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Abstract

The voltage trace of neuronal activities can follow multiple timescale dynamics that arise from correlated membrane
conductances. Such processes can result in power-law behavior in which the membrane voltage cannot be characterized
with a single time constant. The emergent effect of these membrane correlations is a non-Markovian process that can be
modeled with a fractional derivative. A fractional derivative is a non-local process in which the value of the variable is
determined by integrating a temporal weighted voltage trace, also called the memory trace. Here we developed and
analyzed a fractional leaky integrate-and-fire model in which the exponent of the fractional derivative can vary from 0 to 1,
with 1 representing the normal derivative. As the exponent of the fractional derivative decreases, the weights of the voltage
trace increase. Thus, the value of the voltage is increasingly correlated with the trajectory of the voltage in the past. By
varying only the fractional exponent, our model can reproduce upward and downward spike adaptations found
experimentally in neocortical pyramidal cells and tectal neurons in vitro. The model also produces spikes with longer first-
spike latency and high inter-spike variability with power-law distribution. We further analyze spike adaptation and the
responses to noisy and oscillatory input. The fractional model generates reliable spike patterns in response to noisy input.
Overall, the spiking activity of the fractional leaky integrate-and-fire model deviates from the spiking activity of the
Markovian model and reflects the temporal accumulated intrinsic membrane dynamics that affect the response of the
neuron to external stimulation.
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Introduction

The leaky integrator properties of a neuron are determined by

the membrane resistance and capacitance which define a single

time constant for the membrane voltage dynamics [1–3].

However, the voltage trace of real neurons can follow multiple

timescale dynamics [4–6] that arise from the interaction of

multiple active membrane conductances [7–11]. Such processes

can result in power-law behavior in which the membrane voltage

cannot be characterized with a single time constant [5,12–15].

Since power-law dynamics can span all the scales of interest of

neuronal behavior [16–20], it is necessary to develop a framework

to study such processes and their effect on the electrical and

computational capacities of neurons.

In the classical leaky integrate-and-fire model the temporal

evolution of the voltage is local [21,22]. The value of the voltage at

a given time depends only on the value of the voltage in the

immediate previous time step. Such a process is called Markovian.

However, coupling of active conductances does not allow the value

of the voltage to be memoryless [11,17,23–26]. Instead, long time

correlations affect the membrane voltage for hundreds of

milliseconds. The emergent effect of these membrane correlations

is a non-Markovian process that can be modeled with a fractional

derivative [27–31]. A fractional derivative represents a non-local

process [32–34] in which the value of the variable is determined by

integrating a temporal weighted voltage trace, also called the

memory trace. Although fractional derivatives and integrals are

almost as old as traditional calculus [32,35,36], they have not been

widely used due to limited computer power. In the fractional

integrate-and-fire model the exponent of the fractional derivative

goes from 0 to 1, with 1 representing the normal derivative. As the

exponent of the fractional derivative decreases, the weights of the

voltage trace increase. Thus, the value of the voltage is increasingly

correlated with the trajectory of the voltage in the past.

We developed and analyzed a fractional leaky integrate-and-fire

model. The only parameters of the model are the conductance,

capacitance, and the fractional exponent. By varying the fractional

exponent our model reproduces the upward and downward spike-

frequency adaptations found experimentally in pyramidal neurons

[37,38], tectal neurons [39] and fast-spiking cells of layer IV in the

rat barrel cortex [40]. Furthermore, the model replicates not only

the adapting firing rate but also the long first-spike latency seen in

pyramidal neurons in layer V [38]. The model also produces

spikes with longer first-spike latency and high inter-spike

variability with power-law distribution, which cannot be repro-

duced by the classical integrate-and-fire model. We further

analyze spike adaptation and the responses to noisy and oscillatory

input. Overall, the spiking activity of the fractional integrate-and-

fire model deviates from the spiking activity of the Markovian

model and reflects the temporal accumulated intrinsic membrane
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dynamics that affect the response of the neuron to external

stimulation.

Results

The objective of this project was to develop a fractional leaky

integrate-and-fire model of neuronal activity to study spiking

adaptation. For this purpose we developed a fractional differential

model of the leaky integrator combined with a regular spiking

generation mechanism. Complex multiple timescale neuronal

systems can be studied using fractional or power-law dynamics;

examples range from ion channel gating properties, to diffusion of

intracellular signals in Purkinje and pyramidal cells, synaptic

strength and firing rate adaptation [14,19,27,37,41–44].

The fractional leaky integrate-and-fire model
We define the fractional leaky integrate-and-fire model as

Cm
daV

dta
~{gL(V{VL)zIinj, ð1Þ

along with the fire-and-reset condition

if V (t)~Vth, then spike at time t and V?Vreset, ð2Þ

where V is the membrane potential, and a is the order (exponent)

of the fractional derivative, with 0vaƒ1. In the case of a~1, the

fractional model is the same as the classical leaky integrate-and-fire

model. When the membrane potential reaches a threshold (Vth), a

spike is generated and V is reset to Vreset for a refractory period

tref . The passive membrane time constant is tm~Cm=gL.

Parameter values are given in Table 1 (see Methods). For

0vav1, the fractional derivative of the voltage (
daV

dta
in Eq. 1)

can be defined with the Caputo [45] fractional derivative

daV

dta
~

1

C(1{a)

ðt
0

V ’(t)

(t{t)a dt: ð3Þ

By numerically integrating the above fractional derivative (Eq.

