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Abstract

Gene function curation of the literature with Gene Ontology (GO) concepts is one particu-

larly time-consuming task in genomics, and the help from bioinformatics is highly

requested to keep up with the flow of publications. In 2004, the first BioCreative challenge

already designed a task of automatic GO concepts assignment from a full text. At this time,

results were judged far from reaching the performances required by real curation work-

flows. In particular, supervised approaches produced the most disappointing results be-

cause of lack of training data. Ten years later, the available curation data have massively

grown. In 2013, the BioCreative IV GO task revisited the automatic GO assignment task. For

this issue, we investigated the power of our supervised classifier, GOCat. GOCat computes

similarities between an input text and already curated instances contained in a knowledge

base to infer GO concepts. The subtask A consisted in selecting GO evidence sentences for

a relevant gene in a full text. For this, we designed a state-of-the-art supervised statistical

approach, using a naı̈ve Bayes classifier and the official training set, and obtained fair re-

sults. The subtask B consisted in predicting GO concepts from the previous output. For this,

we applied GOCat and reached leading results, up to 65% for hierarchical recall in the top

20 outputted concepts. Contrary to previous competitions, machine learning has this time

outperformed standard dictionary-based approaches. Thanks to BioCreative IV, we were

able to design a complete workflow for curation: given a gene name and a full text, this

system is able to select evidence sentences for curation and to deliver highly relevant GO

concepts. Contrary to previous competitions, machine learning this time outperformed

VC The Author(s) 2014. Published by Oxford University Press. Page 1 of 7
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

(page number not for citation purposes)

Database, 2014, 1–7

doi: 10.1093/database/bau088

Original article

http://www.oxfordjournals.org/


dictionary-based systems. Observed performances are sufficient for being used in a real

semiautomatic curation workflow. GOCat is available at http://eagl.unige.ch/GOCat/.

Database URL: http://eagl.unige.ch/GOCat4FT/

Introduction

The problem of data deluge in proteomics is well known:

the available curated data lag behind current biological

knowledge contained in the literature (1–3), and profes-

sional curators need assistance from text mining to keep up

with the flow of published discoveries (4–6). One particu-

larly time-consuming and labor-intensive task is gene func-

tion curation of articles with Gene Ontology (GO)

concepts. Such curation from literature is a highly complex

task because it needs expertise in genomics, and also in the

ontology itself. For that matter, this task was studied since

the first BioCreative challenge in 2005 (7) and is still

considered as both unachieved, and long awaited by the

community (8).

Our group already participated in this first BioCreative.

At this time, we extracted GO concepts from full texts

with EAGL, a locally developed dictionary-based classifier

(9). EAGL achieved competitive performances among

other systems during this BioCreative challenge, or in

further independent studies against MetaMap (10).

Dictionary-based approaches tend to exploit lexical simi-

larities between the information about GO concepts

(descriptions and synonyms) and the input text. They con-

stituted the most evaluated approaches at this time (11,

12), and they are continued to be investigated (13, 14);

today, they are integrated in ontology-based search engines

such as GoPubMed (15) or in real curation workflows

such as Textpresso (16). Yet, dictionary-based approaches

are limited by the complex nature of the GO: identifying

GO concepts in text is highly challenging, as they often do

not appear literally or approximately in text (e.g. for the

concept GO:0045196 ‘establishment or maintenance of

neuroblast polarity’). Another smaller part of systems eval-

uated in BioCreative I relied on machine learning

approaches. Such algorithms empirically learn behaviors

from a knowledge base (KB) that contains training in-

stances, i.e. instances of already curated articles. At that

time, machine learning approaches produced the lowest

results; the lack of a standard training set was notably

pointed out (7).

We recently reported on GOCat (17, 18), our new

machine learning GO classifier. GOCat exploits similar-

ities between an input text and already curated in-

stances contained in a KB to infer a functional profile.

GO annotations (GOA) and MEDLINE now make it pos-

sible to exploit a growing amount of almost 100 000 cura-

ted abstracts for populating this knowledge base.

Evaluated on the first BioCreative benchmark, GOCat

achieved performances close to human curators, with 0.65

for recall at 20 (i.e. 65% of the expected GO concepts pre-

sent in the first 20 concepts returned by the system),

against 0.26 for our dictionary-based classifier. Moreover,

we showed in (18) that the quality of the GO concepts pre-

dicted by GOCat continues to improve across the time,

thanks to the growing number of high-quality GO con-

cepts assignments available in GOA: since 2006, GOCat

performances for predicting GO concepts from a just

published abstract have improved by 50%.

