when focusing on concentration of molecules.
In the latter case, a continuous description by ODEs naturally
supports a macro-view on the system of interest. The focus is on
concentrations and their changes over time. ODEs are suitable for
dynamics that occur continuously, evolve in a deterministic man-
ner, progress at a similar speed, and can be easily described by
real-valued variables. Extensions can relax these constraints, for
example, by introducing delays, stochasticity, or discreteness. All
in all, continuous formalisms are suitable to describe the concen-
tration dynamics of homogeneous cellular compartments that
involve large numbers of cells [22].

Considering the complexity, biological and biochemical systems
are usually non-linear, and ODEs describing these systems are
often challenging to solve. Nevertheless, they can be approximated
by introducing increasingly efficient numerical analysis integrators
that enable handling large systems. Also, parameter estimation in
the case of a large network with several parameters may have a
high computational cost, and the model’s prediction accuracy
may decrease [35].

Stochastic discrete event modeling and simulation, where you
can control the granularity of observation (instead of setting the
degree of accuracy/error of the calculation), is gaining importance
as an alternative modeling approach in Systems Biology. The dis-
crete event view describes the dynamics of a system by distin-
guishing state changes, i.e., events triggered by the flow of time
or the situation [76].

Several biological processes are inherently discrete and qualita-
tive, and many examples could be given [23]. Concentrations do
not necessarily change continuously, particularly if the dynamics
of a small number of entities, like DNA molecules and plasmids,
are modeled [42]. Several interactions (e.g., biological signaling,
omics regulation, etc.) can be described by discrete stochastic
information related to the involved entities (e.g., molecules, cells)
[57]. Also, higher-level phenomena of interest for the description
of ontogenetic mechanisms (e.g., cell fate determination) are better
described by qualitative information.

Several approaches to modeling and simulation of biological
systems often focus on modeling intracellular mechanisms and
thus fail to adequately capture supra-cellular spatial elements, lim-
iting their capability to analyze patterns emerging from local inter-
actions between biological entities [7,6]. Comprising both
intracellular and supra-cellular information can broaden the scope
of representations. Yet, it poses the challenge of combining hetero-
geneous information frommultiple system levels in a single model.
One of the approaches for handling model heterogeneity is the
composition of existing models into a more extensive scope [7].
However, this approach raises consistency issues [61] and intro-
duces additional requirements to create multi-level and hybrid
models [4].

This paper introduces a computational modeling methodology
based on Nets-Within-Nets (NWN), a formalism based on Petri
Nets (PN). NWN rely on a single formalism to cover all require-
ments posed by the modeling of complex ontogenetic processes.
The paper does not aim at introducing a new formal extension of
the NWN formalisms. NWN are instead used as a powerful instru-
ment to propose a methodology to model complex dynamics,
stochastic processes, hierarchical organizations, and spatial struc-
tures in biology. NWN support composition and integration pro-
cesses typical of hybrid models, supporting the integration of
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heterogeneous sources of knowledge. In other words, NWN lever-
age the strengths of modeling paradigms from various existing
computational tools and methods, with the advantage of maintain-
ing uniformity in formalism usage. This paper explicitly refers to
the NWN implementation provided by Renew, an extensible editor
and simulation engine for Petri nets [41,11,70]. The main advan-
tage of this framework is to add the full power of an object-
oriented language (i.e., Java) to the NWN formalism, thus allowing
the description of more complex functionalities.

After introducing the NWN formalism, its relations to other PN-
based formalisms, and our usage of its capabilities for modeling
ontogenetic processes, this paper provides a working example of
the proposed approach. This example models a well-
characterized and straightforward ontogenetic process: the Vulval
Precursor Cells (VPC) specification process in C. Elegans. Eventually,
the paper provides an appendix proposing a library of NWN mod-
eling basic biological processes that interested readers can use as a
starting point to build models of different ontogenetic processes.
2. Background

The goal of this section is not to provide a complete and formal
review of the PN theory. Interested readers may refer to [59] for a
detailed introduction on this topic. This section provides an over-
view of PN applications in the biological domain and, most impor-
tantly, introduces the basic characteristics of the NWN formalism
exploited to model ontogenetic processes in the following parts
of the paper.
2.1. Petri Nets definition

Petri Nets (PN) are discrete event system models first intro-
duced in the early 1960s by Carl Adam Petri in his Ph.D. disserta-
tion [56]. PN combine a well-defined mathematical theory with a
graphical representation of the dynamic behavior of the systems.
This combination is among one of the main reasons for the great
success of PN, which have been used to model various kinds of
dynamic event-driven systems, including biological systems [12].

A PN is a directed bipartite graph having two types of nodes:
places representing states or conditions and transitions represent-
ing events that may produce, consume or take resources from
one state to another. Directed arcs can only link places to transi-
tions or transitions to places. Places can contain a discrete number
of tokens, each one representing a resource unit. The marking of a
PN is the token configuration in its places. It can dynamically
change when transitions fire. Formally, a PN is a 4-tuple
N ¼ ðP; T;W;M0Þ, where:

1. P ¼ fp1; p2; . . . ; pmg is a finite set of places;
2. T ¼ ft1; t2; . . . ; tng is a finite set of transitions, P [ T –£, and

P \ T ¼ £;
3. W : ðS� TÞ [ ðT � SÞ ! N assigns to each arc a non-negative

integer arc multiplicity (or weight); note that no arc may con-
nect two places or two transitions;

4. M0 : P ! N is the initial marking, i.e., the initial configuration of
tokens. Together with the network architecture, it defines the
PN model.

Fig. 1 shows an example of the graphical formalism used to rep-
resent a simple PN. Specific symbols are assigned to represent
places, transitions, arcs, and tokens. Transitions can move tokens
from their input to their output places. Firing a transition con-
sumes Wðpi; tÞ tokens from each input place pi and produces
Wðt; pjÞ tokens in each of its output places pj. When not indicated,
the weight of an arc is equal to 1. A transition t is enabled (it may



Fig. 1. Graphical representation of a simple Petri Net. The basic elements that
compose a Petri Net are places, transitions, arcs and tokens. Transitions are able to
move tokens from their input to their output places.
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fire) in a marking M if there are enough tokens in its input places
for the consumptions to be possible, i.e., if and only if
8p : MðpÞ P Wðp; tÞ.

Starting from this basic definition, also referred to as low-level
PN, several PN variants have been defined. Some of them found
application in supporting biological systems modeling to different
extents.
2.2. Petri Nets in biological applications

Simple biological mechanisms such as isolated biochemical
reactions require a quantitative representation of kinetic parame-
ters and stoichiometric relations between the involved molecular
species. In a low-level PN, places can represent species (substrates
and products), while transitions can model reactions. Tokens can
express in a discrete way relative quantities of molecules.

