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Abstract

Alterations in the cortico-cerebellar-thalamic-cortical circuit might underlie the diversity of

symptoms in schizophrenia. However, molecular changes in cerebellar neuronal circuits,

part of this network, have not yet been fully determined. Using LC-MS/MS, we screened

altered candidates in pooled grey matter of cerebellum from schizophrenia subjects who

committed suicide (n = 4) and healthy individuals (n = 4). Further validation by immunoblot-

ting of three selected candidates was performed in two cohorts comprising schizophrenia

(n = 20), non-schizophrenia suicide (n = 6) and healthy controls (n = 21). We found 99 signif-

icantly altered proteins, 31 of them previously reported in other brain areas by proteomic

studies. Transport function was the most enriched category, while cell communication was

the most prevalent function. For validation, we selected the vacuolar proton pump subunit 1

(VPP1), from transport, and two EF-hand calcium-binding proteins, calmodulin and parval-

bumin, from cell communication. All candidates showed significant changes in schizophre-

nia (n = 7) compared to controls (n = 7). VPP1 was altered in the non-schizophrenia suicide

group and increased levels of parvalbumin were linked to antipsychotics. Further validation

in an independent cohort of non-suicidal chronic schizophrenia subjects (n = 13) and non-

psychiatric controls (n = 14) showed that parvalbumin was increased, while calmodulin

was decreased in schizophrenia. Our findings provide evidence of calcium-binding protein

dysregulation in the cerebellum in schizophrenia, suggesting an impact on normal calcium-

dependent synaptic functioning of cerebellar circuits. Our study also links VPP1 to suicide

behaviours, suggesting a possible impairment in vesicle neurotransmitter refilling and

release in these phenotypes.
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Introduction

Schizophrenia constitutes a complex disorder with a mixture of symptoms and cognitive defi-

ciencies. It is considered a brain disorder in which a malfunction of multiple regions in distrib-

uted brain macro- and microcircuits could lead to the different symptoms. According to the

hypothesis of cognitive dysmetria, which is based on neuroimaging findings, the alteration of

specific components of the cortico-cerebellar-thalamic-cortical circuit could contribute to the

impairment of mental coordination processes, leading to the emergence of symptoms in schizo-

phrenia [1–3]. The cerebellum, as part of this circuit, has been suggested to play a role in the

production of the range of symptoms and cognitive impairments in schizophrenia. Much evi-

dence has been collected over the last few decades supporting the involvement of the cerebellum

in higher cognitive functions and in the pathophysiology of this neurodevelopmental disorder

[4–6]. Based on the clinical signs of individuals with cerebellar lesions and functional neuroim-

aging studies in patients with schizophrenia, it has been suggested that the impairment of the

cerebellar function could affect many altered domains in schizophrenia, including executive

functions, working memory, language, attention, social cognition and emotion (reviewed in

[4,6,7]). The lateral cerebellar cortex is involved in some of these cognitive abilities, such as

working memory, executive functions and speech [5,8–10]. The complex cytoarchitecture of the

cerebellar cortex comprises a variety of neurons including GABAergic neurons, such as Pur-

kinje cells, basket cells, stellate cells, and Golgi cells, and glutamatergic cells, such as granule neu-

rons and unipolar brush cells. Both Purkinje cells and granule cells are key in orchestrating the

organisation of this circuitry during development, and thus defective regulation of the intracel-

lular mechanisms maintaining the normal synaptic functioning of these cells could impact on

internal cerebellar circuit activities and the cerebellum output signal to the cortex. These altered

cerebellar circuits have been linked to a number of neurological and psychiatric conditions such

as schizophrenia (reviewed in [11,12]). Moreover, molecular hypothesis-driven, studies have

found genes from the GABAergic and glutamatergic neurotransmission system with altered

expression in the cerebellar cortex, supporting the idea that the regulation of these systems is

also disrupted in the cerebellum [13–18]. Gene expression changes have been detected in the

cerebellum using transcriptomic screenings in a few studies in schizophrenia [19–21]. However,

to the best of our knowledge, proteomic studies to identify altered proteins in cerebellar neuro-

nal circuits have not yet been performed. The cerebellar cortex is a highly homogeneous brain

area composed mainly of cerebellar granule neurons. This characteristic makes the cerebellar

cortex an attractive area for investigating proteomic changes in a relatively small sample.

Here, we conducted an exploratory quantitative proteomic screen using pooled grey matter

of the cerebellar cortex from schizophrenia (1 pool of 4 samples) and control healthy individu-

als (1 pool of 4 samples) with the aim of identifying consistently altered proteins in schizophre-

nia (SZ) (S1A Fig). We then validated three selected candidates by immunoblot in a total of 47

subjects, which included the same samples from the proteomic analysis, an extended cohort

(control, n = 7; SZ, n = 7) with a non-schizophrenia suicide group (n = 6), and a larger inde-

pendent cohort with non-suicidal chronic schizophrenia subjects (control, n = 14; SZ, n = 13)

(S1A Fig). Our validation focused on three selected candidates with a possible relevant role in

the disorder and detected with robust changes in the screening.

Materials and methods

Brain tissue samples

For the proteomic analysis, we used post-mortem human brain tissue obtained from the UPV/
EHU brain collection, from the cerebellum of subjects with paranoid schizophrenia who had
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committed suicide (n = 4) and control subjects who had died in a traffic accident and who had

had no history of psychiatric episodes (n = 4) (Table 1 and S1 Table). Samples were obtained at

autopsies in the Basque Institute of Legal Medicine, Bilbao, Spain, in compliance with the poli-

cies of the research and ethical boards for post-mortem studies. Toxicological screening for

antipsychotics, antidepressants, and other drugs was performed at the National Institute of

Toxicology, Madrid, Spain. All deaths were subjected to retrospective analysis for previous

medical diagnosis. Subjects with ante-mortem criteria for paranoid schizophrenia according

to the Diagnostic and Statistical Manual of Mental Disorders (DSM-IIIR and DSM-IV) were

matched to control subjects who had died from accidental causes in a paired design, based on

gender, age, and post-mortem delay (PMD).

To validate the candidates identified in the quantitative proteomic assay, we also used an

extended cohort from the UPV/EHU brain collection for individual sample analysis of human

post-mortem cerebellum (Table 1, Cohort I). A total of 20 brains of subjects who had commit-

ted suicide (n = 12), died in an accident (n = 5) or from natural causes (n = 3) were selected.

