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Dysferlin at transverse tubules regulates Ca homeostasis
in skeletal muscle

2+

Jaclyn P. Kerr1, Christopher W. Ward2 and Robert J. Bloch1*

1 Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
2 Department of Organizational Systems and Adult Health, University of Maryland School of Nursing, Baltimore, MD, USA

Edited by:

Aikaterini
Kontrogianni-Konstantopoulos,
University of Maryland School of
Medicine, USA

Reviewed by:

Nagomi Kurebayashi, Juntendo
University School of Medicine,
Japan
Bradley Launikonis, University of
Queensland, Australia
Joshua Zimmerberg, National
Institutes of Health, USA

*Correspondence:

Robert J. Bloch, Department of
Physiology, University of Maryland
School of Medicine, 655 W.
Baltimore St., Baltimore, MD 21201,
USA
e-mail: rbloch@umaryland.edu

The class of muscular dystrophies linked to the genetic ablation or mutation of dysferlin,
including Limb Girdle Muscular Dystrophy 2B (LGMD2B) and Miyoshi Myopathy (MM),
are late-onset degenerative diseases. In lieu of a genetic cure, treatments to prevent or
slow the progression of dysferlinopathy are of the utmost importance. Recent advances
in the study of dysferlinopathy have highlighted the necessity for the maintenance of
calcium handling in altering or slowing the progression of muscular degeneration resulting
from the loss of dysferlin. This review highlights new evidence for a role for dysferlin at
the transverse (t-) tubule of striated muscle, where it is involved in maintaining t-tubule
structure and function.
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INTRODUCTION
The class of muscular dystrophies linked to the genetic abla-
tion or mutation of dysferlin, including Limb Girdle Muscular
Dystrophy 2B (LGMD2B) and Miyoshi Myopathy (MM), are
degenerative diseases of skeletal muscle that typically appear in
the teen years and ultimately lead to loss of mobility. In the
absence of a genetic cure, individuals with these myopathies
would benefit from treatments that slow the dystrophic pro-
gression and improve quality of life. Understanding the role of
dysferlin within the myofiber and how its loss affects muscle
function may speed the development of therapeutics designed
to prevent or ameliorate the pathogenic events that occur in its
absence.

Dysferlin is a member of the ferlin subgroup, a family of pro-
teins comprised of multiple Ca2+-sensitive C2 domains that are
implicated in vesicle fusion, trafficking, and membrane repair
(Lek et al., 2012). The seven C2 domains of dysferlin have variant
affinity for Ca2+ and phospholipids (Davis et al., 2002; Therrien
et al., 2009; Marty et al., 2013; Fuson et al., 2014) and regu-
late the association of dysferlin with multiple protein complexes
(Huang et al., 2007; Azakir et al., 2010; Di Fulvio et al., 2011).
In adult skeletal muscle cells, the early identification of dysferlin
at the sarcolemma led to its assignment as a protein important
for the repair of sarcolemmal damage (Bansal et al., 2003; Bansal
and Campbell, 2004). However, an increasing body of evidence
indicates an association of dysferlin with the transverse (t)-tubule
membrane (Ampong et al., 2005; Roche et al., 2011; Flix et al.,
2013; Demonbreun et al., 2014), where it is involved in main-
taining Ca2+ homeostasis following cellular stress (Kerr et al.,
2013).

Here, we review our recent evidence for dysferlin’s preferen-
tial localization within the t-tubules of mature myofibers and its
role in maintaining Ca2+ homeostasis (Roche et al., 2011; Kerr
et al., 2013). Consistent with its localization at the t-tubule and
its association with the L-type Ca2+ channel (LTCC), we showed
that dysferlin contributes to the maintenance of Ca2+ homeosta-
sis during mechanical stress. In dysferlin-deficient muscle fibers,
acute mechanical stress disrupted Ca2+ homeostasis, resulting in
localized t-tubule damage. As these effects were abrogated by both
low external Ca2+ and the LTCC inhibitor diltiazem, these results
are consistent with an increase of stress-dependent Ca2+ influx
through the LTCC. Importantly, we showed that in vivo treatment
of dysferlin-deficient mice with diltiazem provided protection
from the enhanced contraction-induced damage characteristic of
dysferlin-deficient muscle (Kerr et al., 2013). Taken together, our
results demonstrated a novel role for dysferlin as a modulator
of stress-dependent LTCC activity and identified the LTCC as a
therapeutic target for LGMD2B and MM.