3) using the L1 scheme [46], we approximate the fractional

derivative of order a, where 0vav1,

daV

dta
&

(dt){a

C(2{a)

XN{1

k~0

½V (tkz1){V (tk)�½(N{k)(1{a){(N{1{k)(1{a)�
" #

,

ð4Þ

where V (t0)~V0, and tk is the kth value of time such that

tk~kdt. For all simulations, we use the time step dt~0:1 ms. By

combining the right sides of Eqs. 1 and 4, and solving for V at time

tN (V (tN )) that depends on all past values of V (from V (t0) to

V (tN{1)), we obtain

V tNð Þ&(dt)aC(2{a)
{gL(V (tN{1){VL)zIinj

Cm

� �
zV (tN{1)

{
XN{2

k~0

½V (tkz1){V (tk)�½(N{k)(1{a){(N{1{k)(1{a)�
" # ð5Þ

where we define the Markov term weighted by the gamma

function as

(dt)aC(2{a)
{gL(V (tN{1){VL)zIinj

Cm

� �
zV (tN{1), ð6Þ

and the voltage-memory trace as

XN{2

k~0

½V (tkz1){V (tk)�½(N{k)(1{a){(N{1{k)(1{a)�: ð7Þ

The voltage-memory trace (Eq. 7) can be further divided into

the differentiation of past voltage (DV (tk)) (Eq. 8) weighted by a

function WN (a,k) that depends on a (Eq. 9):

DV (tk)~V (tkz1){V (tk), for k~0,1,2, � � � ,N{2, and ð8Þ

WN (a,k)~(N{k)(1{a){(N{1{k)(1{a),

for k~0,1,2, � � � ,N{2,
ð9Þ

where k is the time counter for past events and the positive integer

N corresponds to the value of time tN (tN = Ndt) at which the

voltage V (tN ) is integrated (Eq. 5).

The voltage-memory trace contains information of all the

previous voltage activity of the neuron. Clearly, this is a

computationally intensive problem due to the expanding matrix

over time. We integrate this equation using our recently developed

Fractional Integration Toolbox [47]. Since the fractional integra-

tion in Eq. 5 needs at least two inputs, V (t1) is first integrated

using the classical leaky integrate-and-fire model.

Author Summary

Spike adaptation is a property of most neurons. When
spike time adaptation occurs over multiple time scales, the
dynamics can be described by a power-law. We study the
computational properties of a leaky integrate-and-fire
model with power-law adaptation. Instead of explicitly
modeling the adaptation process by the contribution of
slowly changing conductances, we use a fractional
temporal derivative framework. The exponent of the
fractional derivative represents the degree of adaptation
of the membrane voltage, where 1 is the normal leaky
integrator while values less than 1 produce increasing
correlations in the voltage trace. The temporal correlation
is interpreted as a memory trace that depends on the
value of the fractional derivative. We identify the memory
trace in the fractional model as the sum of the instanta-
neous differentiation weighted by a function that depends
on the fractional exponent, and it provides non-local
information to the incoming stimulus. The spiking
dynamics of the fractional leaky integrate-and-fire model
show memory dependence that can result in downward or
upward spike adaptation. Our model provides a framework
for understanding how long-range membrane voltage
correlations affect spiking dynamics and information
integration in neurons.

Fractional Integrate-and-Fire Model
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The fractional leaky integrate-and-fire model shows spike
adaptation

In this section we show the spiking properties of the fractional

leaky integrate-and-fire model and compare our results to

experimental data, mainly from cortical pyramidal neurons.

Spike adaptation depends on the value of the fractional

order. We start by comparing the classical and fractional leaky

integrate-and-fire models. The classical leaky integrator model is

fully described by the cell membrane resistance and capacitance

(Fig. 1A left). As mentioned before we propose that the emergent

contribution of slowly varying conductances results in voltage

dynamics that can be modeled with a fractional leaky integrator

(Fig. 1A right). We first compared the voltage response of the

model without the spiking mechanism, thus studying only the sub-

threshold dynamics. In such conditions the voltage response of the

fractional model to a step current using a~1 is identical to the

response of the classical model (Fig. 1B left). However, as a
decreases the voltage response shows adaptation that is not

characterized by tm (Fig. 1B right). Instead, the voltage response

increasingly shows power-law adaptation as the value of a
decreases (Fig. 1C). Thus, the fractional derivative transforms

the sub-threshold voltage response to a constant stimulus from

exponential to a power-law.

We characterized the spike adaptation of the model as a

function of a by stimulating the model with a step current and

measuring the response to the first spike and the properties of the

inter-spike intervals (ISIs). Our results show that the sub-threshold

voltage dynamic of the fractional model is reflected in the spiking

activity of the neuron, with no adaptation and identical spiking

activity as the classical model when a~1 and increasing spike

adaptation as a decreases (Fig. 1D). Our model shows an inverted

dependency of the latency of the first-spike to the value of a
(Fig. 1E). The first-spike latency is common in the activity of

neurons and has been suggested as a source of information for

decision accuracy [48–50]. The ISI of the model in response to

constant stimulation shows increasing adaptation as the value of a
decreases. An analysis of the ISI responses shows that for values

av0:2 the slope of the ISI follows a power-law

distribution(Fig. 1F). Power law distribution of ISIs may maximize

firing rate entropy [51]. It is important to emphasize that this

variability arises from the intrinsic properties of the model since

the input is constant. As a consequence our fractional order model

produces spike trains with a wide range of inter-spike intervals,

with power-law dynamics for smaller values of a (Fig. 1G).

The formulation of the fractional leaky integrate-and-fire model

and the results in Fig. 1 suggest that the activity of the neuron

depends on the integration of previous activity beyond the value of

tm. If the neuronal dynamics depend on the memory trace then

the amplitude and time of a previous input would affect the spiking

activity of the fractional model. To determine this point we

injected two different amounts of a hyper-polarizing current for a

fixed period followed by an identical depolarizing current (Fig. 2A).

As is well known, the firing rate response of classical leaky

integrate-and-fire model shows basically identical responses except

for the time to first spike after the onset of the depolarization.

However, the fractional model suggests a more complex response

in which not only the time of the first spike but the instantaneous

firing rate of the ensuing spiking response depends on the value of

the hyper-polarizing current (Fig. 2B). Similar results are obtained

when there is a fixed hyper-polarizing current applied for different

amounts of time. In this case, the longer the fractional model

integrates the hyper-depolarizing stimulus, the more it affects the

delay to first spike and spike adaptation (Fig. 2C).

