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Abstract

Flag leaf is an important organ for photosynthesis of wheat plants, and a key factor affecting

wheat yield. In this study, quantitative trait loci (QTL) for flag leaf morphological traits in

wheat reported since 2010 were collected to investigate the genetic mechanism of these

traits. Integration of 304 QTLs from various mapping populations into a high-density consen-

sus map composed of various types of molecular markers as well as QTL meta-analysis dis-

covered 55 meta-QTLs (MQTL) controlling morphological traits of flag leaves, of which 10

MQTLs were confirmed by GWAS. Four high-confidence MQTLs (MQTL-1, MQTL-11,

MQTL-13, and MQTL-52) were screened out from 55 MQTLs, with an average confidence

interval of 0.82 cM and a physical distance of 9.4 Mb, according to the definition of hcMQTL.

Ten wheat orthologs from rice (7) and Arabidopsis (3) that regulated leaf angle, develop-

ment and morphogenesis traits were identified in the hcMQTL region using comparative

genomics, and were speculated to be potential candidate genes regulating flag leaf morpho-

logical traits in wheat. The results from this study provides valuable information for fine map-

ping and molecular markers assisted selection to improve morphological characters in

wheat flag leaf.

Introduction

Wheat is one of the world’s three major crops, providing approximately a quarter of food for

human. The continuous increase of wheat yield is crucial to meet the challenge of increasing

food consumption [1]. Increasing planting density by improving the plant architecture of

wheat on limited land is an effective strategy to increase yield [2]. In crops, canopy leaves, espe-

cially flag leaf, are the main source of dry matter accumulation in the grain filling stage [3, 4],

and flag leaf provide 41–43% of carbohydrates for grain filling [5]. Therefore, optimizing the

morphological structure of flag leaves is a suitable method to improve plant architecture, pho-

tosynthetic efficiency and yield.
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Wheat flag leaf morphological traits are quantitative traits influenced by many environmen-

tal factors and controlled by multiple genes [6–8]. Many genes and QTLs that control leaf size

and angle have been reported in rice [9–13]. For example, the mutation of OsDWARF gene

resulted in the defect of brassinosteroid synthesis, which led to the reduction of plant height

and the upright leaves [14]. In maize, Ku et al. [15] detected a major QTL qLA2 controlling the

angle of flag leaf on chromosome 2. Tian et al. [16] found that UPA1 and UPA2 genes can

increase the planting density by regulating the leaf angle of plants, thus increasing the maize

yield. QTLs for flag leaf length, width, area and angle have been identified on 21 chromosomes

in wheat [17–22]. For example, Liu et al. [19] detected three major QTLs on 3D, 7B and 7D for

flag leaf angle. Liu et al. [23] found that TaSPL8 regulated leaf development by influencing

auxin signal and brassinolide biosynthesis pathway, and affected flag leaf angle in wheat.

Wang et al. [24] introduced the chromosome 1P of the wild related species Agropyron crista-
tum into common wheat to significantly reduce plant height and leaf size, thereby improving

plant architecture and achieving dense planting.

Currently, many QTLs for flag leaf morphological related traits in wheat have been identi-

fied in previous studies. In order to make more effective use of the QTL for flag leaf morpho-

logical traits in wheat breeding, and deeply understand the genetic mechanism underlying flag

leaf morphological traits, it is necessary to comprehensively analyze these QTLs to identify sta-

ble major genetic loci in wheat. QTL meta-analysis has been shown to be an effective method

for integrating QTLs from various experiments onto a consensus map, narrowing QTL confi-

dence intervals, and identifying reliable and stable meta-QTLs (MQTL) [25]. This method has

been widely used in different crops for various traits, such as nematode resistance in soybean

[26], yield under drought conditions in rice [27], yield and quality traits in cotton [28], yield in

maize [29], and yield, nitrogen use efficiency, quality traits, disease resistance and abiotic stress

tolerance in wheat [30–37].

With the development of high-throughput SNP sequencing technology, QTL mapping for

complex quantitative traits based on natural populations using genome-wide association stud-

ies (GWAS) has been widely applied in rice [38], maize [39], wheat [40] and barley [41]. In

addition, certain important QTLs have been identified by cross-validation based on the results

of GWAS and linkage analysis in previous studies [42, 43]. These studies indicated that the

QTL location information identified by GWAS can effectively verify important QTLs, so that

key genomic regions and candidate genes controlling important quantitative traits can be

mined.

To date, QTL meta-analysis for flag leaf morphological traits has not been reported in

wheat. In this study, QTL meta-analysis was performed based on QTL for flag leaf morpholog-

ical traits published since 2010, and GWAS was used to further validate the MQTL. Compara-

tive genomics was used to identify wheat orthologs from rice and Arabidopsis thaliana to

discover genomic regions and important candidate genes affecting flag leaf morphology in

wheat. The aim of this study was to better understand the genetic mechanism underlying flag

leaf morphological traits, and to provide useful information for genetic improvement of plant

architecture and yield potential in wheat.