Subjects with paranoid schizophrenia (n = 7; 6 suicide victims (falling from a height (n = 4)

and hanging (n = 2)) and 1 non-suicide subject that died from natural causes), control subjects

(n = 7) that had died in a traffic accident (n = 5) or from natural causes (n = 2), and a non-

schizophrenia suicide victim group (n = 6; falling from a height (n = 5) and hanging (n = 1))

were matched by gender, age, post-mortem delay and pH (Table 1, Cohort I). Control subjects

were chosen among the collected brains on the basis, whenever possible, of the following crite-

ria: (a) negative medical information on the presence of neuropsychiatric disorders or drug

abuse, (b) accidental or natural cause of death, (c) negative results in toxicological screening

for psychotropic drugs except for ethanol, and (d) a post-mortem delay not longer than 48

hours. Diagnoses were established according to the DSM-IIIR or DSM-IV. Diagnoses in the

non-schizophrenia suicide victim group included obsessive compulsive disorder (n = 1),

depression (n = 2), anxiety disorder (n = 1), depression and personality disorder (n = 1), and

alcohol dependence (n = 1). Samples were coded by the brain collection staff to protect human

subject confidentiality. The study was approved by the Institutional Ethics Committee of the

Fundació Sant Joan de Déu.

For further validation analysis of protein candidates, we used a larger independent cohort

of post-mortem human cerebellum of subjects with chronic schizophrenia (n = 13) who had

died from natural causes and control subjects with no history of psychiatric episodes (n = 14)

from the collection of neurologic tissues of Parc Sanitari Sant Joan de Déu [22] and the Insti-

tute of Neuropathology Brain Bank (HUB-ICO-IDIBELL Biobank) (Table 1, Cohort II). These

collections follow the guidelines of Spanish legislation and the approval of the local ethics com-

mittees. Written informed consent was obtained from each subject. The study was approved

by the Institutional Ethics Committee of Parc Sanitari Sant Joan de Déu. We matched schizo-

phrenia and control groups by gender, age, post-mortem delay and pH. Table 1 (Cohort II)

shows the demographic, clinical and tissue-related characteristics of the samples. All SZ sub-

jects were institutionalized donors with a long duration of the illness (Table 1, Cohort II) who

had no history of neurological episodes. Experienced clinical examiners interviewed each

donor ante-mortem to confirm schizophrenia diagnosis according to DSM-IV and Interna-

tional Classification of Diseases 10 (ICD-10) criteria. The last mean daily chlorpromazine

equivalent dose for the antipsychotic treatment of patients was based on the electronic records

of last drug prescriptions administered up to death (Table 1, Cohort II) and was calculated as

previously described [23]. The mean and standard deviation of body mass index in patients

was 24.22 ± 4.26. Possible tardive dyskinesia side effect of treatments was assessed in donors

using the Abnormal Involuntary Movement Scale (AIMS) [24]. The total score was calculated

using the sum of items 1 to 7, which assess the severity of abnormal movements in different
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Table 1. Demographic, clinical and tissue-related features of cases of Cohorts I and II.

Cohort I: Pilot Validation analysis (n = 20)

Schizophreniaa (n = 7) Non-schizophrenia suicide (n = 6) Healthy Control (n = 7) SZ-C SZ-Suicide

Statistic p-value Statistic p-value

Gender N/A b1.000 N/A b1.000

Female 14% (n = 1) 17% (n = 1) 14% (n = 1)

Male 86% (n = 6) 83% (n = 5) 86% (n = 6)

Age (years) 44 ± 11 46 ± 11 45 ± 11 c22.00 0.782 c21.00 1.000

PMD (hours) 9.00 ± 3.37 9.00 ± 4.36 11.33 ± 8.36 c21.00 0.683 c19.50 0.858

pH 6.66 ± 0.60 6.90 ± 0.59 6.53 ± 0.42 c19.50 0.556 c19.50 0.882

Toxicology N/A N/A N/A N/A

Atypical AP 42.8% (n = 3) 16.7% (n = 1) N/A

Other 28.6% (n = 2) 50.0% (n = 3) 57.1% (n = 4)

Drug-free 28.6% (n = 2) 33.3% (n = 2) 42.8% (n = 3)

Somatic Disorders N/A N/A N/A N/A

Diabetes 14.3% (n = 1) 14.3% (n = 1)

Arterial hypertension 14.3% (n = 1) 14.3% (n = 1)

Other 16.7% (n = 1) 14.3% (n = 1)

Cohort II: Extended Validation cohort (n = 27)

Non-suicide Schizophrenia (n = 13) Healthy Control (n = 14) Statistic p-value

Gender

Male 100% (n = 13) 100% (n = 14) N/A N/A

Age (years) 72 ± 9 70 ± 11 0.72; 25d 0.478

PMD (hours) 5.62 ± 2.34 5.46 ± 1.82 0.02; 25d 0.984

pH 6.88 ± 0.49 6.61 ± 0.63 1.25; 25d 0.223

SZ diagnosis N/A N/A N/A

Chronic residual 69.2% (n = 9)

Chronic paranoid 15.4% (n = 2)

Chronic disorganized 7.7% (n = 1)

Chronic catatonic 7.7% (n = 1)

Age of onset of SZ (years) 22 ± 8 N/A N/A N/A

Duration of illness (years) 51 ± 9 N/A N/A N/A

Daily AP dose (mg/day)e 562.92 ± 514.13 N/A N/A N/A

Atypical AP 7.7% (n = 1) N/A N/A N/A

Typical AP 92.3% (n = 12) N/A N/A N/A

Somatic Disorders

Diabetes 7.7% (n = 1) 28.6% (n = 4) N/A 0.326b

Arterial hypertension 15.4% (n = 2) 57.1% (n = 8) N/A 0.046b

Dyslipidemia 7.7% (n = 1) 35.7% (n = 5) N/A 0.165b

Others 15.4% (n = 2) 7.1% (n = 1) N/A N/A

Mean ± standard deviation or relative frequency are shown for each variable; PMD, post-mortem delay between death and brain sample collection; SZ, schizophrenia;

C, Healthy control group; AP, antipsychotics; N/A, not applicable.
aParanoid schizophrenia (n = 7).
bFrequencies were analysed using Fisher’s exact test.
cMann-Whitney U is shown for non-parametric variables.
dT-statistic and degrees of freedom are shown for parametric variables.
eLast chlorpromazine equivalent dose was calculated based on the electronic records of drug prescription of the patients.

https://doi.org/10.1371/journal.pone.0230400.t001
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regions of the body. Each item was classified from 0 to 4 according to the severity (0-absence,

1-minimum, 2-mild, 3-moderate, 4-severe). The mean and standard deviation of the AIMS

total score was 4.17 ± 5.22 (n = 12) with a minimum value of 0 and a maximum value of 15.

38.5% (n = 5) of the subjects showed no symptoms. 23.1% (n = 3) of the subjects showed

minimum severity of symptoms, 23.1% (n = 3) mild and 7.7% (n = 1) moderate. No subjects

showed severe symptoms.