Since the response of the fractional model is history dependent,

the firing rate curve versus injected current might change

depending on previous input. To test this possibility we injected

either a hyper-polarizing (pre-stimulus low, Fig. 2D top, dashed

lines) or depolarizing (pre-stimulus high, Fig. 2D top, solid lines)

current to the model before injecting current for 6 s to calculate

the firing rate. We calculated the mean firing rate of the spike train

produced during the last 3 s of the stimulation. This quantification

of the firing rate shows that as a decreases the threshold to

generate spiking activity increases. However, the firing rate curves

resulted in the same value independent of the previous stimulation

(Fig. 2E, the dashed lines for the pre-stimulus low and solid lines

for the pre-stimulus high overlap), thus showing that after 3 s the

fractional model reaches steady state while showing a typical Type

I dependency [52,53]. Although the steady state response of the

system is independent of past activity, the initial instantaneous

firing rate of the first inter-spike interval shows dependence on

previous activity [54]. For av1:0, the initial firing rate calculated

from (pre-stimulus high) (Fig. 2F, solid) is always higher than the

initial firing rate calculated from (pre-stimulus low) (Fig. 2F,

dashed). Thus, this analysis shows that although the model is

integrating all the voltage-memory trace the influence of this

component decreases over time.

Adaptation to periodic inputs. We decided to systemati-

cally study the response properties of the fractional model to

Table 1. Parameter values for the fractional leaky integrate-and-fire model.

Parameter Value Description

Cm 0.5 nF membrane capacitance

VL 270 mV leak reversal membrane potential

Vrest 270 mV resting membrane potential

Vreset 270 mV reset membrane potential

V0 270 mV initial membrane potential

Vth 250 mV threshold membrane potential

gL 25 nS leak conductance

Iinj 3 nA injected (applied) current

tref 5 ms refractory period

For the majority of our simulations we used the parameters described in the table. However, to better fit experimental data we used in some cases tref~8 ms and
gL~16:7 nS that results in tm~30 ms.
doi:10.1371/journal.pcbi.1003526.t001

Fractional Integrate-and-Fire Model
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oscillatory input from the sub-threshold to the spiking regime. A

common quantification method of the sub-threshold properties of

a neuron is to use a frequency varying sinusoidal current, also

known as a ZAP current (Fig. 3A top). As is well known [55,56],

the amplitude of the sub-threshold voltage oscillations of the

classical model decreases as the input current frequency increases.

This is a consequence of the low-pass properties of the classical

leaky integrator. Our model replicates this behavior for a~1.

However, the voltage response decreases in amplitude as a
decreases (Fig. 3A). We quantified the input-output relationship of

the model by calculating the impedance magnitude in the

frequency domain (DZD) [57,58] (see Methods). As expected for

the passive membrane model, the peak impedance is at the lowest

frequency and there is no resonance for a~1. This property of the

model is robust and not affected even for smaller values of a.

However, for smaller values of a the impedance becomes almost

constant across all tested frequencies (Fig. 3B left). We also

analyzed the phase shifts between the input current and the output

voltage. The phases are always negative indicating lags in which

the voltage oscillation follows the input current. However, the

phase angle becomes less negative when a decreases indicating

smaller lags which are practically the same across all frequencies

(Fig. 3B right). Overall, our results show that lower values of a
result in a low but homogeneous filter of oscillatory inputs across

all frequencies.

In order to initially characterize the spiking response to an

oscillatory input we used a sinusoidal current with constant

frequency and amplitude (Fig. 3C). We chose parameters that

generated supra-threshold spiking at the peak of the oscillation and

no firing at the trough for a~1. As expected, as the value of a
decreases the response of the neuron is delayed. Interestingly, this

results in a spiking response to the oscillatory input in which the

number of spikes per cycle increases slowly. This behavior is due to

the accumulation of the input in the memory trace of the fractional

model (Fig. 3D). We then characterized the response of the neuron

to supra-threshold oscillatory input (firing at any value of the input

current) while varying the period of the stimulation. For this

purpose we calculated the gain of the spiking activity of a neuron,

which is defined as the ratio of the amplitude of the instantaneous

firing rate to the amplitude of a sinusoidal input current with a

fixed period length. Experimental results have shown that the

firing rate of L2/3 pyramidal neurons behaves as a fractional

differentiator [37] in which the firing rate follows the fractional

derivative of the input. In this case, it is
2p

T

� �a

sin
2pt

T
z

ap

2

� �

when the input is sin
2pt

T

� �
with period T . We simulated such an

experiment in our model, with a~0:15 (Fig. 3E). We then fitted

the resulting instantaneous firing rate with a sine wave in which

the free parameters were the amplitude and the phase. Our results

show, as demonstrated experimentally, that the gain decreases as a

function of the period following a power-law [37]. A least-square

fit of these data points shows again~0:15, which matches the order

of the fractional leaky integrate-and-fire model used in the

simulation (Fig. 3F). Although it has been reported that the phase

lead is frequency independent [37], our results show that the phase

lead decreases as the period of the sine wave increases (Fig. 3G),

which is consistent with more recent reports [59]. The gain power-

law behavior and phase lead response are preserved even in the

presence of noise added to the sine wave input (not shown), again,

replicating experimental results. This analysis shows that the

fractional sub-threshold voltage behavior of the model is reflected

in the spiking activity of the neuron.

There is an increasing body of evidence showing that when a

cortical neuron is stimulated with alternating current steps the

spiking activity of the neuron shows adaptation dependent on the

period of the stimulus [37–40]. Our model reproduces this

dynamic, particularly when av0:2 (Fig. 3). As done in the

Figure 1. Comparison between the classical and fractional leaky integrate-and-fire models. (A) Schematic circuit diagrams for the
classical (left) and fractional order (right) leaky integrate-and-fire models. (B) Sub-threshold response in the classical (left) and fractional models (right).
Both stimulated with Iinj~0:3 nA. (C) The sub-threshold voltage response converges to a power-law function when a decreases. (D) While the
classical model (left) generates regular spiking to a constant input, the fractional model (right) shows first spike latency and spike adaptation. Both
models stimulated with Iinj~3 nA. (E) The first-spike latency produced by the fractional model becomes longer when a is smaller. (F) The inter-spike
interval histogram as a function of a. The histogram shows power-law distribution as a?0:2. (G) The inter-spike intervals decrease over time as a
function of a. The color key in C applies to F and G.
doi:10.1371/journal.pcbi.1003526.g001

Fractional Integrate-and-Fire Model
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previous paragraph we calculated the instantaneous firing rate of

the model when delivering a supra-threshold alternating square

current. As expected, when a~1:0 the spike frequency shows

adaptation only due to the membrane time constant (not shown).