Moving from a single reaction to groups of biochemical reac-
tions (e.g., metabolic and gene regulation networks) introduces
further requirements such as more complex architectures and con-
currency [39]. Low-level PN can still support this complexity. In a
metabolic network, places can model molecular species and states,
while transitions can model enzymatic reactions. Tokens represent
discrete quantities of molecules, while the architecture of the net-
work represents how resources flow within a network of compet-
itive or sequential reactions. Similarly, in a regulation network,
places can refer to genes and gene products. Transitions can cover
transcription, translation, and regulation processes. At the same
time, tokens can model elements from the relevant omic pools
(e.g., genes, transcripts, proteins) and the regulatory conditions in
which each of them can fall.

The phenomena considered so far refer to a single system level
(i.e., intracellular mechanisms) and consider a limited temporal
scale. Expressing different time scales provides greater expressiv-
ity which is often required, for example, to model differential tran-
scriptional rates. To handle different timescales, timed PN [64]
introduce a time delay associated with the activation of each tran-
sition. Once a transition is enabled, deterministic time delays can
occur, ordering the different activation events during the net evo-
lution. The introduction of time delays increases time resolution
when including diverse yet intertwined mechanisms in a model.

Stochastic PN [45] extend Timed PN with the use of probabilis-
tic time delays. They can model the stochasticity of a biological
system (e.g., gene expression level random fluctuations [29]). The
delays become random variables that can depend on the current
marking of the net [67].
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Time continuous PN have also been proposed in the literature
[17]. They can be a valuable tool to model selected biological pro-
cesses that are not discrete in nature. While these PN can poten-
tially be employed in the methodology presented in this paper,
they have not been exploited since not supported by the selected
simulation framework.

In general, low-level PN do not scale with system complexity.
The lack of scalability limits their use to the modeling of small sys-
tems. High-level Petri Nets can increase the model’s expressivity,
including different system levels and dimensional scales to provide
a more systemic view of the biological complexity. High-level PN
extend the low-level formalism, supporting multi-level and nested
models that properly handle information diversity and complexity
[44].

Colored PN (CPN) [34] are the simplest class of high-level PN.
They are important since they allow to associate tokens with arbi-
trarily complex data structures defined as colors encoding complex
information. Moreover, in CPN, each place and transition can be
designed to accept a limited number of colors. In this way, it is pos-
sible to separate the identity of resources from their location, mod-
eling the same condition for different categories of resources [50].
CPN lead to non-redundant and more compact representations of
the system. This compact representation improves readability
and averts modeling errors while preserving the modeling capabil-
ities of low-level PN, which can be generated from CPN models by
automatic unfolding [43,44].

Models considered so far flatten information from different sys-
tem levels into a single one. To represent a multi-level system
structure, hierarchical PN organize system parts and sub-parts in
nested net architectures with explicit hierarchical relations. The
nested architecture allows for arbitrarily high resolution when
describing mechanisms from different system levels [48]. Never-
theless, like CPN, hierarchical PN stick to a static paradigm: token
colors are static data structures, and nets have a fixed model archi-
tecture. Resources can change state only by moving from place to
place, i.e., changing their position in the net, preserving the infor-
mation they carry with them unaltered. Also, mobility is devised
for tokens, i.e., for resources, but not for other model elements.

Complex biological processes such as ontogenesis challenge the
limitations of most high-level PN. Ontogenesis comprises architec-
tural and functional system changes across different phases of the
same process. These changes include the movement and genera-
tion of new parts and decision-making processes based on previous
process stages. For example, an embryonic development process
can be considered at different system levels, from the organismal
structural rearrangements to local molecular and cellular interac-
tions from which morphological and functional patterns emerge
at each developmental stage.

The NWN formalism is an extension of PN in which tokens
themselves have the structure of a PN. Tokens specified in this
way (net-tokens) evolve dynamically, just like the net holding
them (system-net). This hierarchical organization can be reiterated
in a boundless way, allowing for open recursion in specifying the
system’s hierarchical organization [10]. The idea of tokens being
PN goes back to R. Valk [71], and NWN approaches are extensively
studied in the PN literature [40,46,63,10]. The Nets-Within-Nets
(NWN) formalism supports all capabilities of other high-level PN
and can face the additional modeling requirements posed by onto-
genetic processes [5,3] as will be explained in the next sections.
Among the different flavors of the NWN formalisms, this paper
adopts the one provided by the Renew simulator [41,11,70]. One
of the main motivations behind this choice is that it provides a
robust framework that allows extending the NWN formalism with
the full power of the Java object-oriented programming language
(i.e., Java), thus allowing the implementation of more complex
functionalities.
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2.3. An introduction to the Nets-Within-Nets formalism

The NWN formalism introduces the possibility to specify tokens
in terms of PN models. Such tokens are called net-tokens, or object
nets, while the net holding them takes the name of system-net. This
schema can grow recursively to an arbitrarily large number of
levels: net-tokens from a level may function as system-nets for
net-tokens at a lower one.

Fig. 2 shows a simple NWN model used to introduce the basic
modeling elements exploited in this paper. The figure uses the
NWN notation offered by Renew, the simulation environment
this work relies on. This notation is used consistently throughout
the paper. The proposed system is composed of a system-net
(SN) in which four types of tokens coexist. As in low-level PN,
the simplest category of tokens is black tokens, denoted as []
in place pSN

1 . The consumption or creation of tokens by a transi-
tion is denoted by inscriptions on its arcs, listing the involved
tokens separated by semicolons. Black tokens do not bring speci-
fic associated information other than the presence of a unit of a
generic resource. Whenever more specific information is
required (e.g., a string or an integer value), colored tokens can
be used, as shown in place pSN

6 . NT1 and NT2 define the architec-
ture of two net-tokens. The inscription N1: new NT1 in transi-
tion tSN1 denotes that a new instance N1 of the net NT1 is
created, and a reference to this object is then located in place
pSN
2 . Following the object-oriented paradigm, a reference to the

same instance of a net-token can be instantiated in different
places. Therefore a net-token can exist at the same time in dif-
ferent places or even in different nets. In Fig. 2, the transition
tSN4 creates two references to the same instance of the same
net-token N2 in places pSN

4 and pSN
5 . Finally, the bidirectional

arc connecting pSN
3 with tSN4 denotes that token N1 is used to fire

the transition and then moved back to its original place.
This short overview shows how NWN can express a range of

possible scenarios. The following section presents the way these
capabilities respond to the modeling requirements posed by com-
plex ontogenetic processes.
Fig. 2. Simple example of the NWN formalism usage. The example represents a system-n
as in low-level PN, (ii) colored tokens as in Colored PN, and (iii) net-tokens that are com
enable communication between different hierarchical levels of the NWN. Interested rea
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3. NWN applied to ontogenesis modeling

This section applies the NWN object-oriented paradigm to the
problem of modeling ontogenetic processes. It focuses on describ-
ing the most relevant and complex biological semantics involved in
every ontogenetic process as depicted in Fig. 3. After presenting
these mechanisms, Appendix A proposes an extensive set of bio-
logical processes modeled using NWN. These models represent a
library of basic building blocks that can build complex models of
generic ontogenetic processes.