The BioCreative IV GO task was the occasion to inves-

tigate the GOCat power in a reference challenge. The sub-

task A aimed at evaluating systems for filtering relevant

sentences for GO curation, given a gene name (along with

a NCBI gene ID) and a full text (along with is PMID). For

this subtask, we designed a GO evidence text retriever,

based on a robust state-of-the-art approach, using a naı̈ve

Bayes classifier and the official training set. The official

training set was provided by the organizers, and was the

result of the comprehensive analysis of 100 full texts by a

team of collaborating curators (19). It was composed of

blocks of sentences that were annotated as relevant for cur-

ation, or non-relevant. In machine learning, such examples

are called positive or negative instances, respectively.

The official training set finally contained 1346 positive

instances. Another set of 50 full texts were annotated by

the collaborating curators to obtain a development set.

The development set was provided for tuning issues.

Finally, a final set of 50 full texts was annotated for build-

ing the test set. The test set is composed of unseen full texts

provided without annotations and used for the competi-

tion. On the other hand, we also investigated

exploiting GeneRIFs (http://www.ncbi.nlm.nih.gov/gene/

about-generif) for an alternative bigger training set (76 000

positive instances). Then, the goal of the subtask B was to

use the previously predicted relevant sentences for assign-

ing GO concepts to the given gene. For this subtask, the

GO classifier we used was GOCat. In this BioCreative

challenge, participants were allowed to submit up to three

runs. We thus submitted results computed with GOCat
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with different numbers of proposed GO concepts: 5, 10

or 20. Figure 1 illustrates the overall workflow of the

complete task.

Material and methods

Subtask A: retrieving GO evidence sentences

for relevant genes

The goal of the subtask A was to determine, given a train-

ing set of curated sentences, whether new sentences are

relevant for curation or not, and, if possible, to support the

decision with a confidence score. Some state-of-the-art

methods suitable for such supervised binary classification

task include naı̈ve Bayes classifiers and support vector

machines (20, 21). For implementation reasons, we chose

a naı̈ve Bayes.

As we mentioned above with the GOCat description,

we are used to working with statistical GO classification at

the abstract/paragraph level, but we rarely apply our sys-

tem at the sentence level. Thus, for this subtask A, we first

further analyzed the data to design a training set, and

finally made some strong assumptions about them. We

studied the length of evidence texts: as mentioned in the

BioCreative guidelines (19), the evidence texts for GOA

may be derived from a single sentence, or multiple continu-

ous, or discontinuous, sentences. In the training data, 66%

of evidence texts contained only one sentence, 20%

contained two sentences and 14% three and more. Hence,

our first assumption was to consider only sentences:

for example, a block of three positive sentences was

considered as three independent positive sentences. Then,

we compared, given a full text and a gene name, the set of

the positive sentences and the set of sentences where we

were able to identify the gene name. In BioCreative IV, the

gene names were provided along with a NCBI gene ID.

For retrieving a given gene name in sentences, we relied on

pattern matching. With a simple case-insensitive mapping,

we found the given gene name in 65% of the positive

sentences. Then, we searched hyphens in gene names and

generated a couple of variants (e.g. for ‘rft-1’ we also tried

to map ‘rft1’). With this rule, we reached 80% of sentences

detected. We then investigated how to exploit the gene ID

and find synonyms and variants in reference databases, but

we quickly concluded that this strategy would have

brought too much noise than recall. A further look to the

data revealed that for most sentences in the 20% missed,

the gene name was not explicit but often mentioned via

pronouns, or such grammatical expressions that require a

syntactic analysis and that is beyond statistical approaches.

Hence, we accepted this limit, and our second assumption

was to consider only the sentences that contained the gene

name. So, 80% of the positive sentences contain the gene

name. On the other hand, 20% of the sentences that con-

tain a given gene name are positive sentences (i.e. relevant

for GO curation) and 80% are negative. This was our third

assumption: the training data should contain this 4:1 ratio,

four negative sentences for one positive sentence. Finally,

for the design of training data, we replaced all the gene

names we identified by the word ‘genemention’.

We thus were able to design training sets for our naı̈ve

Bayes classifier. For our first official run, we built the

Figure 1. Overall workflow of the BiTeM/SIBtex system for BioCreative IV GO task. First (subtask A), given a full text and a protein name, the system

extracts relevant sentences for GO curation. Then (subtask B), given these relevant sentences, the system predicts relevant GO concepts for curation.