Samples were coded by each brain bank or collection staff to protect human subject

confidentiality.

Protein extraction

Specimens of the lateral cerebellar cortex from the posterior lobe, extending from the pial

surface to white matter and only including grey matter, were dissected from coronal slabs

stored at -80 ˚C. Protein extracts were prepared from tissue samples using NP40 lysis buffer as

described previously [25]. Protein concentration was determined by Bradford assay (Biorad).

Mass spectrometry screening and data processing

Our screening strategy combined differential isotopic labelling of peptides via reductive

dimethylation with offline fractionation by SCX and liquid chromatography coupled to tan-

dem mass spectrometry (LC-MS/MS) on a hybrid linear ion trap orbitrap mass spectrometer

(LTQ-Orbitrap)) (S1A Fig). 400 μg of total protein extracts from four pooled control

(100 μg/each) and four pooled schizophrenia (100 μg/each) lysates were digested and further

processed as indicated in the S1 File. Briefly, the digested peptides were dimethyl-labelled

with either hydrogen (light peptides, control) or deuterium (heavy peptides, schizophrenia)

isotopes through a reductive dimethylation reaction as described previously [26]. Differen-

tially labelled peptides were then mixed 1:1. Dimethylated peptide mixtures were separated

by strong cation exchange (SCX) chromatography on a polysulphoethyl A column. Peptide

mixtures were analysed by LC-MS/MS. Each peptide fraction was separated by reverse phase

chromatography on a capillary column and analysed online on a hybrid linear ion trap orbi-

trap (LTQ-Orbitrap XL, Thermo Scientific) mass spectrometer for identification and relative

quantification of isotopically labelled peptide pairs. MS/MS spectra were searched against a

concatenated target-decoy Uniprot human protein database (UP000005640 version 05-23-

2017, n = 71,567 target sequences) using the Comet search algorithm (version 2015025) and

specific search parameters (see S1 File). The mass spectrometry proteomics data have been

deposited in the ProteomeXchange Consortium via the PRIDE partner repository with the

dataset identifier PXD008216 [27]. Peptide matches were filtered to <1% False-Discovery

Rate (FDR) and protein groups were filtered at �90% probability score. The log2 heavy/light

ratio for each protein was determined and transformed to a z-score [28]. A significance value

(p-value) for each protein ratio was calculated from the complementary error function for

the normalized distribution of the z-scores [28]. The FDR was computed for all the p-values

using the Benjamini and Hochberg method [29]. The FDR threshold was set at 0.1 for

selected significant proteins with consistent changes amongst peptides. Proteins were classi-

fied according to their biological function using the Human Protein Reference Database

(HPRD-http://www.hprd.org).

The altered observed proteins were compared with those previously reported in proteomic

studies of other brain regions of post-mortem samples in schizophrenia based on the gene

symbol.
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Immunoblotting

50 μg of total protein lysate from each sample were resolved by SDS-PAGE electrophoresis

and transferred to a nitrocellulose membrane. Membranes were cut at different molecular

weights and immunoblotted with rabbit polyclonal antibody against VPP1 (1:500; ab103680,

Abcam) and calmodulin (1:1000; 4830, Cell Signalling Technologies), and monoclonal anti-

bodies against parvalbumin (1:1000; MAB1572, Millipore-Chemicon) and glyceraldehyde-

3-phosphate dehydrogenase (GAPDH) (1:500000; MAB374, Millipore-Chemicon) to optimize

the limited available brain sample. All proteins were detected by a unique band at the predicted

molecular weight with the exception of VPP1 in Cohort II, where an extra lower weight molec-

ular band was detected; however, it was not analysed. An extra re-incubation was needed for

the parvalbumin cohort I immunoblot. Densitometric quantification of candidate proteins

was performed using Quantity One software (BioRad). Values were normalized to GAPDH

and a control reference sample. At least two independent immunoblot analyses were per-

formed per sample.

Statistical analysis

For validation analysis using immunoblot we used the following procedures. Normality of the

variables was assessed using the Kolmogorov-Smirnov test. Demographic and tissue-related

features of the samples were compared between schizophrenia and control conditions using

the Fisher exact test for qualitative variables and the unpaired Student’s t-test or the Mann-

Whitney U test for quantitative parametric or non-parametric variables, respectively. The dif-

ferences in protein levels between pools were analysed using the one-tailed unpaired Student’s

t test, since the direction of change was expected to be the same as in the proteomics assay. The

differences in protein levels between groups in the individual sample analysis were evaluated

using the Kruskal-Wallis one-way analysis of variance by ranks, and the Mann-Whitney U test

was used to compare differences between two groups. The Grubbs test and Pierce test were

used to detect outliers for parametric or non-parametric variables, respectively; the number of

outliers detected for each analysis is indicated in the figure legend. Spearman or Pearson corre-

lation analyses were carried out to detect association of our molecular measures with other

clinical, demographic and tissue-related variables (age, post-mortem delay, pH and toxicology,

and daily antipsychotic dose, age of onset and duration of the illness in the SZ group of Cohort

II). Statistical analysis was performed with GraphPad Prism version 5.00, with significance

level set to 0.05.

Results

Proteomic analysis of post-mortem cerebellum from schizophrenia and

control subjects

To identify proteins significantly altered in schizophrenia in the cerebellum, we analysed the

proteomes of pooled protein lysates from four subjects with schizophrenia and four control

subjects matched for gender, age and post-mortem delay (S1A Fig and S1 Table). We quanti-

fied 1412 proteins with a Protein Prophet probability score of more than 90% (S1 Dataset).

The distribution of protein heavy-to-light (H/L) ratios revealed that some proteins of the

cerebellar proteome were altered in schizophrenia (S1B and S1C Fig). We identified 99 (7%)

significantly altered proteins at a false discovery rate of 10% and a protein sequence coverage

greater than 5% (S2 Dataset). Moreover, 31 of the 99 significantly regulated proteins had been

previously reported to be altered in proteomic analyses of other brain areas in schizophrenia

(Table 2).
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We classified the altered proteins according to their biological function and compared

them to the proteins that showed no change between the two groups. Similar biological

functions were found in both sets. The most prevalent function was cell communication

and signalling pathways, and the transport function was enriched 10% in the non-regulated

proteome and 13% in the regulated proteome (S1D Fig). We generated a list of 11 protein

candidates from these functions according to two criteria: (i) the protein had been quanti-

fied with more than 4 peptides; and (ii) the protein showed a greater than 2-fold increase or

decrease (Table 3).

Validation of protein changes in cerebellum schizophrenia samples. From this list of 11

candidates, we selected three proteins for further validation by immunoblot. We selected cal-

modulin 2 (CALM2), which was identified with the highest number of peptides, and two pro-

teins with the most prominent changes in each Gene Ontology function: vacuolar proton

translocating ATPase 116 kDa subunit a (VPP1) from transport, and parvalbumin alpha

Table 2. List of altered proteins previously reported in other brain regions in proteomic studies in schizophrenia.