In our approach, the net-tokens represent differentiating bio-
logical cells described through their internal regulative networks.
The system-net instead represents the landscape of external fac-
tors that affect the cells’ functioning. The system-net includes the
microenvironment (e.g., environmental factors, spatial organiza-
tion, and relative cell positions) and the relevant developmental
phases. The presentation of the proposed modeling strategy resorts
to a simple abstract example, depicted in Fig. 4. The target biolog-
ical system is composed of a Petri dish divided into four subspaces
(A) where two cells of the same type and able to exchange and
react to signals (B) coexist. In the first stage of the process (STAGE
1), cell NT1 moves in a subspace closer to cell NT2 (C), and the two
cells start exchanging biological signals mediated by mutual acti-
vation of signaling mechanisms (D). As a result of this interaction,
the process enters a new stage (STAGE 2) where the cells (E)
change their state (F).

Fig. 5 shows a simple NWN modeling the mechanisms pre-
sented in Fig. 4. NT1 and NT2 model the two cells as instances of
the net-token (NT). The system-net (SN) models the spatial organi-
zation of the Petri dish and the process organization in the two
considered stages.
3.1. Spatiality and mobility

NWN models can explicitly represent spatiality, using places to
represent actual locations that various actors occupy. For example,
in Fig. 5, places pSN

01 ;p
SN
02 , and pSN

03 represent the three subspaces of
et (SN) holding the three categories of tokens available in an NWN: (i) black tokens
plex tokens represented again using the PN formalism. Communication channels

ders can refer to [70] for a complete and detailed description of the formalism.



Fig. 3. NWN modeling capabilities. NWN models express (A) multiple hierarchical levels through the concept of net-tokens instantiated into a system-net; (B) encapsulation
of model parts and selective communication between them through the use of communication channels between different nets; (C) coexistent and intertwined regulatory
layers with different annotations thanks to the possibility for a net-token to be referenced in several system-nets.

Fig. 4. A simple abstract example of an ontogenetic process. The system involves (A) the movement of a cell (NT1) between different subspaces of a Petri dish, considered in
reason of (B) the signals it exchanges when in contact with other cells, the regulative set-up it acquires after exchanging signals, and the following changes in cell state. (C)
The interactions between cells in spatial proximity, which are mediated by (D) mutual activation of signaling mechanisms, lead to (E) a change in the cells state depicted here
with a change of color of the cell (F) that moves them to the second stage of the ontogenetic process (STAGE 2).
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the Petri dish in which cells (net-tokens) can live during stage 1 of
the ontogenetic process. Similarly, pSN

04 and pSN
05 are the two loca-

tions of interest during stage 2.
Interactions between the actors existing at different positions

can model proximity-enabled communication between neighbor
cells involving communication channels. For example, transitions
tSN02 and tSN06 express proximity between pSN

02 and pSN
03 , and pSN

04 and
pSN
05 , respectively. When these transitions fire, they involve the

net-tokens from the connected places, creating mutual interac-
5705
tions. This mechanism can represent juxtacrine interactions
between neighbor cells in a biological context, which occur only
when the cells are in close spatial proximity.

The movement of net-tokens across system-net places having
spatial semantics models mobility of biological entities. For exam-
ple, in Fig. 5, transition tSN01 can move net-token NT1 from the place
pSN
01 , representing a position in space, to the place pSN

02 , representing
a different position. In a biological system, this corresponds to a
cell’s movement from a location to another. In general, biological



Fig. 5. A simple NWN modeling the biological process presented in Fig. 4. The system-net (SN) uses places to represent locations that various actors occupy. Places pSN
01 ;p

SN
02 ,

and pSN
03 represent the three subspaces of the Petri dish in which cells represented by instances of the net-token NT can live during stage 1 of the ontogenetic process.

Similarly, pSN
04 and pSN

05 are the two locations of interest during stage 2. The movement of cells from one location to another one is modeled using transitions. Interactions
between cells existing at different positions are modeled using communication channels. Finally, the net-token represents the internal behavior of the. involved cells.
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actors, including cells, are capable of active movement. Develop-
mental processes often comprise cell migration phases across dif-
ferent microenvironments.

Net-tokens that move from one system place to another one
change the set of interactions they can engage. When involving
places with a spatial connotation, this mechanism models the reg-
ulatory action of the spatial context for biological entities. The shift
from a biological microenvironment to another corresponds to a
regulatory change since it comes with potential engagement in
interactions with different actors.

3.2. Semi-permeability of biological compartments

The object-oriented paradigm implemented by the NWN for-
malism is powerful to express encapsulation and selective communi-
cation mechanisms. These features, coupled with the ability to
handle spatial information, make it easy to describe compartmen-
talization and semi-permeability of membranes between biological
compartments.

In our modeling approach, the net-tokens describe the inner
functioning of cells intended as biological compartments. For
example, net-tokens NT1 and NT2 in the system-net of Fig. 5 are
two instances of the same net class, depicted in Fig. 5-A. The
system-net can interact with the net-tokens dynamics of both
instances through the synchronous channels ch1 (transition tSN02
and tSN06 in Fig. 5) and ch2 (transitions tSN04 and tSN05 in Fig. 5). Biological
compartments are semi-permeable: communication mechanisms
between the net-tokens and the system-net represent the selective
permeabilities of biological membranes, including the mechanisms
regulating them.

3.3. Inter-cellular communication

In developing multicellular organisms, each cell behaves inde-
pendently from the others yet can exchange signals and resources.
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These interactions create the complex and highly dynamic regula-
tive landscape in which cells live and move.

Paracrine and juxtacrine signaling depicted in Fig. 6 are among
the most relevant intercellular communication mechanisms
underlying ontogenetic processes. In biology, paracrine signaling
is a form of cell signaling in which a cell produces a signal and
sends it to the extracellular environment, affecting nearby cells.
Juxtacrine signaling (or contact-dependent signaling) is instead a
type of cell signaling that requires close contact.

The two communication mechanisms can be modeled
according to the NWN reported in Fig. 7. In paracrine signaling
(Fig. 7-A) a cell (NT1 in pSN1

01 ) uses channel ch1 to send a signal
represented by a black token in the extracellular environment
(pSN1

02 ). The extracellular environment here represented for simplic-
ity as a single place can be also modeled with multiple places,
based on the spatial organization of the cells. Another cell NT2 of
a different type and in spatial proximity (pSN1

03 ) receives the signal
using channel ch2. In juxtacrine signaling (Fig. 7-B), two adjacent
cells (NT3 and NT4 in pSN2

01 and pSN2
02 , respectively) engage in direct

communication through channels ch1 and ch2.
These two network motifs are particularly relevant for

modeling ontogenetic processes when combined with spatial
information. During development, architectural complexity at the
supra-cellular level emerges from local interactions between cells,
which are often influenced by different distance ranges [51, 52].

For example, sender cells engage in long-range interactions in
paracrine communication, diffusing soluble signal molecules in
the extracellular environment, targeting receiver cells. The signal
starts with a higher concentration close to its source, and the con-
centration decreases with distance according to diffusion laws
specific to the target molecule. Since the reaction to a signal is
often dose-dependent, this mechanism translates into a distance-
dependent effect over target cells.