As shown experimentally and for values of av1, when the input

current makes a transition from a low input state to a high input

state the spiking activity increases and then relaxes over time to a

lower firing rate. We call this downward spike adaptation.

Similarly, when the input goes from a high to low state the firing

rate decreases and then adapts back to a higher firing rate. We call

this upward spike adaptation (Fig. 3H). As done experimentally,

we fitted a single exponential to the downward or upward

adaptation responses. The results show that the time constants of

the upward and downward adaptation are constant across the

multiple periods of the input signal when the signal has a fixed

period (not shown). However, again as shown experimentally, the

time constant of adaptation is a function of the period of the input

(Fig. 3I and J) [37]. Our model further replicates the firing rate

adaptation reported by the same group for neurons receiving an

input of period 16 s (Fig. 1C in [37]). In their report the authors

calculated an average value of a*0:15 which is well fitted by our

model using the same value obtained by a least-squares fit

Figure 2. The mean and instantaneous firing rate responses of the fractional model to constant input. (A) Two levels of hyper-polarizing
current followed by the same depolarizing current result in different spiking patterns. (B) The instantaneous firing rate against time for different
conditions described in A. (C) The instantaneous firing rates against time for identical hyper-polarizing current (23 nA) with different durations. (D–F)
Comparison of mean and instantaneous firing rates. (D) Top: Applying a hyper-polarizing (pre-stimulus low, dashed lines) current before application
of current steps to calculate firing rate responses. Bottom: as in the Top but applying a depolarizing (pre-stimulus high, solid lines) current. (E) The
mean firing rates (mean FR) vs injected current show Type I response for both (pre-stimulus low) and (pre-stimulus high) current input paradigms
described in D. The dashed and solid lines corresponding to pre-stimulus low and high, respectively, overlap. (F) The instantaneous firing rate to the
stimulations described in D calculated from the first inter-spike interval depends on past activities. Dashed lines correspond to pre-stimulus low
paradigm, solid lines correspond to pre-stimulus high.
doi:10.1371/journal.pcbi.1003526.g002

Fractional Integrate-and-Fire Model
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(Fig. 3K). Our modeling results indicate that the fractional order of

the derivative is less than 0.2 in order to replicate experimental

results, which is in good agreement with the fractional exponent

determined experimentally [37].

History dependent spike adaptation. In this section we

analyze the adaptation and history dependence of the ISI. The

spiking dynamics are affected by the long-range dependence of the

voltage dynamics and the intrinsic membrane conductances. Both

long-term and short-term intrinsic memory traces are observed in

pyramidal neurons [37,38,59]. It has been recently found that the

spiking activity of some Layer 5 pyramidal neurons in primary

motor cortex has a long first spike latency and its ISIs decrease

over time [38]. Using standard parameters we varied the value of a
when stimulating the model with a step current (Fig. 4A left). We

then fitted the plot of the ISI versus the ISI number to the data

reported by Miller et al. (Fig. 2B in [38]). We found that when

av0:2 the dynamics of the ISI can be reproduced (Fig. 4A right).

The same authors studied adaptation by applying a supra-

threshold current for five cycles separated by an inter-stimulus

interval (gap) [38]. We implemented this protocol in our model

and compared the dynamics of the inter-spike intervals during

Cycle 1 and Cycle 5. When the gap is as short as 100 ms, our

Figure 3. Sub-threshold and spiking fractional dynamics to oscillatory inputs. (A–B) Voltage responses, impedances, and phase angles of
the fractional order model in response to a ZAP current. (A) A time varying sub-threshold current input (Top) and the voltage responses for three
different values of a (Bottom). (B) Impedance and phase analysis for the simulations in A as a function of a. (C–D) Spiking response to just above
threshold sinusoidal input (C, Top). The neuron generates an increasing number of spikes per cycle (C, Bottom). (D) The number of spikes per cycle for
identical input as in C and varying a. (E–G) Response to supra-threshold sinusoidal input. (E) The fractional model with a~0:15 instantaneous firing
rate (black) in response to a sine wave input (blue). (F) The gain of the firing rate with respect to the period length of the input (Top) shows power-
law dynamics when plotted in log-log (Bottom). The slope of the best-fit line (red) for the log-log gain curve is -again . (G) The phase lead of the firing
rate in response to the same sine wave current. (H–J) Response to square periodic input. (H) In response to square wave current (Top), the fractional
model displays upward and downward spike rate adaptation for av1. (I) The instantaneous firing rate shows upward and downward adaptations in
response to changes in the period of the square input (4, 8 and 16 s). (J) The time constants of both upward and downward adaptations in (I) increase
when the period of the alternating input current increases. (K) The spike rate adaptation of L2/3 neocortical pyramidal neurons with period 16 s
(Fig. 1C in [37]) is fitted with the spike rate adaptation of the fractional model with a~0:15+0:01 (95% confidence interval) using least-squares
fitting. The alternating input current is switched between 3.4 and 4 nA. For E–K we used tref~8 ms and tm~30 ms to better replicate the
experimental data.
doi:10.1371/journal.pcbi.1003526.g003

Fractional Integrate-and-Fire Model
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results show that there is spike adaptation during Cycle 1 but very

little in Cycle 5 (Fig. 4B). In contrast, when the gap is increased to

longer durations the spiking dynamics of Cycle 5 is very similar to

that of Cycle 1 (Fig. 4C). We calculated the ratio of the second-to-

last ISI in Cycles 1 and 5 to quantify spike adaptation as a function

of the gap. Using this metric Miller et al. found that total recovery

required a gap of 1 s (their Fig. 7C [38]); in our case the recovery

takes about 1.5 s. However, absolute recovery of the first ISI

between Cycles 1 and 5 took longer than 25 s (not shown). Similar

to spike adaptation to constant input, neurons respond with a

silent period after strong stimulation [18]. We replicated this

phenomenon by decreasing a to 0.1 and injecting a square current

with different amplitudes on top of a constant supra-threshold

input for a fixed period of time (Fig. 4D left). After the square input

was turned off there was a pause in the spiking activity that

depended on the input strength (Fig. 4D right). Of course, since

the maximum firing rate is bounded by the refractory period then

the system reaches a limit (around 950 ms and 9 nA). This

qualitative behavior of the fractional model is in good agreement

with the behavior of the integrate-and-fire model with adaptation

current (Fig. 5 in [18]), and with the firing behavior observed

experimentally in rat subthalamic neurons (Fig. 7 in [60]). Thus,

there is a slowly decaying memory trace that can affect the ISI

adaptation for very long periods of time. Our analyses suggest that

all these different neurons might be fractional differentiators.