Brain region Gene Symbol Referencea

DLPFC GNB1, NDUFA12 (Behan et al., 2009)

GNB1, MAG (Chan et al., 2011)

VIM (English et al., 2009)

GNB1, TF (Martins-de-Souza et al.,

2009)

ATP6V0D1, SORBS1, VIM (Martins-De-Souza et al.,

2009)

PNP (Novikova et al., 2006)

TF (Pennington et al., 2008)

BCL2L13, PHB2, SORBS1, SV2B, TMEM30A (Pinacho et al., 2016)

TF (Prabakaran et al., 2004)

PVALB (Smalla et al., 2008)

OFC DMTN, PGAM5, VDAC2 (Velásquez et al., 2017)

ACC GNB1, TF (Clark et al., 2006)

AP2B1, ATP6V0A1, BAIAP2, CALM2, CCT6A, HSD17B4, NAPA,

SRPRB, VDAC2
(Föcking et al., 2015)

GNB1 (Martins-de-Souza et al.,

2010)

CC GNB1, HAPLN2, VIM (Saia-Cereda et al., 2015)

BAIAP2 (Saia-Cereda et al., 2016)

CALM1, CDC42 (Saia-Cereda et al., 2017)

Thalamus VIM (Martins-de-Souza et al.,

2010)

Hippocampus PVALB (Föcking et al., 2011)

ACOT7, CCT6A (Schubert et al., 2015)

VIM (Nesvaderani et al., 2009)

Temporal

lobe

HAPLN2 (Martins-de-Souza et al.,

2009)

CADM1, CALM1, CDC42, H3F3A, PPP3R1, VIM (Saia-Cereda et al., 2017)

PHB2, VIM (MacDonald et al., 2015)

DLPFC, dorsolateral prefrontal cortex; OFC, orbitofrontal cortex; ACC, anterior cingulate cortex; CC, corpus

callosum.
aThe complete information of the references is detailed in the S1 File.

https://doi.org/10.1371/journal.pone.0230400.t002
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(PRVA) from cell communication and signal transduction (Table 3). The calmodulin antibody

targets the calmodulin 1, calmodulin 2 and calmodulin 3 protein isoforms, all of which have

similar molecular weight and protein sequence. We confirmed by immunoblot the changes

detected by proteomics for the three candidates (suicide schizophrenia, n = 4; control, n = 4;

S1 Table and S2 Fig). The fold changes of the three candidates were similar to the fold changes

detected in the pooled analysis, being decreased for VPP1 and increased for calmodulin and

parvalbumin (S2 Fig and Table 3).

We further characterized VPP1, calmodulin and parvalbumin by immunoblot in a cohort

consisting of 7 schizophrenia subjects, 7 matched control subjects and 6 matched non-schizo-

phrenia suicide subjects (Table 1, Cohort I). No differences in age, post-mortem delay and pH

were found between comparison groups (Table 1, Cohort I). All candidate levels were referred

to GAPDH levels, which were not significantly different between the groups (Fig 1A, 1B and

1C). We found that VPP1 protein levels were again significantly decreased [t = 2.809, df = 12,

p = 0.0079; Mean ± SEM: control (C) = 1.000 ± 0.143, SZ = 0.526 ± .0.089] and calmodulin

and parvalbumin levels were also significantly increased in the schizophrenia group (calmodu-

lin [t = 3.724, df = 12, p = 0.0029; Mean ± SEM: C = 1.000 ± 0.083, SZ = 1.918 ± 0.232], parval-

bumin [t = 4.964, df = 12, p = 0.0003; Mean ± SEM: C = 1.000 ± 0.0.086, SZ = 1.524 ± 0.060]

(Fig 1A, 1B and 1C). In addition, we found significant differences between the schizophrenia

group and the non-schizophrenia suicide group in the fold changes for calmodulin and parval-

bumin, which in the suicide group showed similar levels to the control group [calmodulin

[t = 2.708, df = 11, p = 0.0204; Mean ± SEM: SZ = 1.918 ± 0.232, suicide (SC) = 1.141 ± 0.149],

parvalbumin [t = 6.129, df = 11, p< 0.0001; Mean ± SEM: SZ = 1.524 ± 0.060, SC = 0.849 ±
0.096] (Fig 1A, 1B and 1C). However, the protein levels of VPP1 were not significantly differ-

ent in the non-schizophrenia suicide group compared to the schizophrenia group [t = 0.3354,

df = 11, p = 0.7436; Mean ± SEM: SZ = 0.526 ± 0.089, SC = 0.492 ± 0.032] (Fig 1A, 1B and 1C).

Furthermore, we analysed the influence of other demographic, clinical, and tissue-related vari-

ables in the differences found in the schizophrenia group compared to control subjects. None

of our molecular measures showed any association with other variables of the study with the

Table 3. List of proteins filtered from enriched and most representative functions in the post-mortem cerebellum in schizophrenia.

Function Acc. Number Gene Symbol Protein Description (Protein Symbol) Quantified

Peptides

Ratio H/

L

log2Ratio H/

L

Transport Q93050 ATP6V0A1 V-type proton ATPase 116 kDa subunit a

isoform 1 (VPP1)

5 0.09 -3.46

A0A0A0MR02 VDAC2 Voltage-dependent anion-selective channel

protein 2 (VDAC2)

16 0.13 -2.97

Q86UR5 RIMS1 Regulating synaptic membrane exocytosis

protein 1 (RIMS1)

11 0.46 -1.12

M0R0Y2 NAPA Alpha-soluble NSF attachment protein (SNAA) 6 3.90 1.97

Q01469 FABP5 Fatty acid-binding protein, epidermal (FABP5) 6 5.20 2.38

Cell Communication / Signal

transduction

E7EMB3 CALM2 Calmodulin-2 (CALM2) 18 2.56 1.36

P37235 HPCAL1 Hippocalcin-like protein 1 (HPCL1) 9 2.64 1.40

O00533 CHL1 Neural cell adhesion molecule L1-like protein

(NCHL1)

17 3.01 1.59

Q8WUD1 RAB2B Ras-related protein Rab-2B (RAB2B) 6 3.17 1.66

Q96FQ6 S100A16 Protein S100-A16 (S10AG) 7 3.53 1.82

P20472 PVALB Parvalbumin alpha (PRVA) 8 3.65 1.87

Access numbers from Uniprot database Uniprot; H/L ratio between heavy (schizophrenia) and light (control) peptide areas; candidates selected for validation are shown

in bold.