In unilateral juxtacrine communication, sender cells communi-
cate with receiver cells in their very proximity through their trans-



Fig. 6. Paracrine and juxtacrine signaling. (A) Paracrine signaling between two cells exchanging a signal through the extracellular environment. (B) The regulative state of cell
NT1 causes the cell to secrete a signal in the extracellular environment; cell NT2 receives the signal, which affects its regulative set-up. (C) Juxtacrine signaling between two
cells exchanging signals through the intercellular space. (D) The regulative state of cell NT3 causes the cell to secrete a signal, which directly affects the regulative set-up of
cell NT4.

Fig. 7. NWN representation of the two signaling mechanisms relevant for modeling ontogenetic processes: (A) In paracrine signaling, the cell NT1 uses channel ch1 to send a
signal (black token) to the extracellular environment modeled as a place in the system-net (pSN1

02 ). Cell NT2 that is in spatial proximity receives the signal using channel ch2. (B)
In Juxtacrine signaling, the two adjacent cells (NT3 and NT4) engage in direct communication through channels ch1 and ch2.
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membrane signal and receptor proteins, respectively. The cells
involved in bilateral juxtacrine communication act through the
same mechanisms, but each of them acts both as a sender and a
receiver. Finally, in autocrine signaling, the cell sends out a signal
intended to be self-received, acting both as a sender and as a
receiver.
3.4. Dynamic hierarchy

The ability of recursively instantiating net-tokens within
another net expresses the hierarchical and dynamic regulatory
structures of biological systems (Fig. 3.A). Let us consider the
two-level model architecture of Fig. 5:
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� the system-net at the top-level describes the spatial organiza-
tion and regulative landscape for two cells in two different pro-
cess phases;

� the net-tokens existing as instances within the system-net rep-
resent cells living in such landscape.

One important aspect to highlight is that the hierarchy is not
static but instead dynamically defined. At first, net-token instances
are created in pSN

01 and pSN
03 , respectively. Instantiation per se does

not carry any biological meaning, but the resulting marking reflects
the system’s initial hierarchical organization. The system-net then
evolves, and net-tokens can be created or destroyed, simulating the
considered biological process, and modifying the system’s hierar-
chical architecture.
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Moreover, NWN support the flexible specification of different
abstraction layers (Fig. 3-C). The same instance of a net-token
can live into multiple higher-level nets, each one describing a dif-
ferent aspect of the considered process. This is an important char-
acteristic that poses the basis for multi-level and multi-scale
modeling.

Eventually, the cross-layer communication mechanisms pre-
sented in the previous sections provide a high degree of flexibility
when deciding case by case which layer is in control of the evolu-
tion of a specific mechanism.

3.5. Process stages

Ontogenetic processes have sequential stages, with checkpoints
involving regulatory states and sets of biological actors governing
the passage from a stage to the next. Looking at Fig. 5, most of
the dynamics considered so far belong to the first of the two stages
of the considered process. Transitions tSN04 and tSN05 can transport net-
tokens NT1 and NT2 to pSN

04 and pSN
05 , respectively. In this case, the

transport represents the passage to a new regulatory setup. To
occur, this passage needs some requirements at the net-token level
to be satisfied. Both tSN04 and tSN05 carry a down-link for the syn-
chronous channel ch2. The up-link of this channel is in transition
tNT03 of the net-tokens. The channel creates an interplay between
the two layers. To move a net token from pSN

02 to pSN
04 and therefore

advance to the next process stage, it is not enough to have a net-
token in a specific location of the system-net. The net-token must
also satisfy an internal condition, i.e., one token must be present in
pNT
02 . This condition represents the checkpoint for this developmen-

tal stage that models the gatekeeper mechanisms organizing onto-
genetic processes into subsequent phases, i.e., some phenotypic
traits need to be expressed by the cells for them to access the next
stage. The ways each checkpoint evaluates net-tokens evolution
and state can range from a simple read of a static value in the
net to dynamic tracking to extract complex information about cell
phenotype. The checkpoint may then include robust decision-
making tools that implement classification routines that handle
complex information and dynamically label complex net-token
behaviors.

3.6. Dynamic regulatory landscape

The organization in different process stages also contributes to
the definition of a dynamic regulatory landscape. If places pSN

04 and
pSN
05 represent the counterpart of pSN

02 and pSN
03 in a new developmen-

tal stage, the movement of a cell (net-token) from one stage to
another one changes the interaction schema that engages the cell.
This modeling approach covers both intracellular (net-token) and
supra-cellular (system-net) regulations, the latter intended as
any regulation existing on top of intracellular regulation, including
environmental and epigenetic context. Also, it allows expressing a
priority scheme among such regulation layers and how that may
change in different stages of the same process. This modeling
approach allows representing a complex regulative landscape.
Each point corresponds to a particular set of interactions that
may take place in a specific process phase and context, and each
cell can undergo multiple paths across it, passing through different
process stages.
4. Results and discussion

In this section, we apply our modeling approach to a well-
characterized developmental process: the Vulval Precursor Cells
(VPC) specification in the development of C. Elegans larva. This
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aims to show the proposed modeling strategy at work, providing
an overview of its capabilities. Differently from other models of
the same process available in the literature (e.g., [9]), the proposed
model includes different hierarchical levels, explicitly combines
spatial information with cell differentiation and cell interaction,
taking advantage of the proposed NWN modeling methodology.
4.1. Biological process

Vulval Precursor Cells (VPC) specification in C. Elegans is an
ontogenetic process involving a small number of cells but still
including all characteristics of more complex processes (Fig. 8).
Also, it is one of the most widely characterized processes of this
kind at the intracellular level.

As extensively described in [69,65], VPC specification occurs
between the L3 and L4 stages of larval development in C. Elegans.
At this stage, each of six multi-potent stem cells, the Pn.p cells,
acquire one of three fates (1�, 2� or 3� fate), which guide the subse-
quent phases of organ development. Different actors contribute to
fate decisions: the Anchor Cell (AC), residing in the adjacent devel-
oping uterus district, the underlying hypodermal syncytium, and
the neighbor Pn.p cells.

More specifically, as in Fig. 8, in the physiological case, the AC
sends out a LIN-3 (EGF-like) signal reaching Pn.p cells with
distance-dependent intensity: the closest cell, P6.p, receives jux-
tacrine signaling, its neighbors P5.p, and P7.p cells receive para-
crine signaling. The signal does not reach P3.p, P4.p, and P8.p,
the farthest cells. The hypodermal syncytium (hyp7) sends uni-
formly low-intensity paracrine LIN-3 signals to all Pn.p cells. The
Pn.p cells can engage in mutual juxtacrine lateral signaling via
trans-membrane DSL/LIN-12 (DSL/Notch-like) signaling. At the
intracellular level, intense LIN-3 signaling induces the1� fate in
P6.p via the activation of a LET-23-mediated RAS/MAPK signaling
pathway. This condition is marked by high concentrations of the
active form of MPK-1, which activates strong DSL lateral signaling
to the neighbors. This activation causes them to switch off the 1�

fate traits induced by LIN-3 paracrine signals from the AC, activat-
ing 2� fate traits, corresponding to high concentrations of the active
LIN-12 protein. P3.p, P4.p, and P8.p cells do not receive any LIN-3
other than that from hyp7, this causing them to undergo the 3�

fate.
Different non-physiological cases for VPC specification exist due

to various mechanisms, including genetic mutations.
4.2. The model

The NWN model of the VPC specification process comprises the
following elements:

� a bi-dimensional Interactive Spatial Grid (ISG) (Fig. 9);
� a Pn.p specific Differentiative Landscape (DL) (Fig. 10) with
complex checkpoint functionalities;

� three cell models, for the Anchor Cell, the Pn.p cells and the
hypodermal syncytium (hyp7) (Figs. 13–15, respectively).