Spike rate adaptation to changes in the variance of noisy

input. The adapting behavior of neurons also depends on the

variance of the noisy input current [37,61]. We injected a noisy

current with zero mean and varying standard deviation to the

fractional model with a~0:15 (Fig. 5A top). Our results show that

the spiking activity of the neuron has upward and downward firing

rate adaptation (Fig. 5A bottom) (compare with Fig. 1D in [37]

and Fig. 3A in [61]). As in the case of the oscillatory noiseless

input, the adaptation time constant increases directly proportional

to the period of the input (not shown). This property allows the

model to follow changes in input variance as opposed to the

classical leaky integrate-and-fire model (Fig. 5B). Changing the

variance of the input noise can affect the spike rate of the classical

integrate and fire model only when the mean current is very close

to the threshold current (not shown). Thus, the fractional model

can reproduce variance-dependent adapting behaviors such as the

ones observed in L2/3 neocortical pyramidal neurons (Fig. 5B in

[37]) and barrel cortex neurons (Fig. 2 in [62]).

Spike-time reliability of the fractional integrate-and-fire

model. Unlike constant inputs, stochastically fluctuating inputs

can generate spike trains with highly reliable spike timing across

repetitions [63–66]. The reliability of spike patterns is influenced

by the mean, variance, and frequency of the stochastic input [67–

69]. To test the reliability of the fractional model we again

injected a constant current with added Gaussian noise. The value

of the current was chosen for each a so that the model produced

low firing rate for all values of a (average 14 spikes/s). A raster

plot analysis of our results shows that the inter-trial variability

decreases as a decreases (Fig. 6A). We quantified this reliability

using a widely used correlation-based measure [68–71] (see

Methods). This analysis shows that the spike reliability increases

as the fractional exponent a decreases (Fig. 6B). The reliability of

a neuron also increases when the variance of a time-varying

signal embedded in a noisy signal increases [63,64,69,72]. We

added a fixed noisy signal g(t) to the injected current and variable

noise to analyze reliability for a~0:1. The results show that the

spike-time reliability depends on the variance of the embedded

signal (Fig. 6C) [63,64,69,72]. Taken with our previous results,

our analysis shows that when a is decreased the fractional model

produces spike trains with strong spike time adaptation and high

spike reliability.

The properties of the fractional derivative that provide a
memory trace to spiking dynamics

The voltage memory provides non-local dynamics that affects

the spiking activity of the cell. The voltage-memory trace decays

over time and is dependent on the value of a. For a~1 the process

is identical to the classical leaky integrator, while for values of av1
the past trajectory activity increasingly contributes to the present

value of the voltage. Since the weight WN (a,k) is always positive,

the sign of the voltage-memory trace depends on DV (tk). With

positive applied current the fractional model generates action

potentials (Fig. 7A), with DV (tk) positive until the cell fires a spike

and is reset (Fig. 7B). However, when there is a spike and voltage is

reset, DV(tk) becomes negative. After the voltage escapes from the

refractory period, the voltage-memory trace is positive until the

next spike (Fig. 7C). As opposed to the classical leaky integrate-

and-fire model, the memory trace accumulates over multiple

spiking events, changes its dynamics, and thus it affects the ISI

(Fig. 7D).

The weight of the voltage-memory trace WN (a,k) is determined

by the fractional order a. The weight WN (a,k) is 0 for a~1 and it

is always positive for av1. Fig. 7E shows the results of a

simulation with standard parameters for 100 time steps (N~100).

The x-axis corresponds to the 1–100 temporal weights at t = N.

The y-axis corresponds to the value of each weight WN (a,k). The

increase in weight can be interpreted as the influence of the past

state on the future state of the voltage. In a classical leaky integrator

any past value is forgotten as a function of the time constant. In the

fractional leaky integrator all the past values could continue to

influence the future behavior of the system, particularly, for low

values of a. Fig. 7F illustrates this point by showing the dynamics of

the weight of the initial condition (WN (a,0)) as a function of a. The

other important term that comes from the fractional derivative is the

fractional coefficient K(a,dt)~(dt)aC(2{a) which is a weight

factor for the Markov process (Eq. 6). When a becomes smaller, this

function grows rapidly and it makes the effect of the input current

on the voltage dynamics stronger (Fig. 7G). It is the combination of

the weighted Markov process and the opposite effect of the memory

trace that contribute to the long term spiking dynamics of the

fractional model.

Most of our results suggest that the value of a has to be low in

order to reproduce the spike timing adaptation observed experi-

mentally. Although the fractional model has a continuous

dependence on a the power-law dynamics cause the effects to be

nonlinear. For a close to 1 the effects of the Markov term weighted

by the gamma function dominate the dynamics. It is only when a
decreases that the voltage-memory trace can slow down the time

evolution of the voltage. This is illustrated by plotting the value of

the Markov term versus the memory trace for simulations in which

we apply a step current (Fig. 8). When a~1 the memory trace is

zero and the voltage only moves along the Markov term axis. As the

value of a decreases the voltage trajectory is deflected, taking longer

to depolarize. The power-law dependency results that when the

value of av0:2 in that the memory trace dominates in the initial

moments of the depolarization and slows down the dynamics (Fig. 8).