https://doi.org/10.1371/journal.pone.0230400.t003
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Fig 1. Validation analysis of hit candidate proteins by immunoblot in Cohort I. Protein extracts from samples of the

post-mortem cerebellum of non-psychiatric control (C, n = 7), schizophrenia (SZ, n = 7) and non-schizophrenia suicide

(n = 6) subjects (Table 1, Cohort I) were analysed by immunoblot for VPP1, PRVA, calmodulin (CaM) and GAPDH and

quantified by densitometry. (A) Protein levels for each were normalized to GAPDH values and to the mean of the control

samples. Each box plot represents the median, interquartile range and range of each group from at least two independent

determinations. Statistical analysis was performed using the Kruskal-Wallis test for differences between groups (VPP1:

p = 0.0095; PRVA: p = 0.0011; CaM: p = 0.0270) and the t test for comparison between the indicated groups. (n.s.-not
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exception of parvalbumin, which showed an increase in the antipsychotic treated group

compared to drug-free subjects (Table 4, Cohort I; Dunn’s Test p<0.05), indicating that the

increase observed for parvalbumin in schizophrenia could be due to the antipsychotic treat-

ments in these subjects.

We further characterized VPP1, calmodulin and parvalbumin protein levels by immuno-

blot in a larger, independent cohort of 13 non-suicide chronic schizophrenia subjects and

14 matched control individuals (Table 1, Cohort II). All candidate levels were referred to

GAPDH levels, which were not significantly different between the groups (Fig 2A, 2B and

2C). We found that calmodulin and parvalbumin protein levels were significantly altered

in the non-suicide schizophrenia group (calmodulin [U = 45.00, p = 0.0136; Mean ± SEM:

C = 1.000 ± 0.3570, SZ = 0.6586 ± 0.2235], parvalbumin [t = 2.337, df = 25, p = 0.0139;

Mean ± SEM: C = 1.000 ± 0.110, SZ = 1.380 ± 0.163]) (Fig 2A, 2B and 2C). VPP1 protein levels

did not show a significant decrease in the schizophrenia group compared to the control group

[t = 0.1384, df = 24, p = 0.4455; Median ± SEM: C = 0.844 ± 0.148, SZ = 0.884 ± 0.249] (Fig 2A,

2B and 2C). Association analysis of other variables in this cohort of chronic schizophrenia

significant, �p<0.05, ��p<0.01, ���p<0.001, ����p<0.0001). (B) Representative Western blot images for VPP1, PRVA and

GAPDH in 3 non-psychiatric control individuals, 3 schizophrenia subjects and 3 non-schizophrenia suicide controls. (C)

Representative Western blot images for CaM and GAPDH in 3 non-psychiatric control individuals, 3 schizophrenia subjects

and 3 non-schizophrenia suicide control. See S1 Raw images for complete western blot images.

https://doi.org/10.1371/journal.pone.0230400.g001

Table 4. Association analysis of other variables in Cohorts I and II.

Cohort I

Age PMD pH Toxicology

r r r K

C-SZ cohort (n = 14)

VPP1 0.077 -0.007 -0.226 5.655

CaMa, b -0.064 -0.381 0.239 1.257

PRVA 0.112 0.006 0.071 6.600,c

Cohort II

Age PMD pH Arterial Hypertension

r r r T; df

SZ-C cohort II (n = 27)

CaMa 0.221 -0.171 -0.048 1.13; 25

PRVA 0.032 0.208 0.169 0.55; 25

Daily AP dosed Age of onset Duration of illness Body mass index Medication side-effectse

r r r’ r r’

SZ cohort II (n = 13)

CaM -0.116 -0.099 0.124 -0.170 0.062

PRVA 0.162 -0.170 -0.028 -0.231 0.189

r, Pearson’s r for parametric variables; r’, Spearman’s correlation for non-parametric variables; PMD, post-mortem delay; C, control; SZ, schizophrenia; AP,

antipsychotic.
ar of Spearman are shown for this variable.
b An outlier was detected for calmodulin (CaM) and therefore excluded from the SZ-C analysis (CaM: C, n = 13, SZ, n = 13).
cp<0.05.
dLast chlorpromazine equivalent dose was calculated based on the electronic records of drug prescriptions of the patients.
eTardive Dyskinesia assessed by Abnormal Involuntary Movement Scale;

K, Kruskal-Wallis; T, T-statistic; df, degrees of freedom; N/A, not applicable. Significant associations are indicated in bold.

https://doi.org/10.1371/journal.pone.0230400.t004
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Fig 2. Validation analysis of hit candidate proteins by immunoblot in Cohort II. Protein extracts from samples of

the post-mortem cerebellum of non-suicide chronic schizophrenia (SZ, n = 13) and control (C, n = 14) subjects

(Table 1, Cohort II) were analysed by immunoblot for the same proteins as in Fig 1A and quantified by densitometry.

(A) Protein levels for each protein were normalized to GAPDH values and to the mean of the control samples. Each

box plot represents the median, interquartile range, and range of each group from at least two independent

determinations. An outlier was detected for VPP1 protein values in the control group. Statistical analysis for

comparison between case and control groups was performed using the t test for VPP1 and PRVA and the Mann-

Whitney U test for CaM and GAPDH (n.s.-not significant, �p<0.05, ���p<0.001). (B) Representative Western blot

images for VPP1, PRVA, CaM and GAPDH in 6 non-psychiatric control individuals and 6 non-suicide schizophrenia

subjects from set 2. See S2 Raw images for complete western blot images.

https://doi.org/10.1371/journal.pone.0230400.g002
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(age, post-mortem delay, pH, arterial hypertension, antipsychotic dose, age of onset, duration

of the illness, body mass index, and medication side-effects) did not show any associations

between calmodulin and parvalbumin protein levels and other variables (Table 4, Cohort II).

Discussion

Proteomic screening of cerebellum samples from schizophrenia patients has helped to identify

candidates with a putative relevant role in this disorder. The list of altered proteins in this

region in suicide schizophrenia subjects provides the first step to analyse in depth some of

the most robust candidates. A systematic validation of three candidates in two independent

cohorts, one containing suicide individuals and another containing schizophrenia subjects

that died of natural causes, revealed that only the two EF-hand calcium-binding proteins were

altered in schizophrenia but not in non-schizophrenia suicide subjects, while the third candi-

date, a subunit of the proton pump ATPase, was linked to suicide behaviours and was not dys-

regulated in non-suicidal schizophrenia subjects. Thus, our findings propose that the EF-hand

calcium-binding proteins parvalbumin and calmodulin could be involved in the pathophysiol-

ogy of schizophrenia in the cerebellum by altering calcium-dependent signalling pathways

involved in synaptic function. Moreover, this work provides evidence for the role of VPP1 in

suicide behaviours with a possible impact on the synaptic vesicle cycle. Alterations in both the

calcium-binding proteins in schizophrenia and in the proton pump ATPase in suicide behav-

iours could lead to a disruption in the cerebellar synaptic functioning of the neuronal circuits

through different mechanisms as discussed below.