Materials and methods

Collection of QTL for wheat flag leaf morphological traits

Using public databases such as China National Knowledge Infrastructure (CNKI, https://

www.cnki.net/), National Center for Biotechnology Information (NCBI, https://www.ncbi.

nlm.nih.gov/) and Google Scholar (https://scholar.google.com/), 26 papers about QTL map-

ping for flag leaf length, width, area, length-width ratio and angle in wheat from 2010 to
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concerned year were collected [17–22, 44–63]. The information including population type and

number, molecular marker type, LOD value, contribution rate and confidence interval was

summarized in Table 1. Twenty papers were set aside for analysis because QTL flanking mark-

ers identified in some studies were not integrated into the consensus map.

Integration of QTL for flag leaf morphological traits in wheat

In this study, the high-density map developed by Venske et al. [64] was used as the consensus

map, which mainly includes three types of markers: SNP, DArT and SSR markers. SNP mark-

ers were derived from SNP array and genotyping-by-sequencing (GBS) [65, 66]. SSR markers

came from three genetic maps (Wheat, Consensus SSR 2004, Wheat Composite 2004 and

Table 1. QTL reported for flag leaf morphological traits in wheat.

Reference Population Population type Population size Trait Num. of QTL Marker type

[17] Yanda1817×Beinong6 RIL 269 FLL, FLW, FLA, FLANG 48 SNP, SSR

[18] Harry×Wesley RIL 204 FLL, FLW, FLA 21 GBS

[19] ND3331×Zang1817 RIL 213 FLL, FLW, FLA, FLANG 23 SSR

[20] H461 × CM107 RIL 200 FLL 3 DArT

[21] 20828×Chuannong 16 RIL 199 FLL, FLW, FLA, FLWR, FLANG 122 55KSNP, SSR

[22] 20828×SY95-71 RIL 128 FLL, FLW, FLA, FLWR, FLANG 86 55KSNP

[44] Wangshuibai×Mianyang 99–323 NILs 132 FLW 1 SSR

Wangshuibai×PH691 125

[45] Xiaoyan81×Xinong1376 RIL 236 FLL, FLW, FLA 31 SSR

[46] Kenong9204×Jing411 RIL 188 FLL, FLW, FLA 38 SSR, DArT, STS, SRAP

[47] Hanxuan10×Lumai14 DH 150 FLL, FLW, FLA 12 SSR

[48] Ningchun4×Ningchun27 RIL 128 FLL, FLW 16 SSR

[49] H461 × CN16 RIL 188 FLL, FLW, FLWR 16 90KSNP

[50] Zhou8425B×Xiaoyan81 RIL 102 FLL, FLW, FLA 22 SNP, SSR

[51] Ningchun4×Drasdale RIL 148 FLL, FLW, FLA 22 SSR

[52] Longjian 19×Q9086 RIL 120 FLL, FLW, FLA, FLWR 55 SSR

[53] Nongda3338×Jingdong6 DH 216 FLL, FLW, FLA 40 SSR

[54] Shanghai3×Catbird, Naxos RIL 137 FLL, FLW 4 SSR

[55] Weimai8×Luohan2 RIL 179 FLL, FLW, FLA 31 DArT

Weimai8×Yannong19 175

Weimai8×Jimai20 172

[56] WL711×C306 RIL 206 FLL, FLW, FLA 7 SSR

[57] Yanzhan 1 ×Cayazheda 29, RIL 82 FLL, FLW, FLA 43 90KSNP

Yanzhan 1 ×Yunnanxiaomai, 98

Yanzhan 1 ×Yutiandaomai, 93

Yanzhan 1 ×Hussar" 97

[58] AS985472×Sumai 3 RIL 94 FLL, FLW 3 DArT

[59] Lumai 14×Jing 411 IL(BC3F6) 160 FLL, FLW, FLA 9,12 SSR

Lumai 14×Shaanhan 8675 160

[60] Proteo×Chajia RIL 97 FLL, FLW, FLA, FLWR 23 9KSNP, SSR

[61] Xiaoyan81×Xinong1376 RIL 120 FLL 2 90KSNP

[62] EGA Wylie×Sumai 3 RIL 92 FLW 6 DArT

[63] Jingdong8×Aikang58 RIL 207 FLL, FLW, FLA, FLWR 10 SSR

#Bold font indicated that the study was not included in MQTL analysis.