For readability, this paper resorts to simplified figures helping
the reader understand the modeling approach. The complete
model and instructions to reproduce the experiments are instead
provided in a public GitHub repository at https://github.com/sys-
bio-polito/NWN_CElegans_VPC_model/.

Fig. 11 helps to understand the hierarchical organization of the
model’s elements. The system-net at the top-level combines ISG
and DL functionalities. The nets that model the cells and imple-
ment the rules for classifying Pn.p cell fates (Fates Manager net)
live and interact as net-tokens within this system-net.

https://github.com/sysbio-polito/NWN_CElegans_VPC_model/
https://github.com/sysbio-polito/NWN_CElegans_VPC_model/


Fig. 8. Diagram of signaling mechanisms involved in VPC pattern formation. During the L3 stage of C. Elegans larval development, inductive signaling from the Anchor Cell,
belonging to the developing gonad, and lateral signaling among the VPCs (P3.p - P8.p) interact to make a precise pattern of cellular fates emerge. These include vulval lineages
of two types, 1� and 2�, each of which generates distinct sets of progeny. The uninduced VPCs generate a 3� lineage, creating epidermal cells that fuse with the large syncytial
epidermis hyp7. P6.p receives strong juxtacrine signaling via transmembrane LIN-3 signals from the AC. This strong signal induces the primary (1�) fate, suppressing the
secondary (2�) fate and activating DSL lateral signaling to the two neighboring VPCs (P5.p and P7.p). P5.p and P7.p receive soluble, paracrine LIN-3 signaling from the AC,
which is slower and weaker than juxtacrine signals and combines with the DSL signals from the neighboring P6.p to suppress the 1� and promote the 2� fates respectively. In
the wild-type scenario, a precise spatial pattern of cellular fates emerges in the VPCs (3�-3�-2�-1�-2�-3�).

Fig. 9. A schematic representation of the Interactive Spatial Grid (ISG) model for the VPC specification example, highlighting communication building blocks: juxtacrine LIN-3
signaling from the Anchor Cell (AC) to the P6.p cell; paracrine LIN-3 signaling from the Anchor Cell (AC) to the P5.p and P7.p cells; neighbor communication between pairs of
Pn.p cells; paracrine LIN-3 signaling from the hypodermal syncytium (hyp7) to the Pn.p cells.
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Fig. 10. A schematic and simplified representation of the DL model for the VPC specification example. From the Pn.p places holding the cells, specific transitions create a
complex token holding a reference to the Pn.p net-tokens. This array is passed to the FatesManager net-token using the sync_states channel. The Fates Manager is a special
net-token that monitors the places modeling active MPK-1 and active LIN-12 of the Pn.p net-tokens and uses this information to predict the cells’ fate represented by
assigning a color to the cells.

Fig. 11. Nets hierarchy for the VPC specification model implementation in Renew. The system-net having ISG and DL functionalities is at the top level, and it hosts the net-
tokens modeling different cells (AC, Pn.p, and hyp7), plus the Fates Manager (FM) modeling complex checkpoint rules.
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Fig. 12 reports a screenshot of the full system-net model imple-
mentation. The figure highlights the different portions of this
model using the dashed boxes, while the complete source file is
available on GitHub.

The top part of Fig. 12 represents the ISG depicted in a more
schematic way in Fig. 9. It provides a two-dimensional representa-
tion of the VPC specification spatial environment and models the
involved cells’ interactions. In this model, places represent the
positions cells can occupy, and transitions model the potential
interactions between cells in such positions (e.g., cell–cell commu-
nication mechanisms involved in the emergence of the morpho-
genetic pattern). Hyp7 sends LIN-3 paracrine signals uniformly to
5710
all Pn.p cells, modeling that the hypodermal syncytium lies under
the array of Pn.p cells.

The DL model (Fig. 10) represents instead the mechanism gov-
erning the Pn.p cells’ states along the developmental step from L3
to L4. Possible conditions are: Pn.p state, and Primary (1�), Second-
ary (2�), or Tertiary (3�) fates. Since this developmental stage does
not imply a change in the system’s architecture, the different fates
are modeled as colors of the net-tokens representing the Pn.p cells.
Specific transitions from the Pn.p places holding the cells create an
array of references to the Pn.p net-tokens. This array is passed to
the Fates Manager net-token using the sync_state channel. The
Fates Manager is a special net-token that monitors the places mod-



Fig. 12. The Renew implementation of the system-net for the VPC specification example, combining ISG and DL functionalities. This figure summarizes the complete
architecture of the system-net to give an idea of the complexity of the model. A detailed view of this net is stored in the GitHub repository.
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eling active MPK-1 and active LIN-12 of the Pn.p net-tokens and
uses this information to predict the cell’s fate. The bottom part of
Fig. 12 represents the actual implementation of this mechanism
connected to the remaining parts of the system-net.

In the presented implementation, the system-net holds three
main types of net-tokens.

The AC net-token describes the LIN-3 production and signaling
in the Anchor Cell as reported in Fig. 13. The AC model has two LIN-
3 communication modes implemented using channels: one for jux-
tacrine signaling with P6.p (neighbor communication), and the other
one for paracrine signaling with P5.p and P7.p (signal sending). Both
signals rely on the LIN-3 gene for production (transcription and
translation).

The Pn.p net-token describes the regulation of the Pn.p cells, all
sharing the same architecture. This net-token is described using an
adaptation of the Petri Nets model from [9]. As shown in Fig. 14,
the Pn.p cell model receives LIN-3 signals through channels that
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describe paracrine or juxtacrine signaling (signal sensing and neigh-
bor communication). LIN-3 activates a cascade of enzymatic activa-
tion reactions (the MAPK signaling cascade, enzymatic reactions),
resulting in the production of active MPK-1. This active protein
causes the DSL signal to increase and affect neighbor cells. Pn.p
Cells receive DSL signals from neighbors, and this activates LIN-
12 (DSL/LIN-12 lateral signaling via neighbor communication).
Increased active LIN-12 causes LST and DPY23 inhibitors to switch
off the MAPK signaling cascade (inhibitory post-transcriptional
regulation).

Eventually, the hyp7 net-token describes the hypodermal syn-
cytium lying below the Pn.p cells. It provides uniform and low-
intensity LIN-3 paracrine signals to all of them (signal sending),
modeling the fact that LIN-15 can shut down LIN-3 transcription
(inhibitory transcriptional regulation), as described in [9].