Vacuolar proton ATPase pump

Here we describe a decrease in protein levels of the subunit of the vacuolar-type proton pump

ATPase (VPP1) in suicide subjects with schizophrenia or other psychiatric disorders, but not

in non-suicidal elderly schizophrenia patients, suggesting that this protein may be involved in

suicide behaviours rather than in schizophrenia. Another report has also found a decrease in

VPP1 in younger schizophrenia subjects in the anterior cingulated cortex using the Stanley

Medical Research Institute’s (SMRI) Array Collection (http://www.stanleyresearch.org), which

included 4 suicides out of 15 subjects [30]. In line with our results, VPP1 has been reported in

a list of genes differently expressed in the frontal cortex in subjects with major depression that

committed suicide [31]. VPP1 is part of the large multi-subunit complex of the vacuolar pro-

ton pump ATPase. This complex provides a proton motive force and is involved in many cel-

lular and physiological functions (reviewed in [32]). V+H-ATPase pumps are composed of two

functional components, the cytoplasmic V1 component with the catalytic activity for ATP

hydrolysis and the V0 component, which forms a membrane embedded component that is

required for proton translocation across the membrane, which occurs through the a subunit

(reviewed in [32]). The VPP1 subunit is highly expressed in neuronal cells. This subunit is a

major component of synaptic vesicles and provides the pH gradient and membrane potential

required for neurotransmitter accumulation in the initial phase of the synaptic vesicle cycle

[33,34]. Later studies provided evidence that subunit a of the V0 domain is also involved in

synaptic vesicle release by mediating the membrane fusion events downstream of the t-

SNARE docking of vesicles in a calcium/calmodulin-dependent manner [35,36]. Indeed, the

VPP1 orthologue in fly neurons directly interacts with calmodulin, another protein that we

found altered in schizophrenia (see above), and this interaction is required for recruiting cal-

modulin to synapses and for the viability function of VPP1 [35,37]. In addition, neurons lack-

ing VPP1 in Drosophila melanogaster and Caenorhabditis elegans accumulate vesicles in the

synaptic terminals, supporting the role of this protein in neurotransmitter release into the
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synaptic cleft [35,38,39]. Thus, the reduction of VPP1 that we found in the cerebellum in sui-

cide subjects could be impairing normal neurotransmitter accumulation in synaptic vesicles

and their subsequent release into the synaptic terminals. A limited synaptic response of the

cerebellar neurons could contribute to the altered functioning of cerebellar circuits in suicide

behaviours.

In agreement with this idea of altered synaptic activity in suicide are the findings of multiple

studies. The regulation of the expression of genes involved in neurotransmission and synaptic

function has been linked to suicide behaviours in different psychiatric disorders, including

schizophrenia and major depression [31,40–43]. For example, increased expression of the

5-hydroxytryptamine (5-HT) receptor type 2A has been reported in the amygdala of suicide

subjects together with increased 5-HT utilisation [44–46] as well as in other brain areas such as

the hippocampus and the prefrontal cortex [47,48], suggesting a widespread dysregulation of

the serotonin system in suicide subjects, which has led to numerous studies of serotonin func-

tion in the context of suicidality [49,50]. Thus, changes in intracellular proteins involved in

neurotransmitter trafficking are likely to have a widespread effect on this neurotransmitter

system. Interestingly, the cerebellum has been described as one of the neural routes altered in

suicide behaviours related to monoaminergic signal transduction [51]. There is evidence of

altered subcellular localisation of 5-HT2A receptors in Purkinje cells as well as an increase

in white matter in the cerebellum in schizophrenia [52], suggesting a possible compensatory

mechanism for compromised 5-HT synthesis or release in this region. Some reports have also

linked reduced cerebellar activity and reduced grey matter with the ideation of suicide or sui-

cide attempt, respectively [53,54]. Thus, the reduction of VPP1 observed in our study in sui-

cide subjects in the cerebellum could alter the refilling of monoaminergic neurotransmitters

(5-HT mainly) into synaptic vesicles and their release in cerebellar circuits. Moreover, it might

mediate the decreased activity reported in this area in suicide behaviours.

EF-hand calcium-binding proteins

Calcium homeostasis has been suggested to be disrupted in schizophrenia [55,56]. In our

study, we found altered levels of two proteins that are sensitive to changes in the intracellular

concentrations of calcium and that play a key role in signalling transduction and synaptic

functioning.

Calmodulin. Calmodulin (CaM) belongs to the large family of EF-hand calcium-binding

proteins. Here, we report an increase in calmodulin levels in the cerebellum in schizophrenia

in the chronic SZ group with a mean age of 44 years, while calmodulin was found to be down-

regulated in a late elderly chronic schizophrenia cohort (mean age of 74 years). A previous

study in an early elderly chronic schizophrenia cohort (mean age of 68) also reported a down-

regulation of calmodulin protein levels in different brain areas [57], while another study of

chronic schizophrenia (mean age 67) reported an upregulation of calmodulin protein levels in

nuclear-enriched cell samples from the corpus callosum and anterior temporal lobe [58]. In

line with our study, these reports suggest a different regulation of calmodulin that may depend

on age, brain region, or the cellular or subcellular locations under study. Calmodulin is the

major calcium-binding protein present in the brain and acts as a calcium sensor, detecting and

responding to biologically relevant changes in intracellular concentrations of calcium [59–61].

Calcium regulates calmodulin by changing its subcellular localization, promoting interaction

with many proteins or by inducing conformational changes that allow the interaction and acti-

vation of specific targets and the subsequent triggering of a signalling cascade [59]. Calmodu-

lin-dependent kinase II (CaMKII) has been proposed as a susceptibility gene in schizophrenia

[62]. CaMKII is an important calmodulin effector in neurons that has been implicated in
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activity-dependent functions such as gene transcription, signalling and synaptic and dendritic

development, maturation and function as well as in cognition [60,63]. The list of calmodulin

effectors is extensive and includes plasma membrane calcium pumps, various ion channels,

protein kinases and receptors, among others [59,61,64]. Calcium homeostasis is thus tightly

regulated and features downstream of some of the mechanisms suggested to be altered in

suicide subjects, such as an increase in 5-HT2A signalling, whose downstream intracellular

cascades converge in the release of intracellular calcium. Thus, the calmodulin-dependent

functions that could be dysregulated in schizophrenia in the cerebellum are wide, leading to

an important impact on cerebellar circuit functioning and formation in accordance with the

connectivity deficits and the neurodevelopmental hypothesis for schizophrenia [1,65]. In our

study, we also found in suicide schizophrenia subjects a decrease in one interactor of calmodu-

lin in flies, the orthologue of VPP1, which is required for recruiting calmodulin to synapses