For both subtasks, the system uses machine learning, thanks to KB designed from the BioCreative training data and GOA.
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training set from the official training set that contained

100 curated articles. With our assumptions, we finally

obtained a set of 9251 sentences containing gene names:

1346 positives and 7905 negatives. The ratio is slightly dif-

ferent (85% of negatives), possibly because positive sen-

tences can apply for several enumerated genes. For our

second run, we added the development set (50 curated art-

icles) to the previous training set, and thus obtained 683

supplementary positive sentences and 3912 supplementary

negative sentences.

Finally, we investigated a most ambitious way for de-

signing our training set, based on GeneRIFs. GeneRIFs are

concise phrases identified in journal papers and describing

a protein function, recorded in the reference databases by

PubMed users, which are not always curators. GeneRIFs

are not GOA, but potentially provide positive sentences

for our task. We first downloaded all available GeneRIFs.

In July 2013, there were �826 000 entries in the database.

Each entry is provided with the gene ID, the GeneRIF text

and the PMID that was used. As GeneRIFs are taken in full

texts, we considered only those papers whose full text was

available in PubMed Central (PMC; http://www.ncbi.nlm.

nih.gov/pmc/). For this purpose, we accessed the open ac-

cess subset of PMC on September 2013, via the dedicated

File Transfer Protocol (FTP) services. We then automatically

scanned the papers to find sentences that were registered as

GeneRIFs. We were able to locate 76 000 GeneRIFs in

48 000 full texts. Thus, these 76 000 GeneRIFs were con-

sidered as positive sentences. For negative sentences, we first

retrieved all sentences containing the given gene names in

the same papers, and considered that all non-positive sen-

tences were negative, which we knew was a too strong as-

sumption. We finally sampled this negative set to keep the

4:1 ratio between positive and negative instances. As for the

first training sets, we replaced all identified gene names by

‘genemention’. This GeneRIFs training set was used for pro-

ducing our third and last run.

Hence, these three training sets were used to train a

naı̈ve Bayes classifier. Each word of the collection was

considered as a feature. We also add several meta-

features, such as the type of section (paragraph, title,

caption, etc.), the relative position of the sentence in the

full-text (an integer between 1 and 20), the percentage of

common words with the abstract and the sentence

length. Once the classifier was trained, we parsed the

test set. For each article and each gene, we extracted the

sentences that contained the gene name. Then, each sen-

tence was sent to the classifier and obtained a class (posi-

tive or negative) and a confidence score. As only 20% of

sentences that contained a given gene name were positive

in the training set, we chose to select only the first 20%

best-ranked sentences.

Subtask B: predicting GO terms for relevant genes

The goal of the subtask B was to predict GO concepts for a

given gene in a full text. For this purpose, we used our GO

classifier GOCat. GOCat relies on a k-nearest neighbors

(k-NN), a remarkably simple algorithm that assigns to a

new text the categories that are the most prevalent among

the k most similar instances contained in the KB (22). The

GOCat KB contains nearly 100 000 MEDLINE abstracts

that were used for manual GO curation in the GOA data-

base. Concretely, the GOA annotations that are linked to

a PMID are collected in the official GOA Web site: this

represents an amount of almost 300 000 (PMID; GO ID)

couples. Then, for all PMIDs involved in these annota-

tions, abstracts are collected via the National Library of

Medicine e-utils: this represents an amount of almost

100 000 abstracts. Then, all abstracts are indexed in a

search engine. For this purpose, we used the Terrier plat-

form (23). GOCat is comprehensively described in (18).

For these experiments, the GOA release used for deriving

the GOCat KB was downloaded on August 2013.

We discarded all the PMIDs contained in the test set

from the knowledge base. Predicting GO concepts for

PMIDs that already were in the KB would have caused a

bias. Then, we started from the output of our first run. For

each article and each gene name, we built a paragraph

with the selected sentences, and then we sent the paragraph

to GOCat. GOCat was used with k¼ 100. As the k-NN

usually outputs all possible GO concepts along with a con-

fidence score, we kept only the five most confident GO

concepts for our most precision-oriented run, the 10 most

confident for a balanced run and the 20 most confident

for our most recall-oriented.

BioCreative submissions formats and metrics

For each subtask, participants were allowed to submit up

to three runs. Runs are files that contain system’s output

for the whole test set. For the subtask A, given a paper ID

and a gene ID, the system had to output sentences that

were relevant for GO curation. An example of output line

is ‘10995441 32703 13349 298’; the first number is a

PMID, the second is a NCBI gene ID and the last two are

offsets (position and length) of the returned sentence. For

the subtask B, the system had to output lines that con-

tained predicted GO concepts, given a paper ID and a gene

ID. An example of output line is ‘10995441 32703

GO:0005515, where the first number is a PMID, the se-

cond is a gene ID and the third field is the predicted GO

ID. Participants’ runs were compared with the so-called

gold standard. The gold standard is the curation made by

the collaborative curators. Concretely, the gold standard is

a file that contains all the correct associations to predict.
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For evaluation, traditional metrics were used, such as

precision, recall and F measure (F1). Precision is the por-

tion of returned associations that were correct (in the gold

standard). Recall is the portion of expected associations

(the gold standard) that were returned by the system.