DYSFERLIN IS A T-TUBULE PROTEIN
Dysferlin’s large, modular structure, comprised of multiple C2
domains in tandem with structural domains common to the fer-
lin superfamily and a single transmembrane domain (Lek et al.,
2012), makes it an attractive scaffold for structural and signaling
proteins at the cytoplasmic surface of the membrane. Its role in
staunching membrane damage in cultured muscle cells injured
by laser illumination and its apparent translocation from internal
structures to the sarcolemma led to the hypothesis that dysferlin
was primarily involved in repair of the sarcolemmal membrane
following Ca2+ influx (Bansal et al., 2003).
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Additional hypotheses for dysferlin’s function arose follow-
ing the identification of a number of its binding partners. These
binding partners include tubulin, annexins, caveolin 3, Bin1, and
AHNAK, consistent with a role for dysferlin in trafficking and
membrane repair (Matsuda et al., 2001; Lee et al., 2002; Lennon
et al., 2003; Ampong et al., 2005; Turk et al., 2006; Huang et al.,
2007; Rezvanpour and Shaw, 2009; Waddell et al., 2011; Flix et al.,
2013; McDade and Michele, 2013). However, other work identi-
fied the LTCC (also referred to as the dihydropyridine receptor, or
DHPR) and the ryanodine receptor (RyR) (Ampong et al., 2005;
Flix et al., 2013), implicating dysferlin in Ca2+-dependent sig-
naling, consistent with limited reports of dysferlin localization at
or near the t-tubule during muscle maturation and stress (Roche
et al., 2011; Waddell et al., 2011; Demonbreun et al., 2014).

Our evidence for dysferlin’s association with the t-tubule
membrane stems from improvements in the immunolabeling of
frozen sections of muscle tissue and isolated muscle fibers in vitro
(Roche et al., 2011; Kerr et al., 2013). With these improved
techniques, we found a predominant association of dysferlin at
the A-I junction of mature myofibers, where the triad junctions
are formed between the t-tubules and the terminal cisternae of
the sarcoplasmic reticulum. This localization was consistent with
reports suggesting that dysferlin was involved in early t-tubule
development (Klinge et al., 2010) as well as those that indicated
that dysferlin could translocate to and from the t-tubules follow-
ing sarcolemmal damage or extreme stretch (Klinge et al., 2007;
Waddell et al., 2011). However, our results indicated that dysfer-
lin’s localization to the t-tubule was not injury-dependent and was
maintained at the t-tubule following muscle maturation.

Despite these advancements, it was impossible to determine
whether dysferlin localized specifically to the t-tubule membrane
using only immunofluorescence and confocal light microscopy.
Therefore, we developed an expression construct that contained
a specialized pH-sensitive fluorescent protein (pHluorin). When

attached pHluorin to the C-terminus of dysferlin, an acute change
in extracellular pH was sensed by pHluorin within 30 s, indicating
its exposure to the extracellular milieu of the t-tubule lumen. In
contrast, dysferlin with N-terminal pHluorin was not responsive
to acute changes in external pH in this time frame (Kerr et al.,
2013), consistent with the ability of the cytoplasm of mammalian
striated muscles to buffer intracellular pH (Arus and Barany,
1986; Portman and Ning, 1990; Westerblad et al., 1997; Chin
and Allen, 1998; Zaniboni et al., 2003; Capellini et al., 2013). We
conclude from these results that dysferlin localizes in the mem-
brane of the t-tubule, oriented with its N-terminal C2 domains
in the cytoplasm and its C-terminal sequence in the lumen.
Our identification of dysferlin within the t-tubule membrane is
consistent with previously reported binding partners within the
triad junction, noted above (Figure 1). Combined with our pre-
vious immunofluorescence studies and other reports of dysferlin’s
involvement in the development and maintenance of the t-tubule
structure (Klinge et al., 2010; Roche et al., 2011; Waddell et al.,
2011; Demonbreun et al., 2014), these studies point to a role for
dysferlin in the normal function of the t-tubule.