[37,66]. Indeed, the Ca2+-CaM regulation of V100 (VPP1 orthologue in flies) has been pro-

posed as a positive regulator of the assembly of the SNARE complex on distinct vesicles and

subsequent neurotransmitter release [37]. If this interaction is present in cerebellar neurons,

this evidence could either suggest that the upregulation of calmodulin in the cerebellum in sui-

cide schizophrenia subjects could be a mechanism to compensate for the possible lower abun-

dance of calmodulin at the synapses due to a reduction in VPP1 levels or that it could be a

compensatory mechanism for the lower formation/release of synaptic vesicles [37,66]. Further

investigations will be needed to confirm this possibility. However, in chronic SZ patients that

died from natural causes, calmodulin was decreased, suggesting a possible constitutive down-

regulation of calmodulin in chronic schizophrenia. In this context, VPP1 levels were not

altered, raising the possibility that the recruitment of calmodulin to the synapse could be cor-

rect and the reduction of calmodulin could be impacting on other calmodulin-dependent

functions in the cerebellum.

Parvalbumin. Here, we report an increase in parvalbumin in the cerebellum in schizo-

phrenia independently of the mechanism of death. Parvalbumin, like calmodulin, also belongs

to the large family of EF-hand calcium-binding proteins. However, parvalbumin is a calcium

buffer protein, which are proteins essential for modulating calcium homeostasis in neurons

and are implicated in the subtle regulation and timing of calcium signals pre- and post-synap-

tically [67–69]. Parvalbumin is a spatial and temporal regulator of calcium transients that mod-

ulates calcium pools and that is critical for synaptic plasticity, such as short-term facilitation

[67,68]. Furthermore, it has been proposed that it could also regulate calcium signalling as a

slow-onset calcium sensor in addition to being regulated by calcium [70]. Parvalbumin is

expressed in subpopulations of GABAergic interneurons in the brain, which are considered

more metabolically and electrically active than the neighbouring neurons and play an impor-

tant role in the pathophysiology of schizophrenia [14,71,72]. Indeed, a decrease in the expres-

sion of parvalbumin in patients with SZ in different brain regions including the hippocampus

and prefrontal cortex has been a consistent finding in human post-mortem studies [56,73] and

in animal models of schizophrenia [74–77]. However, little is known about parvalbumin pro-

tein levels in the cerebellum of SZ patients. In the cerebellum, parvalbumin localizes to the

axon, soma and dendrites of Purkinje, stellate, basket and a small proportion of Golgi cells

[70]. Studies in parvalbumin-deficient mice suggest that this protein is required for normal

locomotor activity in order to maintain the normal spontaneous arrhythmic and asynchro-

nous firing pattern of Purkinje cells [78,79]. These mice also showed behavioural deficits

linked to schizophrenia and autism, such as deficits in sensorimotor gating and novelty seek-

ing and reduced social interaction and communication [80,81]. The increase in parvalbumin

we observed in the cerebellum in schizophrenia could produce an imbalance in the regulation

of intracellular calcium concentration and/or altering calcium-dependent signalling during
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synapse activity and this could have an impact on the behavioural changes observed in schizo-

phrenia. The increase in parvalbumin could also reflect a change in the number of certain sub-

populations of parvalbumin-positive neurons in the cerebellum in schizophrenia. However, a

reduction in Purkinje neurons in the cerebellum has been reported in subjects with schizo-

phrenia [72], suggesting that this possibility may be more likely due to the contribution from

other types of parvalbumin-expressing neurons in the cerebellum. Further studies will be

needed to elucidate these possibilities.

Functional neuroimaging studies show a predominantly hypoactivation of the cerebellum

in schizophrenia [82,83]. Thus, based on our results, the altered EF-hand calcium-binding pro-

teins found in the cerebellum could have an impact on synaptic transmission and underlie the

reduced cerebellar activity observed in people with schizophrenia. Further studies are needed

to investigate this hypothesis.

Limitations

We acknowledge several limitations of our study. First, we used pooled samples in the proteo-

mic screening. Although this type of design is a useful approach for detecting commonly

altered pathways [84–88], it precludes the discovery of individual-specific changes or control-

ling for inter-individual variations. In our immunoblot analysis, the results obtained with

pooled samples were recapitulated in individual samples from a similar cohort, suggesting that

molecular changes in the cerebellum could be conserved across individuals. Second, the sam-

ple size of Cohort I is limited. Further analysis in a larger, independent cohort of samples

including suicidal groups will be needed to explore how stable our findings are in other

patients. Third, antipsychotic treatments could influence the results. To control for this vari-

able, we have used the blood toxicology data in Cohort I and chlorpromazine equivalent daily

dose data in Cohort II, showing that the increased expression of parvalbumin could be due to

the antipsychotic treatments in Cohort I but not in Cohort II. Further pharmacological studies

in cellular and animal models, as well as in drug-naive patients, will help to clarify the effect

of antipsychotics on parvalbumin. Moreover, no information about the duration of the treat-

ments was available for the schizophrenia groups. Thus, the effect of long-term treatments on

our molecular variables could not be assessed. Fourth, the schizophrenia subjects used in our

proteomic screening committed suicide, which could be influencing the findings observed.

We have controlled for this possibility in the validation of candidates by including a group

with subjects who committed suicide but with varying psychiatric diagnoses instead of schizo-

phrenia and an independent cohort with non-suicide schizophrenia subjects that died from

natural causes. These analyses have allowed us to detect that VPP1 alteration could be a com-

mon feature of suicide and suggest that this candidate may only be altered in suicide subjects

rather than in schizophrenia. It may also be possible that alterations of these proteins could

occur in other psychiatric disorders. Further studies of these candidates in anxiety and adjust-

ment disorders will be helpful to explore this possibility. Last, the majority of the subjects

included in both cohorts were male. Further studies in a cohort with equal representation of

both genders would be of interest.

Conclusions

In summary, our findings provide evidence for an upregulation of calcium-binding proteins in

the cerebellum in schizophrenia together with a calmodulin downregulation in chronic schizo-

phrenia in elderly subjects, suggesting an altered modulation of calcium signalling and calcium

transients in synaptic responses in this region in schizophrenia with an impact on the normal

functioning of cerebellar circuits. In addition, our study provides evidence for the alteration of
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VPP1 in the cerebellum linked to suicide behaviours, suggesting an involvement of defective

synaptic vesicle cycle and the release of neurotransmitters in suicide behaviours.