FLL flag leaf length, FLW flag leaf width, FLA flag leaf area, FLWR flag length-width ratio, FLAG flag leaf angle.

https://doi.org/10.1371/journal.pone.0276602.t001
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Wheat Synthetic × OPATA) in https://wheat.pw.usda.gov/GG3/ [67, 68]. The diversity Array

technology (DArT) marker was derived from the wheat consensus map 4.0 integrated by more

than 100 genetic maps. According to the LOD value, phenotypic variation explained (PVE),

confidence interval and position of QTL, the QTL for the target trait was mapped to the con-

sensus map by using BioMercator v4.2 software [69], and the principle that the flanking

marker of QTL interval corresponds to the consensus map interval was followed. Before map-

ping to the consensus map, the 95% confidence intervals (CI) of QTL identified in different

studies were inferred by using the following formulas: (1) C.I. = 530 / (N×PVE); (2) C.I. = 163

/ (N×PVE); (3) C.I. = 287 / (N×PVE), C.I. is the confidence interval of QTL, N is the size of

mapping population, the value 530, 163 and 287 are specific population constants calculated

by different simulations, formula (1), (2) and (3) is suitable for F2 and backcross population,

recombinant inbred line (RIL) population, and double haploid (DH) population, respectively

[26, 70]. Details of these initial QTLs are listed in S1 Table.

QTL meta-analysis and verification by GWAS

QTL meta-analysis for flag leaf morphological traits in wheat was carried out by using BioMer-

cator v4.2 software. According to the number of QTL on each chromosome, two different

analysis methods were used. When the QTL count on each chromosome is less than 10,

MQTL is calculated for n independent QTLs by the method of Goffinet et al. [25]. Among the

five models of 1, 2, 3, 4 and N, the lowest Akaike information criterion (AIC) value is consid-

ered as the best fitting model. When the QTL count on each chromosome exceeds 10, the

method of Veyrieras et al. [71] is selected to determine the best QTL model based on AIC,

AICc, AIC3, bayesian information criterion (BIC) and average weight of evidence (AWE), and

the model with the lowest value of the selection criterion was used to determine MQTL.

All the flanking markers sequences of MQTL were BLASTed against the wheat Chinese

spring reference genome sequence (RefSeq v1.0) to obtain the physical position of MQTL. Ten

papers published in the past five years on the genome-wide association studies of flag leaf mor-

phology in wheat were collected (Table 2), and the physical location of the MTA (maker-trait-

association) in these studies was used to verify the accuracy of the MQTL region.

Mining candidate genes based on homology

According to the standard of mining highly reliable MQTLs by Venske et al. [71], MQTL with

physical distance less than 20 Mb, genetic distance less than 1 cM and at least five overlapping

QTLs were further selected as high confidence MQTL (hcMQTL). Combining with the

genome annotation (https://wheat-urgi.versailles.inra.fr/seq-repository/annotations), the

genes in the physical region of hcMQTL were analyzed, and the wheat orthologs in the physi-

cal region of hcMQTL were identified based on the genes related to flag leaf morphological

traits of rice and Arabidopsis thaliana in Ensembl plant database (http://plants.ensembl.org/).

Results

QTL integration for flag leaf morphological traits in wheat

A total of 465 QTLs related to flag leaf morphological traits were identified in the 20 papers

published since 2010, covering 26 different mapping populations, among which 304 QTLs

were projected into the consensus map. The number of QTL on each chromosome ranged

from 2 on 3D to 38 on 5A, and the average number of QTLs on each chromosome was 14.

Among them, 44.4% QTLs were distributed on A genome, 34.8% on B genome and 20.8% on

D genome (Fig 1a). A total of 96 (31.6%), 104 (34.2%) and 80 QTLs (26.3%) were associated
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with flag leaf length, flag leaf width, and flag leaf area, respectively. Only 18 (5.9%) QTLs for

flag leaf length-width ratio and 6 (2.0%) QTLs for flag leaf angle were identified (Fig 1b). The

LOD score of individual QTLs ranged from 2.0 to 18.0, 54.28% of QTLs showed LOD scores

from 3 to 4.5 (Fig 1c). The PVE range of individual QTL was 0.68–33.96%, and the PVE of

51.64% QTLs was within 3–9% (Fig 1d).

QTL meta-analysis for flag leaf morphological traits in wheat

A total of 304 QTLs were mapped to the consensus map, of which 275 QTLs were integrated

into 55 MQTLs by meta-analysis, the remaining 29 QTLs were not integrated because they did

not overlap with the above MQTLs (Table 3). These MQTLs were distributed on all chromo-

somes, with the number of MQTLs varying from one to four on each chromosome (Fig 2).

The confidence interval of MQTL ranged from 0.06 to 16.45 cM, with the average interval size

of 2.05 cM, which was 5.08-fold smaller than the initial QTL interval (Fig 3), the physical posi-

tion interval ranged from 0.4 to 459.1 Mb, with the average physical distance of 66.5 Mb

(Table 3).

MQTL validation by GWAS

Among the 55 MQTLs, 25 (45.45%) MQTLs were mapped into physical region smaller than 20

Mb in the wheat reference genome (Table 3). To determine the accuracy of MQTL region,

GWAS studies on wheat flag leaf morphology reported in the past five years were used to verify

MQTL. Since the decay distance of the wheat linkage disequilibrium was about 5 Mb, those

overlapping MQTLs within 5 Mb of MTA were considered to be co-located with MQTL. Ten

of the 25 MQTLs were verified in at least one GWAS study and co-located with 45 MTAs (Fig

4). The number of MTAs co-located in each MQTL ranged from 1 to 22, in which MQTL-10
co-located with 22 MTAs, followed by MQTL-13 that co-located with 11 MTAs. In addition,

clusters or nested distributions of MQTL were observed, such as MQTL-6 (2A: 89.6–101.0

Table 2. The GWAS studies on flag leaf morphological traits used in this study.