Comparison to other models of fractional integrate-and-
fire

When the input current is constant and a~1, the sub-threshold

voltage dynamics (Eq. 1) have an analytic solution which is the

same as the solution of the classical integrate-and-fire model [73].

Fractional Integrate-and-Fire Model
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Similarly, for constant input current Langlands et al. [74] derived

the analytic solution of the sub-threshold voltage for aƒ1 from the

fractional cable equation. In that model the integration of the

memory trace is restarted after every spike, thus wiping out the

memory trace (see Methods). Such a system is capable of

reproducing the delay to first-spike to constant input but then

produces regular spiking (Fig. 9A). Our fractional model replicates

the same result when we reset the memory trace after every spike

(Fig. 9B). However, our model greatly differs from the analytical

solution when taking into account the cumulative effect of the

memory trace across multiple spiking cycles (Fig. 9C–D). Although

both the analytic and full model with memory reset can capture

short term memory, they do not produce spike adaptation. Hence,

the full fractional model without any memory reset captures the

multi-scale processes that spans the spiking activity of neurons.

Discussion

Spike timing adaptation is a widespread phenomenon through-

out the nervous system [37,39,75]. In particular, neocortical

pyramidal cells produce spike adaptation with multiple timescale

dynamics [5,37,59]. Our model is capable of reproducing multiple

sub-threshold and spike timing adaptation properties reported by

different groups and with different experimental conditions. The

conclusion from fitting our model to experimental results is that

av0:2. This indicates that the order of the fractional derivative has

to be very low for the memory trace to overcome the classical

contribution of the leaky integrator. Furthermore, the fractional

model is capable of producing spike trains with high adaption and

reliability. Our work provides a framework to study spike adaptation

as part of power-law dynamics and the techniques used here can be

Figure 4. Inter-spike interval adaptation and history dependence. (A) Left: The spiking activity of the fractional model with a step current of
4 nA. Right: The inter-spike interval (ISI) curve of Layer 5 pyramidal neurons in primary motor cortex (Fig. 2B in [38]) is fitted with the ISI curve of the
fractional model with a~0:19+0:02 (95% confidence interval with a least-squares fit). The first 7 ISIs of the model are removed for best fit. (B–C)
Modeling the intrinsic memory of adapting pyramidal cells. (B) Left: The voltage trace of the model in response to a step current separated by 0.1 s
inter-stimulus interval. Right: The ISIs of Cycle 1 and 5 as a function of ISI number. (C) The same as panel B, but with longer inter-stimulus interval, 2 s.
For A–C a~0:19. (D) Memory induced pauses of the model with a~0:1 depend on the magnitude of the current pulse. Left: Voltage traces with
shorter and longer pauses in response to 1 nA and 4 nA current pulses, respectively. Right: The pause of the spiking activity increases as a function of
the magnitude of the current pulse. For all we used tref~8 ms and tm~30 ms to better replicate the experimental data.
doi:10.1371/journal.pcbi.1003526.g004

Fractional Integrate-and-Fire Model

PLOS Computational Biology | www.ploscompbiol.org 8 March 2014 | Volume 10 | Issue 3 | e1003526



applied experimentally to determine if a neuron is following power-

law adaptation from the sub-threshold to firing rate regimes.

Using fractional dynamics to study non-local interactions
The fractional model can produce different degrees of adapting

electrical activities by modifying the fractional exponent a. A

fractional order derivative captures the long-range correlations of

the a system models that results in non-local dynamics. Fractional

differential equations have been used in biological systems

to capture the long-term memory effects of the dynamics

[33,74,76–81]. For example, fractional order derivatives have

been observed in the vestibular-ocular system [27,82] and in the

gating dynamics of ion channels [44,83]. Power law statistical

distributions of a neuronal response also exhibit fractional order

dynamics [37]. The voltage dynamics in the fractional order

model depend on both the Markov term (immediate past) and the

voltage-memory trace that integrates all past voltage values. The

behavior of the voltage-memory trace is similar to the behavior of

the adaptive filter in the work of Pozzorini et al. [59], although in

their work this filter is described as the sum of the spike-triggered

current and a moving threshold. The voltage-memory trace also

corresponds to the adaptation integral used in other works [18]. In

this context our fractional order leaky integrate-and-fire model is a

unified mathematical and computational framework that can be

used to describe power-law dynamics and long-range correlations

in neuronal activity. The fractional derivative can capture

relationships between the distribution of conductances that can

be complicated to model using explicit techniques.

Figure 5. Firing rate adaptation to changes in input variance. (A) Top: Noisy input current with two standard deviations: Iinj~6+Aj(t) nA,
A = 1 or 2 nA. Bottom: The firing rate to noisy input current calculated from 100 trials, a~0:15. (B) Top: Time varying noisy input current. Iinj~5+
Aj(t) nA, A = 1, 4, 2, 1, 2, 1, 4 and 2 nA, consecutively, and the noise j(t) is filtered with an alpha function f (t)~te({t=t) with t~0:2 ms. Bottom:
Instantaneous firing rate in response to the input current for a~1:00 (blue) and a~0:15 (black). For both tref~8 ms and tm~30 ms.
doi:10.1371/journal.pcbi.1003526.g005

Figure 6. Spike-time reliability increases as the fractional exponent a decreases. (A) Raster plots of the response of the fractional model to
a noisy input under three different values of a. (B) Spike-time reliability of the fractional model increases as the fractional exponent a decreases. (C)
Reliability increases when the standard deviation of an embedded fixed signal increases. See Text and Methods for details.
doi:10.1371/journal.pcbi.1003526.g006
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The biophysical interpretation of the fractional order of a
neuron

In biophysical systems, the voltage-memory trace might

represent spike-triggered mechanisms that cause adaptation. For

example, the voltage-memory trace might represent the slowly

inactivating potassium-like current that induces the upward spike

adaptation shown in Layer V pyramidal neurons of primary motor

cortex [38], suggesting that these neurons are fractional differ-

entiators. Alternatively, the voltage-memory trace can correspond

to other adaptation currents such as calcium-activated after-

hyperpolarization currents [5], slow sodium-channel inactivation

currents [84,85], or a combination of several adaptation currents.