How dysferlin arrives at the t-tubule remains an open ques-
tion. Recent efforts have been directed at determining the ability
of truncated dysferlin to mediate membrane repair (Azakir et al.,
2012), though their focus has been on myoblasts and myotubes,
rather than mature myofibers with well-organized and functional
t-tubules. In that regard, dysferlin mutations causing truncation
of the protein were shown to disrupt its association with Bin1
(Ampong et al., 2005), indicating that some mutations in dys-
ferlin may reduce its association with the t-tubule and would
likely affect dysferlin’s function at that structure. Furthermore, the
more N-terminal C2 domains of dysferlin may play an important
role in its trafficking to the t-tubule, as dysferlin’s C2A and C2B
domains mediate microtubule binding (Azakir et al., 2010; Di
Fulvio et al., 2011). Variations in dysferlin’s association with the

FIGURE 1 | Proposed model of t-tubule dysferlin. Dysferlin is anchored in
the t-tubule membrane by its transmembrane domain, with its extreme
C-terminus exposed to the lumen of the t-tubule. In close proximity to dysferlin
are proteins of the triad junction, the L-type Ca2+channel (DHPR) in the t-tubule

and the ryanodine receptor (RyR) in the sarcoplasmic reticulum. Caveolin 3
(Cav3) and Bin1, both important for the development of t-tubules, are known
binding partners of dysferlin. Dysferlin also associates with annexins, which
respond to changes in intracellular Ca2+ to promote wound repair.
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microtubule network may also affect its function at the t-tubule.
Identifying the effects of disease-causing mutations of dysferlin
on its targeting to t-tubules will be a critical step in uncovering the
mechanisms underlying dysferlin’s function in mature muscle.

DYSFERLIN PROTECTS THE T-TUBULE FROM DAMAGE BY
MECHANICAL STRESS
Our group previously demonstrated an increase in contraction-
induced damage in dysferlin-deficient muscle (Roche et al., 2008,
2012). As dysregulated Ca2+ signaling at the t-tubule is known to
underscore contraction-induced damage in Duchenne muscular
dystrophy (Yeung et al., 2005; Fanchaouy et al., 2009; Shkryl et al.,
2009) and dysferlin is preferentially localized within the t-tubule,
we hypothesized that the t-tubules may be especially susceptible
to damage in dysferlinopathy, and that a Ca2+ -dependent process
may play a critical role in disease progression.

Our recent work implicates dysferlin in regulating
Ca2+signaling and homeostasis. Using a mild osmotic shock
injury on isolated adult myofibers, we found increased structural
disruption of the t-tubule in dysferlin-deficient myofibers. In
addition, osmotic shock of dysferlin-null myofibers lead to an
immediate decrease in the amplitudes of Ca2+transients that was
concomitant with a dramatic rise in cytosolic Ca2+. These effects
were mitigated by blocking the LTCC with diltiazem.

Previously, we demonstrated that following damage by eccen-
tric injury, dysferlin-deficient muscle exhibits a depressed rate of
functional recovery (Roche et al., 2008; Lovering et al., 2011).
Extending our in vitro findings, we demonstrated that diltiazem
treatment in vivo improved the recovery of function. Examination
of muscle 3 days post-injury revealed that diltiazem limited both
necrosis and inflammation, and decreased the number of cen-
trally nucleated fibers. A protection of t-tubule structure 3 h post-
injury implicated diltiazem’s action on the LTCC as proximate to
the enhanced recovery (Kerr et al., 2013).

Although our results indicate that dysferlin protects the
t-tubule from damage by mechanical stress, how it does so is
unclear. Early hypotheses proposed dysferlin as a membrane
repair protein, and in this capacity dysferlin may contribute
to maintaining the integrity of the t-tubule membrane dur-
ing mechanical stress. Consistent with this possibility, dysferlin
binds to annexins A1 and A2 (Figure 1), which associate with
t-tubules following injury (Waddell et al., 2011; Voigt et al., 2013).
Annexins A1 and A2 are highly upregulated in patients with
LGMD2B (Lennon et al., 2003), and A1 is involved in mem-
brane repair events following membrane injury (McNeil et al.,
2006; Voigt et al., 2013). An elegant study by Lek et al. (2013),
demonstrated the reliance of the membrane repair mechanism
on cleavage of dysferlin by calpain. In wild type cells, cellular
injury results in rapid Ca2+ influx and cleavage of dysferlin to a
synaptotagmin-like product that accumulates at the area of injury.
Dysferlin’s cleavage and accumulation are both blocked by inhibi-
tion of LTCC-mediated Ca2+ influx, indicating that Ca2+ influx
upon injury is crucial for repair. However, as we demonstrated,
influxes of Ca2+ in dysferlin-deficient muscle are dysregulated
and sustained, resulting in secondary deficits in EC-coupling
that eventually degrade the muscle fiber (Kerr et al., 2013). The
pathogenic role of dysregulated Ca2+ signaling in other muscular

dystrophies has been noted (Millay et al., 2009; Goonasekera et al.,
2011).