No Source of genotype Population

size

Trait Marker type/

number

Number of

MTAa
Environment Reference

1 Yellow and Huai River Valleys Wheat

Zone

166 FLL, FLW SNP/326570 13 Anyang, Suixi, Shijiazhuang,

China

[40]

2 Yellow and Huai Valley of China 163 FLL, FLWR, FLW SNP/20689 495 Zhumadian, Yuanyang,

Zhengzhou, China

[60]

3 Chinese landraces and six landrace-

derivatives

723 FLA, FLL, FLWR,

FLW

DArT-seq/

52303

14 Ya’an, Wenjiang, Chongzhou,

China

[72]

4 Yellow and Huai Valley of China 163 FLAG SNP/20689 86 Zhengzhou, Anyang,

Zhumadian, China

[73]

5 Yellow and Huai Winter Wheat Region 197 FLL, FLW, FLAG SNP/369869 145 Zhengzhou, China [74]

6 Indian Spring Wheat 404 FLL SNP/14160 3 Karnal, Bhavnagar, India [75]

7 Yellow and Huai Valley of China 197 FLL, FLW, FLA,

FLAG, FLWR

SNP/339266 439 Zhengzhou, Shangqiu,

Zhumadian, China

[76]

8 Chinese winter wheat cultivars and non-

Chinese parental lines

543 FLL, FLW, FLA,

FLAG

SNP/11140 114 Baoding, Cangzhou, Xingtai,

China

[77]

9 Chinese winter wheat 319 FLL, FLW SNP/22905 39 Wuhan, China [78]

a Marker-trait association number (MTA) detected in previous GWAS studies.

FLL flag leaf length, FLW flag leaf width, FLA flag leaf area, FLWR flag length-width ratio, FLAG flag leaf angle.

https://doi.org/10.1371/journal.pone.0276602.t002
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Mb) & MQTL-8 (2A: 84.9–93.9 Mb) and MQTL-23 (4A: 606.6–614.5 Mb) & MQTL-24 (4A:

596.8–605.0 Mb) (Fig 4).

Mining candidate genes based on homology within hcMQTL region

According to the definition of hcMQTL, MQTL-1, MQTL-11, MQTL-13 and MQTL-52 were

eligible. These four MQTLs regulated multiple flag leaf traits with multi-effects, which indi-

cated that they might have an important contribution to the regulation of flag leaf morphology.

The mean confidence interval of the four hcMQTLs for MQTL-1, MQTL-11, MQTL-13, and

MQTL-52 was 0.82 cM. The physical distances for MQTL-1, MQTL-11, MQTL-13, and MQTL-
52 were 11.5 Mb, 12.7 Mb, 8 Mb, and 5.4 Mb, respectively, with the average physical distance

of 9.4 Mb. The number of genes within the intervals were 453, 532, 380, and 149, respectively

Fig 1. The information of QTL for wheat flag leaf morphological traits in previous QTL mapping studies. QTL distribution (a) on chromosomes of

seven homoeologous groups, (b) for five flag leaf morphological traits, (c) according to the LOD value, and (e) according to the PVE value. FLL flag leaf

length, FLW flag leaf width, FLA flag leaf area, FLWR flag length-width ratio, FLAG flag leaf angle.

https://doi.org/10.1371/journal.pone.0276602.g001
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Table 3. Meta-analysis of QTL for morphological traits of flag leaf in wheat.

MQTL Chr Position/

cM

Confidence interval/

cM

Flanking marker Physical interval/

Mb

Num. of

QTL

Trait

MQTL-1 1A 28.11 27.64–28.38 wsnp_Ex_c57982_59470152—wPt-7014 8.3–19.8 9 FLL, FLW, FLA

MQTL-2 67.43 67.11–68.25 1000535–2280626 472.0–480.6 4 FLW, FLA

MQTL-3 1B 38 37.94–38.06 3020845–1233770 25.0–124.0 14 FLL, FLW, FLA, FLWR,

FLANG

MQTL-4 79.72 78.36–81.08 3023037–1042679 658.7–661.4 4 FLW, FLA

MQTL-5 1D 67.99 62.54–73.45 barc119_2–1229828 367.4–435.5 3 FLW, FLA

MQTL-6 2A 18.5 17.11–19.88 1151641–3958547 89.6–101.0 2 FLL, FLA

MQTL-7 49.67 49.39–49.79 CAP12_rep_c4192_354—BS00065276_51 32.9–33.3 4 FLW, FLWR

MQTL-8 80.58 80.38–80.78 wsnp_Ex_rep_c66448_64683704—
wsnp_Ex_c20370_29434410

84.9–93.9 3 FLL, FLW, FLA

MQTL-9 97.51 97.14–97.87 Excalibur_c42512_584—BS00110386_51 685.5–718.8 4 FLW, FLA