Supporting information

S1 Fig. Experimental strategy for large-scale quantitative proteomic analysis and identifi-

cation of differentially expressed proteins in cerebellum in schizophrenia. (A) Protein

lysates from the post-mortem cerebellum of control (n = 4) and suicide schizophrenia (SZ,

n = 4) subjects (Table 1) were processed as described in the experimental procedures section.

In the analysis in pools, samples from the same group were pooled. In the analysis of individual

samples from schizophrenia, a pool of controls was used to compare each individual sample of

schizophrenia. Subsequently, protein database searches, peptide quantification and data analy-

sis were performed as described in the experimental procedures section. A panel of 3 candi-

dates from significantly regulated proteins was selected for further validation by immunoblot:

first, in a pilot cohort which includes a group of non-schizophrenia suicide subjects (Table 1;

Cohort I: SZ (n = 7), non-SZ suicide (n = 6), control (n = 7)) and then in a larger cohort of

non-suicide chronic schizophrenia subjects (Table 1, Cohort II: non-suicide SZ (n = 13),

control (n = 14)). (B) Distribution of the number of peptides quantified per protein from the

data set of 2289 quantified proteins. (C) Normalized distribution of z-scores for confidently

quantified proteins (>2 peptide sequences) (n = 1148). (D) Gene ontology classification of

biological functions for non-significantly and significantly altered proteins with low variation

in the cerebellum in SZ compared to the control. Transport (GO:0006810); Cell communica-

tion (GO:0007154); Signal transduction (GO:0007165); Metabolism (GO:0008152); Energy

pathways (GO:0006091); Regulation of nucleobase, nucleoside, nucleotide and nucleic acid

metabolism (GO:0019219); Cell growth and/or maintenance (GO:0008151); Protein metabo-

lism (GO:0019538); Biological process unknown (GO:0000004).

(TIF)

S2 Fig. Validation of hit candidate proteins by immunoblot in pools. Pooled protein

extracts from samples of the post-mortem cerebellum of control (C, n = 4) and schizophrenia

(SZ, n = 4) subjects from the UPV/EHU brain collection (S1 Table, a subgroup from Cohort I,

Table 1) used in the proteomic screening were analysed by immunoblotting for VPP1, PRVA,

calmodulin (CaM) and GAPDH. Protein levels for each hit were quantified by densitometry

and normalized to GAPDH values and to the reference control sample. Images show represen-

tative immunoblots of a pool of control (left band, C) and a pool of schizophrenia (right band,

SZ) subjects. Analysis was performed in duplicate. Bars represent mean ± standard deviation

of the analysis of duplicates from two independent dissections, with the exception of PVALB,

whose data are from a duplicate analysis of one dissection. Statistical analysis was performed

using the t test (n.s.-not significant, ��p<0.01, ���p<0.001).

(TIF)

S1 Raw images. Validation analysis of hit candidate proteins by immunoblot in Cohort I.

Protein extracts from samples of the post-mortem cerebellum of non-psychiatric control (C,

n = 7), schizophrenia (SZ, n = 7) and non-schizophrenia suicide (n = 6) subjects (Table 1,

Cohort I) were analysed by immunoblot for VPP1, PRVA, calmodulin (CaM) and GAPDH

and quantified by densitometry. Images show uncropped images of the area of the membrane

incubated with anti-VPP1, anti- parvalbumin (PRVA) (A), anti-CaM (B) and anti-GAPDH (A

and B) of immunoreactivities of Fig 1. The samples shown in Fig 1 are delimited by a dashed

line on the complete Western blot membranes. Arrows indicate the analysed band. X, sample
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not included in Fig 1. �, Non-analysed immunoreactivity.

(TIF)

S2 Raw images. Validation analysis of hit candidate proteins by immunoblot in Cohort II.

Protein extracts from samples of the post-mortem cerebellum of non-psychiatric control (C,

n = 14) and schizophrenia (SZ, n = 13) subjects (Table 1, Cohort II) were analysed by immu-

noblot for VPP1, PRVA, CaM and GAPDH and quantified by densitometry. Images show

uncropped images of the area of the membrane incubated with anti-VPP1, anti-PRVA, anti-

CaM and anti-GAPDH of immunoreactivities of Fig 2. The samples shown in Fig 2 are delim-

ited by a dashed line on the complete Western blot membrane. Arrows indicate the analysed

band. X, sample not included in the Fig 2. �, Non-analysed immunoreactivity.

(TIF)

S1 Table. Demographic, clinical and tissue-related features of cases used for quantitative

proteomic analysis. Mean ± standard deviation or relative frequency are shown for each vari-

able; PMD, post-mortem delay; SZ, schizophrenia; C, healthy control group; AP, antipsychot-

ics; N/A, not applicable. 1Paranoid schizophrenia (n = 7). 2Mann-Whitney U is shown for

non-parametric variables.

(DOCX)

S1 Dataset. List of reliably quantified proteins in the cerebellum in schizophrenia. (Proba-

bility>90%).

(XLSX)

S2 Dataset. Proteins significantly regulated in the cerebellum in schizophrenia, classified

according to their biological function (FDR<0.1, coverage >5%).

(XLSX)

S1 File. Supplementary material and methods.

(DOCX)
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Rodriguez-Mias, América Vera, Judit Villén, Belén Ramos.

Funding acquisition: Belén Ramos.

Investigation: Francisco Vidal-Domènech, Gemma Riquelme, Raquel Pinacho, Ricard Rodri-

guez-Mias, Judit Villén, Belén Ramos.

Methodology: Ricard Rodriguez-Mias, Judit Villén, Belén Ramos.

Resources: Alfonso Monje, Isidre Ferrer, Luis F. Callado, J. Javier Meana.

Supervision: Belén Ramos.

PLOS ONE Proteomic signature of cerebellum in schizophrenia

PLOS ONE | https://doi.org/10.1371/journal.pone.0230400 July 8, 2020 17 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0230400.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0230400.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0230400.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0230400.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0230400.s008
https://doi.org/10.1371/journal.pone.0230400


Writing – original draft: Belén Ramos.

Writing – review & editing: Francisco Vidal-Domènech, Raquel Pinacho.

References
1. Andreasen NC, Nopoulos P, O’Leary DS, Miller DD, Wassink T, Flaum M. Defining the phenotype of

schizophrenia: cognitive dysmetria and its neural mechanisms. Biol Psychiatry. 1999; 46: 908–20.

https://doi.org/10.1016/s0006-3223(99)00152-3 PMID: 10509174

2. Parker KL, Kim YC, Kelley RM, Nessler AJ, Chen K-H, Muller-Ewald VA, et al. Delta-frequency stimula-

tion of cerebellar projections can compensate for schizophrenia-related medial frontal dysfunction. Mol

Psychiatry. 2017; 22: 647–655. https://doi.org/10.1038/mp.2017.50 PMID: 28348382
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