Many studies have used models with slow adaptation currents and

exponential functions to analyze spike time adaptation [5,54,84].

Some of these models can produce similar properties found in

fractional dynamics. For example, the Hodgkin-Huxley model

with slow after hyper-polarization currents can produce multiple

timescale adaptation processes [37]. The Generalized leaky

integrate-and-fire model with an adaptive filter (GLIF-j) produces

spike adaptation with power-law dynamics [59]. Both the power-

law dynamics and history-dependent properties of the GLIF-j
model correspond to that of the fractional leaky integrate-and-fire

model. However, the fractional model provides a general way by

simplifying the complicated details shown in other models. The

fractional model exhibits spike adaptation with power-law

dynamics by integrating all the past voltage values without any

additional adaptation currents. Power law functions generalize the

mechanism underlying exponential processes and are better

alternatives to describe scale invariant spike adaptation

[17,18,42,59,86,87]. The fractional model shows new directions

for studying spike adaptation using fractional derivatives and

power-law dynamics instead of classical derivatives and exponen-

tial functions.

The key parameter in our fractional model is a. Experimental

results have suggested that a can be as small as 0.15 for

neocortical pyramidal neurons [37]. Our fitting of these data also

resulted in a value of a&0:15. Fits to the response of Layer 5

pyramidal motor cortex neurons resulted in a value of a&0:19
[38]. Thus, the experimental results and our modeling analysis

suggest that the biophysically important values of a are when

av0:2. However, it is clear that if a is much closer to 0, the

system takes a longer time to generate spikes or never fires spikes

at all, depending on the magnitude of the stimulus, so the feasible

range of the fractional exponent might be between 0.05 and 0.2.

The value of a might correspond to the type, function, or location

of specific neurons [38]. These regional differences are not

exclusive to the cortex, for example, Purkinje cells in Lobule X

and Lobules III – V show different degrees of spike adaptation

[75]. Thus, different values of a can be used to map the general

voltage and spike time adaptation properties of neurons

throughout the brain.

Figure 7. The properties of the voltage-memory trace. (A–D)The changing response of the memory trace across multiple spikes, a = 0.2. (A)
Voltage trace of the fractional model stimulated with Iinj~3 nA. Spikes have been clipped to emphasize the sub-threshold dynamics. (B) DV for the
data in A. (C) The memory trace for the data in A. (D) Overlapped memory traces for different inter-spike intervals during the same simulation. (E–G)
The dynamics of the weight of the voltage-memory trace WN (a,k) and the fractional coefficient depend on the fractional exponent a. (E) When a
decreases the weights increase. (F) The value of the weight WN (a,0) as a function of a and time. (G) The fractional coefficient of the Markov process
K(a,dt) increases when a is decreased.
doi:10.1371/journal.pcbi.1003526.g007

Figure 8. The memory trace dominates the fractional dynamics
for low values of a. Markov term versus memory trace as a function of
a. The fractional model was stimulated with constant current (0.3 nA)
for 5 seconds. For a~1 the memory trace is zero and the voltage only
moves along the y-axis.
doi:10.1371/journal.pcbi.1003526.g008
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Determining if a neuron is a fractional differentiator
Previous work has provided an experimental foundation to

determine if a spiking neuron is a fractional differentiator [37].

Our framework provides a more general methodology to

determine power-law neuronal dynamics from the sub-threshold

to the spiking regime. At the sub-threshold level there are several

measurements that can indicate that the membrane of the neuron

follows a power-law. For example:

N The flattening of the impedance and phase response to the

ZAP current.

N A power-law behavior can be measured by applying a low

depolarizing current and plotting Log(voltage/time) versus

Log(time). A straight oblique line indicates power-law

behavior.

In the same experiment a series of protocols can also be applied

to determine if the spiking activity follows power-law dynamics.

Some of these measurements are straightforward, others require

longer recordings. For instance:

N The ISI histogram plotted as Log(Counts) versus Log(ISI)

follows a power-law.

N The instantaneous firing rate response to step currents depends

on the value of the current before the stimulation.

N Using a sinusoidal or square oscillatory input with varying

period, fit a time constant to the adapting firing rate. If the

time constant depends on the stimulus this suggests a memory

trace.

N The gain of the spiking neuron follows a power-law.

N The ISI adaptation depends on the inter-cycle (gap) time and

the pause length of the neuron depends on the strength of the

previous stimulus.

N The neuron shows firing rate adaptation to changes in

variance with fixed mean.

The computational importance of power-law spike time
adaptation

Although power-laws are found at multiple scales of biological

organization, their function and importance are still debated

[88,89]. In our work we propose that the membrane voltage of

neurons can follow a power-law due to the emergent property of

the combination of multiple active conductances. The value of the

fractional derivative can be mapped to spike time adaptation

dynamics taking place in multiple cell types across the brain.

Computationally, a low value of a results in spiking dynamics that

are at the same time highly adaptable and reliable. Thus, neurons

following power-law adaptation could have a large operational

range while providing the reliability to filter out noisy signals and

increase information capacity. The lack of a sub-threshold

resonance frequency allows the neuron to filter signals homoge-

neously over a wide range of frequencies. In such a case, the

fractional leaky integrate-and-fire model provides the basis to

study the computational capacities and information processing

properties of neurons showing high degree of spike time

adaptation.

Methods

Implementing the fractional leaky integrate-and-fire
model

The equations were coded and implemented using our recently

developed fractional integration toolbox [47] and the simulation

software package MATLAB [90]. The toolbox can be downloaded

at www.utsa.edu/SantamariaLab. The parameters for all simula-

tions were fixed and are described in Table 1.