Finally, F1 is the harmonic mean of recall and precision.

For the subtask A, runs were evaluated with a strict and a

partial match metrics: the partial match was more relaxed,

as a returned text snippet was considered as correct if it

included an expected one. In the same way, for the subtask

B, a standard metric was computed, with strict evaluation:

only the expected GO concepts were considered as correct.

But a more relaxed metric was also computed: the hier-

archical metric exploited the hierarchical nature of the GO

for taking into account predictions that were close to the

expected GO concept. For this metric, a predicted associ-

ation was not correct (¼1) or false (¼0), but was the por-

tion of common ancestors in both the computer-predicted

and human-annotated GO concepts (24).

Results

Subtask A

Table 1 presents our results for the subtask A, computed

with the official evaluation script and the partial match

metrics (19). Figure 2 plots our results within the perform-

ances of all competing systems.

We observe from the table that the best results were ob-

tained by the first two runs, computed with the official

training and development set. The contribution of the de-

velopment set in regards to performances is manifest but

light: þ3% for F1. The third run was significantly weaker

��50% for F1), while the used training set was 40 times

bigger. For all runs, we notice that the reached precision

was significantly higher than recall. However, the figure

confirms that a relatively high precision is the strength of

our system, as it produced two leading runs for precision,

while it was in the background for reaching high recall

compared with the other competing systems.

Subtask B

Table 2 presents our results for the subtask B, computed

with the official evaluation script, with standard or hier-

archical metrics (14). Figure 3 plots our results within the

performances of all competing systems.

As expected, the precision is the highest for five con-

cepts returned, and the recall is the highest for 20 concepts

returned. The best F1 is observed with 5 and 10 concepts

returned. For all runs, the reached recall is significantly

higher than the precision. However, the figure shows that

Table 1. Official results of BiTeM SIBtex for BioCreative IV

subtask A with partial match metrics

Precision Recall F1 Training set for Naive Bayes

0.344 0.213 0.263 Official training set

0.354 0.22 0.271 Official training and development set

0.204 0.127 0.156 GeneRIFs training set

Given a paper and a gene name, the systems had to propose sentences that

were meant to be relevant for GO curation. Precision is the portion of pro-

posed sentences that were correct, recall is the portion of expected sentences

that were proposed and F1 is the harmonic mean. The first two runs were

obtained with the official training data, and the third was obtained with the

GeneRIFs training set designed by our group for this task. Best results for

each metric are in bold.

Figure 2. Official results of all competing systems for BioCreative IV

subtask A, with partial match metrics. BiTeM/SIBtex results are in

orange.

Table 2. Results for the subtask B, computed with the official

evaluation script, with standard or hierarchical metrics (14)

Metrics Precision Recall F1 Number of GO

concepts returned

Standard 0.117 0.157 0.134 5

Hierarchical 0.323 0.356 0.339

Standard 0.092 0.245 0.134 10

Hierarchical 0.248 0.513 0.334

Standard 0.057 0.306 0.096 20

Hierarchical 0.179 0.647 0.280

Figure 3. Official results of all competing results for BioCreative IV sub-

task B with strict metrics. BiTeM/SIBtex results are in orange.
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GOCat outperformed the other competing systems in the

whole range of the evaluated properties.

We can compare these GOCat performances with the

performances we observed in previous studies. In (18),

GOCat was evaluated on its ability to retrieve GO con-

cepts that were associated with a given PMID, without tak-

ing account of the gene. For recall at rank 20 (R20),

GOCat achieved performances ranging from 0.56 for new

published articles to 0.65 for BioCreative I test set with

standard metrics. These performances were obtained by

using the abstract for the input text. In this subtask B, the

observed standard R20 is 0.306. But this performance was

obtained by taking account of the gene, as the input was a

set of sentences dealing with a given gene, and the output

was GO concepts relevant for this gene. Anyway, these

performances are beyond the maximum performances

observed in (18) with dictionary-based approaches, which

exploit similarities between the input text and GO con-

cepts themselves.