Recent work proposes that mechanical stress-induces the pro-
duction of reactive oxygen species (ROS) by NADPH oxidase
2 (termed X-ROS). This mechano-activated ROS sensitizes the
activation of mechano-sensitive Ca2+ channels in the t-tubule.
In dystrophic muscle, X-ROS is enhanced (Prosser et al., 2011;
Khairallah et al., 2012). Recently, we identified amplified X-ROS
signaling in dysferlin-deficient muscle (Prosser et al., 2013;
Kombairaju et al., 2014) consistent with another recent report
of enhanced muscle oxidation in the same model (Terrill et al.,
2013). The increased production of X-ROS in several dystrophic
models suggests that it arises secondary to functional deficits
linked to mutations in essential muscle genes. The contribu-
tion of X-ROS to the enhanced sensitivity to mechanical stress
experienced by dysferlin-null muscle could further contribute
to the muscle degeneration and myopathy that occur in dysfer-
linopathies (Figure 2). These pathways are all attractive targets for
therapeutics, as their interactions indicate that mitigating one is
likely to dampen the others.

CONCLUSIONS
In lieu of a genetic cure, treatments that prevent or slow the pro-
gression of LGMD2B and MM are of the utmost importance.

FIGURE 2 | Pathophysiology of dysferlin deficiency. Dysferlin is
hypothesized to respond to influxes of Ca2+ and promote wound repair of the
t-tubule membrane. Mechanical stress or membrane injury results in influx of
Ca2+, mediated by the L-type Ca2+ channel, and this Ca2+ influx does not
cause significant muscle injury in wild type muscle cells. However, in the
absence of dysferlin, Ca2+ influx to the cytosol is greatly exaggerated,
disrupting Ca2+ homeostasis and EC-coupling. This activates a cascade of
Ca2+-mediated events that promote further damage to the muscle fiber,
including Ca2+-induced proteolysis and oxidative stress. Together, these
processes contribute to the eventual myopathy, spurring increased necrosis
and inflammation.
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Our demonstration of altered t-tubule structure and the ele-
vated Ca2+-sensitive pathways in dysferlin-null muscle is con-
sistent with reports that both are disrupted in dysferlinopathies
(Selcen et al., 2001; Campanaro et al., 2002; Suzuki et al., 2005;
Demonbreun et al., 2014). Our results indicate that targeting
LTCC-dependent Ca2+ influx is likely to have significant thera-
peutic benefit for patients with dysferlinopathy.

Our recent findings and those of others support a model
of dysferlin as a Ca2+-sensitive signaling scaffold localized to
the t-tubule membrane (Figure 1), that is designed to respond
to changes in intracellular Ca2+ caused by t-tubule membrane
stress and damage. We propose that this scaffold is uniquely
positioned near the triad junctions of muscle, where Ca2+ home-
ostasis is tightly regulated to facilitate contraction and mediate
downstream signaling cascades that maintain the normal func-
tions of muscle. In the absence of dysferlin, the myofiber lacks
the ability to maintain Ca2+ homeostasis during stress, resulting
in abnormally high cytosolic Ca2+ and the activation of myr-
iad processes that result in proteolysis and oxidative stress, and
eventually, necrosis, inflammation, and the progression of the
myopathy (Figure 2).

An important, unresolved question in the study of dysfer-
linopathy is the mechanistic underpinning for its delayed onset.
Typically, symptoms do not appear until the second or third
decade of life, and sometimes only much later (Klinge et al.,
2008). Work by our laboratory and others has shown that,
while pre-clinical animal models exhibit minor, overt functional
deficits, dysferlin deficiency is clearly associated with delayed
recovery from muscle injury induced by eccentric exercise (Roche
et al., 2008, 2012; Biondi et al., 2013). Recent studies point
to a temporal progression of altered molecular signaling and
histopathology, suggesting that the phenotypic appearance in pre-
clinical models and the clinical appearance of disease in patients
may only be revealed after a threshold of cellular dysfunction is
reached (Biondi et al., 2013). This concept is consistent with the
observation that patients who participated more in sports showed
more rapid disease progression (Angelini et al., 2011).

The recent re-examination of the cellular function of dysfer-
lin highlighted in this review has provided a number of possible
strategies for therapeutics. Further, these advances have expanded
our understanding of dysferlin’s potential roles in striated muscle.
They have also stimulated new questions about the protein, how it
traffics to t-tubules, and how it protects t-tubules from structural
damage when muscle is stressed. Studies of the role of dysferlin’s
C2 domains and its effects on Ca2+ homeostasis and signaling
may reveal an array of therapeutic options for individuals with
LGMD2B and MM that will likely include both drug and genetic
approaches.
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