The Fates Manager (FM) net-token is a complex net able to
assign one of the three possible fates (Primary, Secondary and Ter-



Fig. 13. The Anchor Cell model. The Anchor Cell (AC) net-token models the two types of inductive signaling the AC sends to the Pn.p cells. A neighbor communication module
(Appendix A, Fig. 21) models juxtacrine signaling to P6.p, and a signal sending module (Appendix A, Fig. 27) models paracrine signaling to P5.p and P7.p. Both signaling
mechanisms leverage communication channels with the system-net (Paracrine and Juxtacrine signaling from the Anchor Cell place to the target Pn.p cells, Fig. 12).

R. Bardini, A. Benso, G. Politano et al. Computational and Structural Biotechnology Journal 19 (2021) 5701–5721
tiary Fate) to the different Pn.p cells. The full network is available
on GitHub. However, for the sake of readability, Fig. 16 focuses
on presenting the overall behavior of this network.

The first task of the FM is sampling the marking evolution of the
active MPK-1 and active LIN-12 places of all Pn.p cells. A channel
transfers an array of Pn.p net-token object references to the FM
that can then communicate with them to obtain their marking.
The ability to track the dynamic evolution of places available in
various instances of a net-token is a crucial characteristic of this
modeling strategy. Apart from its usage in the presented model,
these mechanisms can be used as a general and powerful inspec-
tion instrument to understand the considered process.

The FM stores the marking evolution of the active MPK-1 and
active LIN-12 places of each cell into a set of circular buffers, creat-
ing a sliding window where the markings of the six Pn.p cells are
stored during the simulation. This information builds a set of fea-
tures for each specific cell submitted to a classifier able to deter-
mine the fate of the cell (Fig. 16-B). Finally, the resulting fates
are sent to the system-net (Fig. 16-C) and used to assign the corre-
sponding color to the Pn.p cells.

The classification process relies on a Weka random forest model
[37]. The classification model is trained with a supervised mecha-
nism. A training dataset is generated by collecting the marking of
the active MPK-1 and active LIN-12 places in several simulations
of the Pn.p net-tokens in a physiological condition. As will be
detailed later in this section, simulations include stochastic behav-
iors that lead to different dynamics. Each set of features was man-
ually labeled to a fate by comparing the evolution of the active
MPK-1 and active LIN-12 markings with the expected values from
biological knowledge. In particular, cells exhibiting high values of
active MPK-1 were labeled with the Primary fate, cells having
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low active MPK-1 and high active LIN-12 with the Secondary fate,
and cells having low levels of both markers with the Tertiary fate.

4.3. Model tuning and simulations

The proposed implementation of the Pn.p, AC, and hyp7 net-
tokens follows the semi-quantitative paradigm proposed in [9].
The tuning proceeded manually by trial-and-error until the mark-
ing evolution of markers (i.e., active MPK-1 and active LIN-12)
recapitulated physiology for all cell models.

Renew supports different high-level Petri Nets formalisms and
their simulation. Experiments use the Java Net Compiler [11],
which supports stochastic simulation of NWN models. The simula-
tion engine considers all enabled transitions at each cycle and then
randomly selects a subset of them for activation. This mechanism
makes the transitions activation order non-deterministic, mimick-
ing the stochasticity of the biological processes. In other words,
this means that starting from the same initial conditions, simula-
tions of the same model may generate different outcomes.

Moreover, the model structure introduces delays for some
mechanisms to provide better expressivity of graded signaling
intensity. For example, expressing the delayed onset of paracrine
signals from the AC compared to the juxtacrine ones.

This modeling approach expresses temporal dynamics, which
are relevant for modeling ontogenesis since the timing of func-
tional activation often has a regulatory meaning in that context.

Experiments involved two simulation campaigns. The first sim-
ulation campaign aimed at collecting features to train the FM clas-
sifier. In this campaign, the Weka classifier was detached from the
model. The FM only collected the features from the marking of the
Pn.p cells and stored them in a file (see training_set.arff file on



Fig. 14. The Pn.p Cell model. The net-token for Pn.p cells models intracellular signaling cascades integrating inductive and lateral signals within each VPC. The AC
communicates with Pn.p cells with either juxtacrine or paracrine inductive signaling that activates, with different intensities, the Vul genes signaling pathway. This pathway
activates the 1� fate marker (i.e., active MPK-1) and the DSL output signal while inhibiting the 2� fate marker (i.e., active LIN-12) via DPY-23 and LST-mediated transcriptional
inhibition. In addition, DSL-mediated lateral signaling activates the 2� fate marker (i.e., active LIN-12) in neighboring VPCs. LIN-12 is a Notch-like receptor for the Delta-like
signal DSL. DSL-LIN-12 lateral signaling between neighbor Pn.p cells and AC juxtacrine signaling to P6.p cell are modeled with a neighbor communication module (see
Appendix A, Fig. 21). AC paracrine signaling is modeled combining a signal sending and a signal sensing module (Appendix A, Fig. 27 and Fig. 26).
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GitHub). Collected data were then labeled and used to train the
model. Data from simulations were enriched with synthetic data
to cover corner cases difficult to obtain from raw simulations.
Globally, the training set contains 100 samples for each of the three
possible fates.

The second campaign shows the model at work. Different initial
markings represent different experimental conditions in the
model, chosen by the scheme proposed in [9]. In particular, this
paper considers the following conditions:

1. wt: the wild-type physiological condition;
2. lin12_ko: knock-out of the lin-12 gene;
3. lstdpy_ko: knock-out of the lst (lip-1, lst-1, lst-2, lst-3 and lst-4)

and dpy23 sets of genes;
4. vul_ko: knock-out of the Vul set of genes (let-23, sem-5, let-60

and mpk-1).

Each condition corresponds to an expected VPC differentiation
pattern as follows:

1. wt: P3.p: 3� fate, P4.p: 3� fate, P5.p: 2� fate, P6.p: 1� fate, P7.p: 2�

fate, P8.p: 3� fate;
2. lin12_ko: P3.p: 3� fate, P4.p: 3� fate, P5.p: 1� fate, P6.p: 1� fate,

P7.p: 1� fate, P8.p: 3� fate;
3. lstdpy_ko: P3.p: 3� fate, P4.p: 3� fate, P5.p: 1� fate, P6.p: 1� fate,

P7.p: 1� fate, P8.p: 3� fate;
4. vul_ko: P3.p: 3� fate, P4.p: 3� fate, P5.p: 3� fate, P6.p: 3� fate, P7.

p: 3� fate, P8.p: 3� fate.
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For each experimental condition, 100 simulations were col-
lected following recommendations in [60]. Simulations provide
both the temporal evolution of the markers of interest from cell
models and the six labels resulting from Pn.p cells classification.