Figure 9. The fractional model and its analytic solution with memory reset show no spike adaptation. (A) The spike train produced by
the analytic solution with memory reset displays regular spiking. (B) The spike train produced with the fractional model with memory reset also
displays regular spiking. (C) The spike train produced by the full fractional model without any memory reset display spike adaptation. (D). The firing
rate curves of the analytic solution, fractional model with memory reset and full fractional model. For all panels a = 0.1, Iinj~8 nA, tm~30 ms and
tref~8 ms.
doi:10.1371/journal.pcbi.1003526.g009
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Comparing models to experiments
In order to compare to experiments we extracted the data

from the referenced material using WebPlotDigitizer (http://

arohatgi.info/WebPlotDigitizer/). Then we imported the data

points into Matlab. We then ran simulations varying the value of

a, usually between [0.5, 1.0] at 0.1 steps. We minimized the

mean squared error between the data and the simulations,

E~(1=N)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
(data{simulation)2

q
, where N is the number

of points. We determined the 95% confidence intervals by

then varying a around this minimum value of E and

calculated when it changed for an amount larger than 5% in

either direction.

Modeling oscillatory input
In order to get only sub-threshold oscillations we used

Iinj~0:3 sin(2pft) where f ~100
2

1ze({t=1500)
{1

� �3

Hz is a

sigmoidal frequency function of time that varies from 0 Hz to

100 Hz in 10 seconds. The impedance as a function of frequency

is defined as Z(f )~V (F )=I(f )~R(f )zjX (f ), where V is the

membrane voltage, I is the input current, R is the resistance and X

is the reactance. The absolute value of Z can be calculated using a

fast Fourier transform DZD~DFFT(V )=FFT(I)D and the phase as

phase~ arctan (X (f )=R(f )) [57].

Reliability quantification
The simulations to study spike time reliability were generated by

injecting a current Iinj~IzAj(t) nA, where j(t) is a Gaussian

white noise with zero mean and standard deviation A = 0.03 nA.

The stochastic input j(t) is filtered with an alpha function

f (t)~te{t=t with time constant t~3 ms. The spike trains

were obtained from N~50 trials, and the trail-to-trail variability

of those N different responses were caused by the noise j(t) while I
and A were fixed [68,71]. In order to avoid initial condition

effects we analyzed the spike trains of the last 5 s from 10 s

simulations.

The reliability measurements were computing using a correla-

tion-based measure [68–71]. In brief, the spike trains obtained

from N trails were smoothed with a Gaussian filter of width 3sc,

and then pairwise correlated. The correlation-based measure

reliability R is defined as

R~
2

N(N{1)

XN{1

i~1

XN

j~iz1

Si
!
:Sj
!

DSi
!

DDSj
!

D
, ð10Þ

where N is the number of trials and the vectors Sj
!

(i~1,:::,N)

are the filtered spike trains, filtered using sc~3 ms. The values

of R range from 0 (lowest reliability) to 1 (highest reliability),

and the reliability R was computed for a in the range [0.1,

1.0].

For the quantification of the reliability in the coding of

an embedded signal we injected the following current

Iinj~IzAj(t)zsf g(t) nA, where I~5 nA is the mean current

which generates very low firing rate, A~1 nA is the standard

deviation of the intrinsic noise, and sf is the standard devia-

tion of the embedded signal also generated by a Gaussian

noise and varies from 0 to 6 nA. The intrinsic and embedded

signals are filtered with an alpha function f (t)~{te{t=t where

t~3 ms.

The comparison of the analytical and full fractional
model

We compared our fractional model to a previously developed

analytical model of a fractional leaky integrate-and-fire [74].

Briefly, this analytical model is obtained with the following steps.

Equation 1 can be converted to

daV

dta
~

{1

tm

(V{VL)z
Iinj

gL

� �
, ð11Þ

where tm~
cm

gL

is the membrane time constant. By applying
d1{a

dt1{a

on both sides we obtained

dV

dt
~

{1

tm

d1{a

dt1{a
(V{VL)z

Iinj

gL

� �
: ð12Þ

Equation 12 is solved using the Fourier-Laplace transform (for

details see [36,74]) and the solution is given by

V (t)~ VLz
Iinj

gL

� �
z V (t0){VL{

Iinj

gL

� �
Ea {

(t{t0)a

tm

� �
, ð13Þ

where Ea is the Mittag-Leffler function [36], and for small times

this function is approximated as

Ea {
(t{t0)a

tm

� �
&exp {

(t{t0)a

tmC(1za)

� �
: ð14Þ

For the simulation of this model presented in our work we used

the full Mittag-Leffler function instead of this approximation. In

Eq. 13 the term with the Mittag-Leffler function (right side and

right term) represents the memory trace. As in the classical

integrate and fire model when the voltage reaches Vth a spike is

generated and V is reset to Vreset for a refractory period tref . The

subthreshold voltage is integrated using Eq. 13 with initial voltage

V (t0) = Vreset and new initial time t0. During each integration

cycle the Mittag-Leffler function restarts from 0 since the initial

time t0 reset to a new value. We call this memory reset. Thus, this

model wipes out the memory trace after every spike, in contrast to

our model that integrates the entire voltage trace. As a result, the

inter-spike intervals of the spike train of the analytic solution are

equal. If the approximation (Eq. 14) is used to simulate the voltage,

the firing rate can also be approximated analytically by combining

Eq. 13 and Eq. 14 (see also [74]). Let Tf be the time when the

voltage takes to increase from Vreset to Vth and to fire. The time Tf

is given by [74]

Tf & tmC(1za)ln

Vreset{VL{
Iinj

gL

Vth{VL{
Iinj

gL

0
BB@

1
CCA

2
664

3
775

1
a

: ð15Þ
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Using the above the firing rate is approximated by

firing rate&
1

Tf ztref

: ð16Þ

In the Results section we compare this analytical model with our

model with memory reset (re-starting the memory trace after every

spike) and with the full model (integrating the memory trace from

the beginning of the simulation).
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traitée comme une polarisation. J Physiol Pathol Gen 9: 620–635.

2. Stein R (1967) Some models of neuronal variability. Biophys J 7: 37–68.

3. Tuckwell HC (1988) Introduction to theoretical neurobiology: Volume 1, Linear
cable theory and dendritic structure and stochastic theories. Cambridge

University Press, Cambridge.

4. Ulanovsky N, Las L, Farkas D, Nelken I (2004) Multiple time scales of

adaptation in auditory cortex neurons. J Neurosci 24: 10440–10453.

5. La Camera G, Rauch A, Thurbon D, Lüscher HR, Senn W, et al. (2006)
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