Discussion

The BioCreative GO task has provided high-quality train-

ing data for machine learning, thanks to collaborative cur-

ators that screened 100 full texts to have comprehensive

sets of relevant (positive) and non-relevant (negative) evi-

dence sentences for GO curation for given genes. Machine

learning approaches exploit positive instances to learn to

recognize relevant sentences, and exploit negative sen-

tences to learn to recognize irrelevant sentences. These

data show that 80% of the relevant evidence sentences

contained the gene name as itself (or with a simple hyphen

variation). Moreover, on all sentences that contained the

gene name, 20% were relevant for curation. We exploited

these facts to design a robust and powerful strategy for

detecting evidence sentences in an unseen full text.

For the subtask A, our runs were computed with a

state-of-the-art statistical approach. We relied on simple

and strong assumptions for building a training set from the

official data, and used a simple naı̈ve Bayes classifier for

filtering sentences. When looking at the others partici-

pants’ systems, our performance is fair, as our system pro-

duced the leading runs for precision. Nevertheless, our

most ambitious strategy was to exploit the GeneRIFs and

PubMed Central for building a 40 times more massive

training set, but this strategy produced disappointing

results. There obviously was a quality problem in the

GeneRIFs training set. First, its positive instances were

built on the assumption that GeneRIFs are relevant sen-

tences for GO annotation. This assumption seems a priori

true, but maybe curators would make some distinctions

between these two roles. In particular, some of the

GeneRIFs focus on diseases, which are not in the scope of

the GO. Moreover, the quality of these sentences for sup-

porting a GO curation is questionable, as they were pro-

vided by PubMed users and not edited by NCBI staff. But

the weakest point seems to be the building of the negative

set, i.e. sentences that are used for learning to recognize ir-

relevant sentences. For the GeneRIFs training set, we con-

sidered that all sentences in the full text that mentioned the

gene and were not positive were negative. Yet, GeneRIFs

do not aim to produce an exhaustive set of evidence sen-

tences in a full text, but keep only one sentence as evidence,

while the annotation was exhaustive in the official

BioCreative training set. This means that, in a paper, if sev-

eral sentences were relevant for the GO curation of one

concept, only one was kept for the GeneRIF. Thus, there

were 13 positive sentences per article in the BioCreative

training set, against 1.6 in our GeneRIFs training set. The

probability of false-negative sentences (i.e. sentences that

are considered as not relevant while they are) in the

GeneRIFs training set thus is high and could mainly ex-

plain this counter-performance.

The subtask B was charted territory; we just exploited

the power of our supervised classifier GOCat for produc-

ing the leading results. Thanks to its KB designed from

curated articles in GOA, GOCat is able to propose GO

concepts that do not appear literally or even approximately

in text. For instance, for the PMID 23840682, GOCat

retrieved most of the exact curation, including not only

simple concepts such as ‘chloroplast’ or ‘plastid’, but also

high-level concepts such as ‘chlorophyll biosynthetic pro-

cess’ or ‘thylakoid membrane organization’ that are impos-

sible to retrieve for dictionary-based systems. Recall is the

main asset of GOCat; for this subtask, the evaluated recall

at rank 20 (R20) reached 0.306. Regarding hierarchical

metrics, it is surprising to observe such a difference (R20

0.647), while GOCat aims at returning the GO concepts

that were most used by curators in GOA. Yet, this per-

formance is remarkable, and is promising in a workflow

where the curators would give the gene name and the

PMID, then screen and check the proposed GO concepts.

In a fully automatic workflow, the best setting would be to

return five GO concepts. In this case, the observed F1

(0.134) still is far from human standards for strict cur-

ation, but the hierarchical F1 (0.339) seems sufficient

for producing added value data. In this perspective,

GOCat was used to profile PubChem bioassays (25), or

within the COMputational BRidges to EXperiments

(COMBREX) project to normalize functions described in

free text format (26).

The main limit of GOCat, both observed by reviewers

and mentioned in our papers, was the difficulty to integrate

it in a curation workflow: it is stated that GOCat proposes
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more accurate GO concepts, but these concepts are

inferred from the whole abstract, then the curators still

have to locate the function in the publication and to link

the correct GO concept with a gene product. Thanks to

BioCreative IV, we were able to design a complete work-

flow for curation and to evaluate it. Observed perform-

ances are sufficient for being used in a real semiautomatic

curation workflow. GOCat is available at http://eagl.

unige.ch/GOCat/, and the complete pipeline for full-text

described in this article is available at http://eagl.unige.ch/

GOCat4FT/. In GOCat4FT, the user has to input a gene

name and a full text (or a PMC identifier), and the system

will display evidence sentences for GO curation (subtask

A), and GO concepts provided by GOCat (subtask B).
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