As mentioned before, validation and tuning of the model were
performed using simulations. During simulations, the temporal
evolution of the marking of each place of the different networks
composing the model was constantly recorded. The marking of a
place can be seen as the intensity of the biological signal associated
to the place at a given point in time. The average marking over a
complete simulation represents the average signal intensity. This
metric, after min–max normalization, is used here to analyze and
validate the behavior of the model by looking at a sample simula-
tion from the wt condition. Fig. 17 focuses on the dynamics of the
P5.p, P6.p, and P7.p cells. As expected from the knowledge of the
biological system, the P6.p cell receives a strong LIN-3 juxtacrine
signal from the AC that corresponds to significant active LET-23
production (0.25 normalized average intensity), which induces a
strong production of active MPK-1 (0.5 normalized average inten-
sity), inducing the Primary fate. At the same time, the P6.p cell does
not receive significant DSL lateral signaling from the neighbors,
resulting in a negligible production of active LIN-12. Both the P5.
p and P7.p cells receive weaker paracrine LIN-3 signal from the
AC, which requires some time to be delivered. This corresponds
to a weaker production of active LET-23 (less than 0.1 normalized
average intensity) that starts later than the P6.p cell. Moreover,
these cells receive strong DSL lateral signaling (about 0.25 normal-
ized average intensity) induced by high active MPK-1 production in



Fig. 15. The hyp7 Cell model. This net-token models LIN-3 production by the hyp7 hypodermal syncytium with a signal sending module (Appendix A, Fig. 26).

Fig. 16. Overview of the cell fate classification process in the Fates Manager. The classification process relies on a Weka random forest classifier. The classifier receives as
features information on the marking of the active MPK-1 (MPK-1_ACT and active LIN-12 (LIN-12_ACT) places of the Pn.p net-tokens and, based on it, predicts the cells’ fate.
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Fig. 17. P5.p, P6.p, and P7.p dynamic behavior. The dynamic marking evolution of relevant places along with the simulation in the Pn.p models correctly recapitulates
physiology. P6.p (central row) receives strong LIN-3 signaling from the AC, resulting in strong LET-23 and MPK-1 activation and DSL-mediated lateral signaling to neighbors.
P5.p and P7.p (top and bottom rows, respectively) receive weaker, delayed LIN-3 signal, inducing weak LET-23 activation, leading to moderate active MPK-1 levels, which are
inhibited by the high LIN-12 activation induced by the DSL lateral signaling from the P6.p cell, inducing the Secondary fate.

Fig. 18. Pn.p cells dynamic behavior. The dynamic marking evolution of relevant places in the Pn.p models along with the simulation correctly recapitulates physiology. P6.p
(fourth row) receives strong LIN-3 signaling from the AC, resulting in strong MPK-1 activation and DSL-mediated lateral signaling to neighbors, simulating the onset of the
Primary fate. P5.p and P7.p (third and fifth rows, respectively) receive weaker, delayed LIN-3 signal, inducing weak LET-23 activation, leading to moderate active MPK-1
levels, which are inhibited by the high LIN-12 activation induced by the DSL lateral signaling from the P6.p cell, inducing the Secondary fate. P3.p, P4.p, and P8.p (first, second,
and last row, respectively) do not receive any LIN-3 inductive signaling from the AC, nor do they receive significant DSL lateral signaling from neighbors, resulting in
negligible levels of both markers active MPK-1 and active LIN-12, which correctly recapitulates their Tertiary fate.
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the P6.p cell. This results in a strong production of active LIN-12
(about 0.4 normalized average intensity) that inhibits the produc-
tion of active MPK-1 (about 0.2 normalized average intensity), a
condition that correctly corresponds to the Secondary fate
expected to be induced in these cells.

Fig. 18 extends the analysis to all Pn.p cells. As expected cells
P3.p, P4.p and P8.p (first, second and last rows, respectively) only
receive weak LIN-3 signal from the hypoderm and may receive
very weak lateral signaling from neighbors. This condition is not
enough to trigger a significant active MPK-1 nor active LIN-12 pro-
duction. Therefore, in these cells, both markers levels are negligible
(around 0.0 normalized average intensity), which indicates the
Tertiary fate.

While Fig. 17 and Fig. 18 show the dynamic behavior of the sys-
tem analyzing a single simulation in the wild-type physiological
condition, Fig. 19 shows the results of several simulations on all
considered conditions, represented as the normalized average val-
ues of the active MPK-1 and active LIN-12 markers for simulated
Pn.p cells. The figure shows the ability of the model to recreate,
for each considered condition, the expected differentiation pattern
influenced by the corresponding level of the active MPK-1 and
active LIN-12 markers.

Of course, misclassifications are possible for simulations gener-
ating signals close to the classifier’s boundaries. This is possible
due to the stochasticity of the simulation. To quantify the accuracy
of the model, Table 1 summarizes, for each cell, the ability of the
Fig. 19. Simulations results. This plot illustrates that simulations from different
experimental conditions (wt, vul_ko, lin12_ko and lstdpy_ko) correctly recapitulate
the expected biological behavior in terms of markers levels and assigned fates for
the Pn.p cells.

Table 1
Results of the pattern formation simulations. For each experimental condition, the Pn.
p fates pattern observed is reported, together with the accuracy of the prediction for
each cell generated in the simulation outcomes. Reported results refer to 100
simulation runs.

experiment Pn.p pattern accuracies

wt 3� 3� 2� 1� 2� 3� 100% 100% 87% 100% 93% 100%
lin12_ko 3� 3� 1� 1� 1� 3� 100% 97% 74% 100% 83% 100%
lst_lf 3� 3� 1� 1� 1� 3� 100% 100% 79% 100% 83% 100%
vul_ko 3� 3� 3� 3� 3� 3� 100% 100% 100% 100% 100% 100%
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model to predict the correct fate of the different cells in the consid-
ered conditions. These values refer to 100 simulations per condi-
tion. It is important to remark that the model was trained and
tuned on the wt case and then used to evaluate new unknown con-
ditions. This is a simple example to show how this modeling strat-
egy can be exploited to inspect different conditions, therefore,
performing in silico knowledge exploration.
5. Conclusions and future perspectives

This paper presented an NWN-based modeling approach
responding to modeling requirements posed by ontogenesis
applied to the case study of VPC specification in C. Elegans. Consid-
ering model performance in terms of predictive power, compared
to other state-of-the-art approaches [9,18,38,25], our modeling
framework has similar or better predictive performance. Further-
more, the proposed model has the advantage of supporting the
integration and composition of heterogeneous biological informa-
tion and models. It combines the advantages of multi-level hybrid
models [4] with formalism uniformity, which facilitates model
analysis, and knowledge representation and exchange.

In the future, performance needs to be tested over a more sig-
nificant number of mutations for the VPC specification case, start-
ing from those tested in [8] and performing predictions over new
experimental conditions to be subsequently verified experimen-
tally in order to demonstrate the actual predictive power of the
model.

At the moment, NWN models have been mainly used through
simulation since the formal analysis of such complex graphs is
not trivial due to the state-space explosion problem [30]. In partic-
ular, model checking is a promising method to verify systems that
are modeled as state transition graphs [14]. Moreover, besides the
verification capabilities, formal methods can support additional
analysis able to infer system level properties of the system (e,g,
invariants, steady states, etc.) that could provide interesting
insights on the studied phenomenon.