MQTL-
10

2B 55 46.77–63.22 RAC875_rep_c109471_154—RAC875_c38003_164 4.4–23.5 4 FLL, FLA

MQTL-
11

72.79 72.29–73.29 Kukri_c11809_824—
wsnp_Ra_rep_c106119_89961852

15.7–28.4 5 FLL, FLW, FLA, FLWR

MQTL-
12

92.89 91.91–93.87 985860–3021999 53.5–79.3 4 FLL, FLW, FLA

MQTL-
13

2D 4.43 4.09–4.76 3027483—Kukri_c77179_54 2.5–10.5 9 FLL, FLW, FLA

MQTL-
14

5.65 5.19–6.12 Xwmc087—Xwmc453a 56.8–70.1 3 FLW, FLA

MQTL-
15

3A 49.35 47.43–51.27 1112004—wsnp_Ex_c4069_7355431 5.3–36.2 3 FLL, FLW

MQTL-
16

57.47 57.28–57.66 RAC875_c75448_80—Ku_c61039_98 600.9–605.8 3 FLW, FLA

MQTL-
17

67.74 67.0–68.48 wsnp_Ex_c13452_21183096—BS00091002_51 648.0–666.3 16 FLL, FLW, FLA, FLWR

MQTL-
18

3B 26.63 25.83–27.43 Kukri_c1771_715—BS00047114_51 0.2–32.3 3 FLL, FLW, FLA

MQTL-
19

59.59 57.07–62.11 CAP8_c8651_206—wsnp_RFL_Contig3845_4190041 40.3–47.7 3 FLL, FLW

MQTL-
20

75.65 73.71–77.58 1076556—Xbarc206 667.8–700.9 3 FLW, FLA

MQTL-
21

90.47 88.81–92.12 Excalibur_c33274_498–977833 704.5–749.8 3 FLL, FLW

MQTL-
22

3D 43.5 42.11–44.88 1061456–1229016 62.1–179.3 2 FLW, FLWR

MQTL-
23

4A 22.21 21.96–22.45 1200937–1137855 606.6–614.5 5 FLL, FLW, FLA

MQTL-
24

43 40.73–45.26 TA005380–0966—wsnp_Ex_rep_c104448_89161562 596.8–605.0 2 FLW, FLA

MQTL-
25

65.59 65.46–65.71 3956825–1102806 718.9–732.5 5 FLL, FLA

MQTL-
26

80.82 78.87–82.77 Xbcd130b–Xbarc78 698.0–723.8 2 FLL, FLA

MQTL-
27

4B 6.55 6.48–6.62 wPt—5559–1863050 2.3–2.7 3 FLL, FLA

MQTL-
28

36.88 35.72–38.04 Xfba41—wsnp_CAP7_c1723_854530 20.6–21.6 6 FLL, FLW, FLA, FLWR

MQTL-
29

46.94 46.24–47.65 3946005—tPt—5342 50.4–102.5 4 FLL, FLA, FLWR

MQTL-
30

56.09 55.85–56.33 Ku_c462_1417–1005100 546.0–589.8 5 FLL, FLA, FLWR

(Continued)
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Table 3. (Continued)

MQTL Chr Position/

cM

Confidence interval/

cM

Flanking marker Physical interval/

Mb

Num. of

QTL

Trait

MQTL-
31

4D 30.02 29.82–30.71 Xwmc473–984589 11.5–227.2 3 FLL, FLW, FLANG

MQTL-
32

33.53 31.63–35.43 Xwmc182–1094332 16.1–475.2 3 FLW, FLWR

MQTL-
33

60.89 59.15–62.62 993587—Ex_c41034_812 209.2–380.2 4 FLL, FLW

MQTL-
34

5A 39.63 39.57–39.68 1371675–1212851 253.6–306.5 16 FLL, FLW, FLA, FLWR

MQTL-
35

43.6 43.47–43.73 2294383–1034204 494.5–503.0 5 FLL

MQTL-
36

52.11 52.01–52.22 992780—Excalibur_c41710_417 555.2–594.1 13 FLL, FLW

MQTL-
37

74.62 74.13–75.11 Excalibur_c1954_930—BobWhite_c1763_558 680.5–681.9 4 FLL, FLW, FLA, FLWR