Low-level PN are supported by a large literature providing
methods like partial order reduction [72], symmetries [66], the
sweep-line method [13] or alternative ways to represent the state
space [20,55] and cope with large model sizes. Tools such as Maria
[47], LoLA [75], GreatSPN [1], Maude [15] are examples of instru-
ments providing verification options for traditional PN variants.
For high-level Petri Nets some interesting model checking tools
also exist [16,21,32]. However, the problem is still open when con-
sidering the peculiarities of the NWN formalism. Venero et al. [73]
provide a method that can be applied to multi-level and recursive
nets. Recently, Willrodt et al. [74] presented Modular Model
Checker (MoMoC), a model checking tool designed to work with
NWN and integrated with Renew. While this is a promising start-
ing point, these tools can handle only very simple nets, and signif-
icant work is still required to handle complex models such as the
ones presented in this paper.

Our models combine hypothesis-driven and data-driven
approaches, but a necessary improvement is to make parameter
identification rely on experimental data only, possibly generating
them ad hoc.

Computational capabilities could limit the model complexity: if
computational complexity is too high, analyses and simulations
take too long to complete [54]. However, it is possible to face this
problem both at the model level, with complexity reduction [2],
and at the hardware level, with state-of-the-art architectures for
parallel and distributed computing to speed up computational
times [26,28].

Finally, significant effort is required to improve the modeling
strategy usability from life scientists with limited experience in



Fig. 21. Neighbor communication. It models the communication between neigh-
boring cells in direct physical contact. This module allows a net-token occupying a
place in the ISG (NT1 in pSN

01 ) to connect to the net-token instance living in the
neighboring place (NT2 in pSN

02 ) by exchanging signals via a communication
channel:ch1, linking transitions tSN01 in the system-net (SN), tNT101 in NT1 and tNT101 in
NT2.

Fig. 22. Cell movement. It models the mobility of a cell from a one position to
another one in the physical environment. This module describes the movement of a
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model development and computer engineering. An effort in this
direction is already in place with the development of the Biological
System Description Language (BiSDL), a domain-specific high-
level, modular programming language naturally accessible by
purely biological semantics and automatically generating
simulation-ready NWN models [49].

In this way, we intend to improve the capability of modeling
biological complexity and make the resulting tools available to a
large and diverse user base to fulfill the systems biology scientific
community’s needs [58].
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Appendix A

This appendix reports a library of biological functional modules
and their respective NWN model that can be used to model com-
plex ontogenetic processes.

A.1. Interactive Spatial Grid

This section reports a set of cell movement and cell to cell com-
munication mechanisms mediated by the relative spatial positions
modeled in the ISG (Figures 20, 21, 22, 23, 24, 25, 26 and 27).

A.2. Differentiative Landscape

This section reports a building block to model a single differen-
tiative step in a Differentiative Landscape (DL) model (Figure 28).

A.3. Cells

This section reports a set of sample building blocks to model
simple intracellular mechanisms in the Cell models (Figures 29,
30, 31, 32 and 33).
Fig. 20. Neighbor detection. It models the capability of a cell to detect the presence
of a neighbor cell in direct physical contact. This module allows a net-token
occupying a place in the ISG (NT1 in pSN

01 ) to detect a neighboring net-token instance
in the adjacent place (pSN

02 ) via a communication channel:ch1, linking transitions tSN01
in the system-net (SN) and tNT101 in NT1.

net-token (NT1) from a place in the ISG (pSN
01 ) to another one (pSN

02 ) via a transition
(tSN01 ) in the system-net (SN).

Fig. 23. Molecular flow. It models the mobility of a molecule from a one position to
another one in the physical environment. This module models the movement of a
colored token (M1) from a place in the ISG (pSN

01 , holding the net-token NT1) to
another one (pSN

02 , holding the net-token NT2) via a transition (tSN01 ) in the system-net
(SN).
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Fig. 25. Apoptosis. It models a cell undergoing apoptosis that leaves the position it
occupied in the environment empty. This module includes the apoptotic cell (NT1)
in a position in the ISG (pSN

01 ) being removed from the ISG via a transition (tSN01 ) in the
system-net (SN).

Fig. 24. Mitosis. It models a cell undergoing mitosis and generating two daughter
cells. This module includes the mother cell (NT1) in a position in the ISG (pSN

01 )
generating two daughter cells via a transition (tSN01 ) in the system-net (SN), one in its
starting position (pSN

01 ), and another one in close spatial proximity (pSN
02 ).

Fig. 26. Signal sensing. It models a cell sensing a signal from the extracellular
environment. In this module, the net-token occupying a place in the ISG (NT1)
senses the signal modeled with the colored token S1 in the same place pSN

01 it
occupies via a communication channel:ch1, linking transitions tSN01 in the system-net
(SN) and tNT101 in NT1.

Fig. 27. Signal sending. it models a cell sending a signal to the extracellular
environment. In this module the net-token NT1 sends the signal modeled with the
colored token S1 in the same place it occupies in the ISG (pSN

01 ) via a communication
channel:ch1, linking transitions tSN01 in the system-net (SN) and tNT101 in NT1.
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Fig. 28. Differentiative step. It models a cell changing its phenotype state. This
passage is regulated by a checkpoint evaluating the cell state. This module includes
the net-token occupying a place in the DL (NT1 in pSN

01 ). If NT1 internal state
activates the checkpoint in tSN01 via a communication channel:ch1 (linking tSN01 in the
system-net and tNT101 in NT1), the DL transition moves NT1 to pSN

02 , modeling the new
phenotypic state.

Fig. 29. Transcription. It models the transcription of a gene (or a region of the
genome) into coding or non-coding RNA transcripts. This module includes a net-
token (NT) place for the genomic information to be transcribed (pNT

01 ) and one for the
transcription products (pNT

02 ), while tNT01 models the transcription process.

Fig. 30. Translation. It models the translation of an RNA transcript into a protein
product. This module includes a net-token place for the RNA molecules to be
translated (pNT

01 ) and one for the translation products (pNT
02 ), while tNT01 models the

translation process.

Fig. 31. Enzymatic reaction. It models the enzymatic catalysis transforming
substrates into products. This module includes a net-token place for the enzymatic
reaction substrates (pNT

01 ), one for the products (pNT
02 ), and one for the enzyme to

catalyze the reaction (pNT
03 ), while tNT01 models the reaction process, which depends on

the presence of the enzyme.
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Fig. 32. Activating gene regulation. It models the positive regulation of a
transcription process. This module includes a net-token place for the gene to be
transcribed (pNT

01 ), one for the transcription products (pNT
02 ), and one for the

regulatory signal (for example, a transcription factor) activating transcription
(pNT

03 ), while tNT01 models the transcription process, which depends on the presence of
the activating signal.

Fig. 33. Inhibiting gene regulation. It models negative regulation of a transcription
process. This module includes net-token places for the gene to be transcribed (pNT

01 ),
the transcription products (pNT

02 ), the regulatory signal activating transcription (pNT
03 ),

and the signal inducing the degradation of the activating signal (pNT
03 ). While tNT01

models the activation-dependent transcription process, tNT02 models the degradation
of the activating signal, that is induced by the inhibitory signal, resulting in the
inhibition of the transcription process.
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