MQTL-
38

5B 11.85 11.82–11.88 tPt—4875–1027318 355.2–437.8 6 FLL, FLW

MQTL-
39

22.63 21.68–23.58 3943315–4541468 368.8–502.3 5 FLL

MQTL-
40

42 40.76–43.23 345245–1019684 485.6–590.5 2 FLL, FLA

MQTL-
41

59.93 59.63–60.22 2332836–3029473 678.0–678.6 8 FLL, FLW, FLA,

FLANG

MQTL-
42

5D 23.9 23.29–24.52 Xpsr326b–Xwmc318 58.1–235.5 11 FLL, FLW, FLA

MQTL-
43

46.47 45.31–47.64 BobWhite_c10764_251—TA004396–0640 401.4–411.2 5 FLL, FLW, FLA

MQTL-
44

6A 63.6 62.9–64.29 wsnp_BE495143A_Ta_2_1–994392 574.2–580.2 8 FLL, FLW, FLA

MQTL-
45

6B 40.13 40.02–40.25 wsnp_JD_c2355_3205824–978170 68.5–196.5 4 FLL, FLA

MQTL-
46

52.07 51.77–52.37 996529—Xcdo507 556.5–669.4 5 FLL, FLW, FLA

MQTL-
47

59.56 59.34–59.79 4991087—RFL_Contig799_2434 686.4–707.9 2 FLL

MQTL-
48

6D 63.11 62.19–64.03 1099552–1037337 39.5–447.1 2 FLW

MQTL-
49

7A 64.91 64.29–65.53 WMC283—BS00044694_51 62.1–64.8 5 FLL, FLW, FLA

MQTL-
50

79.5 78.75–80.25 1047407–1074455 76.4–452.3 2 FLA, FLWR

MQTL-
51

82.02 81.68–82.36 RAC875_rep_c105584_237—RAC875_c52124_90 26.4–93.1 3 FLW, FLA, FLWR

MQTL-
52

7B 59.08 58.64–59.52 987864–978206 583.5–588.9 8 FLL, FLW, FLA

MQTL-
53

7D 25.09 24.65–25.53 978017—Excalibur_c27950_459 3.1–54.0 5 FLL, FLW, FLA

MQTL-
54

93.95 91.49–96.42 Xbcd707—Xbarc26 174.4–386.4 4 FLW

MQTL-
55

99.14 97.11–100.09 Xwmc221—Xwg719 364.6–413.7 2 FLL, FLW

FLL flag leaf length, FLW flag leaf width, FLA flag leaf area, FLWR flag length-width ratio, FLAG flag leaf angle.

https://doi.org/10.1371/journal.pone.0276602.t003
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(S2 Table). In order to identify candidate genes related to leaf morphology among the four

hcMQTLs, based on the Ensembl plant database (http://plants.ensembl.org/), 11 genes (six for

rice and five for Arabidopsis) that regulate leaf morphology from the hcMQTL region were

identified, of which, seven wheat orthologs for Osmtd1, three orthologs for FRS7, two ortho-

logs for Roc8, and only one ortholog each for the other genes were found (Table 4).

Discussion

QTL meta-analysis developed by Goffinet et al. [25] is a method for identifying consistent and

stable QTLs and improving the accuracy of their genetic positions. The length, width, area,

and angle of flag leaves are all important factors in determining wheat plant architecture and

yield potential [5, 90–92]. Many genetic studies have been conducted to identify QTL for flag

leaf morphological traits in wheat (Table 1). Most of the initial QTLs collected in this study

were distributed on A genome, and the least on D genome, which was slightly different from

the results of previous studies regarding the distribution of initial QTLs for wheat yield and

related traits on the genome (the most QTLs were distributed on B genome, but the least on D

genome) [36, 93], which might be due to the limited number of QTLs for flag leaf morphologi-

cal traits, resulting in inconsistent results with previous studies. The less QTL on D genome

may be related to the low-level polymorphism on D genome [94].

In this study, the maximum likelihood estimation method was used in meta-analysis in

combination with the genetic locations of hundreds of QTLs for flag leaf morphological traits

in wheat, and with consideration of population size and other QTL information, 275 of the

304 QTLs were mapped onto the consensus map and integrated into 55 MQTLs in wheat. Due

to the pleiotropic effect of genes on flag leaf morphology in wheat, more than 90% (50/55) of

the MQTLs were associated with at least two flag leaf morphological traits, and about 43.64%

(24/55) of the MQTLs affected three or more flag leaf morphological traits simultaneously

(Table 3).

After integrating QTLs by meta-analysis, the average confidence interval of MQTL was 2.05

cM, which was about 5.08-fold smaller than the average confidence interval (10.41 cM) of the

initial individual QTL (Fig 3). Accordingly, the physical intervals of MQTL on chromosomes

were further reduced, improving the accuracy of QTL mapping. The primary QTL mapping to

fine mapping usually needs to increase molecular marker density [95] or construct fine map-

ping populations such as near-isogenic lines [96, 97]. In certain cases, QTL meta-analysis

could replace or enhance these approaches. For example, MQTL-52 was integrated by eight

QTLs for flag leaf length, flag leaf width, and flag leaf area from two different populations and

finally located within the interval of 58.64–59.52 cM on chromosome 7B, with the physical

interval of 583.5–588.9 Mb, which was much smaller than the confidence interval of the initial

QTL.

Compared with QTL linkage analysis mapping, linkage disequilibrium-based genome-wide

association studies (GWAS) is another method for precisely locating genomic regions of quan-

titative traits. In previous studies, the results of wheat MQTL verification by GWAS have been

reported [98, 99]. For example, Aduragbemi et al. [100] identified 51 MTA and 29 MQTLs co-

located for leaf rust resistance loci using GWAS. Yang et al. [101] verified MQTL for wheat

yield and yield-related traits using GWAS results published in recent years, and found that

about 60% of MQTLs were co-located with MTA. In this study, based on the GWAS results of

wheat flag leaf morphological traits published in recent years, 45 MTAs and 10 MQTLs were

identified, which indicated that these genomic regions controlling flag leaf morphological

traits might be less affected by the genetic background and environment. The 10 MQTLs veri-

fied by GWAS provided a basis for the accurate mining candidate genes that affect flag leaf
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morphology in wheat. Loffler et al. [102] proposed the criteria for selection of MQTL for use

in breeding programs: the MQTL with confidence interval genetic distance less than 2 cM, no

less than 4 initial QTLs from different studies with PVE> 10%. On this basis, we determined

three potential MQTLs, MQTL-1, MQTL-13 and MQTL-25, that could be used to improve

wheat flag leaf morphological traits.

Fig 2. Distribution of 55 MQTLs on consensus map. Genetic distance scale in centiMorgan (cM) was placed at left

margin. The horizontal bars in the genetic map represented the position of the markers.

https://doi.org/10.1371/journal.pone.0276602.g002
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Flag leaf morphology is one of the important traits of plant architecture in wheat breeding.

Moreover, previous studies reported the correlation between flag leaf morphology and plant

structure traits such as plant height and tiller number [57, 78]. Hu et al. [57] revealed the

genetic mechanism of yield-related traits in wheat using four RIL populations and found that

plant height had a significant positive correlation with FLL and FLW, and QTL affecting both

plant height and FLW were detected at 0–3.5 cM on chromosome 5A. In addition, Muham-

mad et al. [78] identified five SNP markers affecting PH, FLL and FLW simultaneously on

chromosomes 1A, 3A, 3B, 5A, and 6B in natural populations of wheat. Some previously

reported major QTLs and genes controlling plant height and tillering number in wheat were

identified in the hcMQTL region in this study. The gene Csl-1A (chr1A:6.4 Mb) controlling

the tiller number in wheat [103] was identified near MQTL-1. Saini et al. [36] collected QTLs

for wheat yield and related traits in the past 20 years and identified 141 MQTLs, of which five

MQTLs (MQTL1A.5, MQTL2B.3, MQTL2B.4, MQTL2B.5, and MQTL2D.2) affecting traits

such as plant height and tillering number were located at approximately 5 Mb in the MQTL-1,

MQTL-11, and MQTL-13 regions. These examples indicate that these three hcMQTLs may

carry some major genes that improve the plant architecture of wheat, such as plant height and

tiller.

Fig 3. Comparison of confidence interval (CI) between initial QTLs (blue bar) and meta-QTLs (green bar).

https://doi.org/10.1371/journal.pone.0276602.g003
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In cereal with large complex genomes, such as wheat, barley and maize, localization based

on homologous cloning is an effective way to identify important genes associated with com-

plex traits. With the wide application of high-throughput sequencing technology, many crops

genome sequences have been published, which conduces to identify conserved genome regions

and key genes in different crops. For example, the rice OsLG1 gene encodes a SBP DNA bind-

ing protein, which affects the development of auricle and ligule [104], and the orthologous

gene TaSPL8 in wheat has also been found to have similar function in rice [23].

Fig 4. Validation of MQTL by MTAs on wheat flag leaf morphological traits from GWAS results published in recent years. The circles from inside

to outside indicated the position of MQTL on the physical map, the position of MTA on the physical map and the physical map, respectively.

https://doi.org/10.1371/journal.pone.0276602.g004
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In this study, a total of 20 wheat orthologs were identified in four hcMQTLs, 10 of which

were low-confidence, and the annotation information might be inaccurate. The remaining 10

wheat orthologs were potential candidate genes for regulating the leaf morphology in wheat,

including 7 from rice genes and 3 from Arabidopsis genes (Table 4). In total, 7 wheat orthologs

of the rice gene Osmtd1 were located in the MQTL-1 region, namely TraesCS1A02G022100,

TraesCS1A02G022200, TraesCS1A02G022300, TraesCS1A02G024800, TraesCS1A02G024900,

TraesCS1A02G025000 and TraesCS1A02G025300. Osmtd1 gene encodes a putative inhibitor I

family protein regulating rice tillering and leaf angle [80]. Therefore, these seven wheat ortho-

logs may be reliable candidates for regulating wheat leaf angle as the Osmtd1 gene in rice.

The wheat ortholog of Arabidopsis PLL5 gene, TraesCS1A02G033700, is located in the

MQTL-1 region and encodes a protein belonging to the phosphatase 2C family, which regu-

lates leaf development. The mutant pll5 has shorter, narrower and curlier leaves than the wild-

type leaves [84]. Hence, it suggested that TraesCS1A02G033700 is a credible candidate gene

Table 4. Eleven identified leaf morphology—Related genes of rice and Arabidopsis thaliana and their wheat orthologs in hcMQTLs region.

Gene ID Gene

Name

Function description Species Traits Homologous gene ID in wheat Corresponding

MQTL region

Reference

AT3G06250 FRS7 FAR1-related sequence 7 Arabidopsis flowering time, leaf

growth

TraesCS1A02G023000LC
TraesCS1A02G031400LC
TraesCS1A02G037300LC

MQTL-1 [79]

LOC_Os08g34258 Osmtd1 Putative protease

inhibitor I family protein,

Control of plant

architecture

Rice tiller number, leaf

angle

TraesCS1A02G022100
TraesCS1A02G022200
TraesCS1A02G022300
TraesCS1A02G024800
TraesCS1A02G024900
TraesCS1A02G025000
TraesCS1A02G025300

MQTL-1 [80]

AT1G09700 HYL1 dsRNA-binding domain-

like superfamily protein

Arabidopsis abscisic acid,

auxin, and

cytokinin

TraesCS1A02G035900LC MQTL-1 [81]

LOC_Os06g10600 Roc8 Similar to Homeodomain

protein HOX3

Rice size of bulliform

cells, lignin

content

TraesCS1A02G039400LC
TraesCS1A02G039500LC

MQTL-1 [82]

LOC_Os01g15340 OsRAA1 encodes a 12.0-kD

protein

Rice leaf, flower, and

root development

TraesCS1A02G039800LC MQTL-1 [83]

AT1G07630 PLL5 pol-like 5 Arabidopsis leaf morphology TraesCS1A02G033700 MQTL-1 [84]

LOC_Os09g37400 OsSAUR45 Small auxin-up RNA

(SAUR), Auxin-

responsive SAUR gene

family member, Auxin

synthesis and transport,

Plant growth

Rice plant height,

primary root

length,

adventitious roots,

leaf width and seed

setting

TraesCS2B02G045900LC MQTL-11 [85]

LOC_Os05g11730 GSK2 GSK3/SHAGGY-like

kinase, Brassinosteroid

signalin

Rice plant height, leaf

angle, and grain

size

TraesCS2B02G046300LC MQTL-11 [86]

AT2G02560 CAND1 cullin-associated and

neddylation dissociated

Arabidopsis flowering, fertility,

dwarfism and leaf

development

TraesCS2B02G051000 MQTL-11 [87]

LOC_Os03g04680 SD37 Cytochrome P450 protein

CYP96B4, Growth

regulation, Drought stress

response

Rice plant height,

leaves, panicles,

and seeds

TraesCS2D02G005000LC MQTL-13 [88]

AT5G61020 ECT3 evolutionarily conserved

C-terminal region 3

Arabidopsis timing of leaf

formation, leaf

morphology

TraesCS2D02G012200 MQTL-13 [89]

https://doi.org/10.1371/journal.pone.0276602.t004

PLOS ONE Genome-wide meta-analysis of QTL for morphological related traits of flag leaf in bread wheat

PLOS ONE | https://doi.org/10.1371/journal.pone.0276602 October 24, 2022 13 / 19

https://doi.org/10.1371/journal.pone.0276602.t004
https://doi.org/10.1371/journal.pone.0276602


affecting leaf development in wheat. The CAND1 gene encodes unmodified CUL1-interacting

protein in Arabidopsis, and participates in many developmental pathways controlled by ubi-

quitin/proteasome-mediated degradation of protein [87]. The rosette leaves of cand1 mutants

are much smaller than that of wild-type plants and have a wavy morphology. The ortholog

TraesCS2B02G051000 of wheat located in MQTL-11 region encodes CUL1-related NEDD8

dissociation protein, which might be a candidate gene affecting the wheat leaves morphology.

The ECT3 gene encodes the YTH domain protein in Arabidopsis, which has been previously

proved to be related to leaf morphogenesis in Arabidopsis [89]. The wheat ortholog

TraesCS2D02G012200, located in the MQTL-13 region, might be a reliable candidate gene

involved in the regulation of leaf development.

In conclusion, using the high-density integration map developed by Venske et al. [64] as

the consensus map and QTL meta-analysis, we integrated the QTL for flag leaf morphological

traits previously identified in wheat, and validated 10 MQTLs with GWAS information. Three

potential MQTLs, MQTL-1, MQTL-13 and MQTL-25 that regulate flag leaf morphological

traits were identified in this study. These MQTL flanking markers can be used for molecular

marker assisted breeding to improve flag leaf morphological traits in wheat. Furthermore,

using functional annotation information from genes within the hcMQTL interval and a com-

parative genomics strategy, ten wheat orthologs were identified as potential candidate genes

affecting wheat flag leaf morphology, providing potential targets for fine mapping, and gene

cloning.
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