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In healthcare applications, deep learning is a highly valuable tool. It extracts features from raw data to save time and effort for
health practitioners. A deep learning model is capable of learning and extracting the features from raw data by itself without any
external intervention. On the other hand, shallow learning feature extraction techniques depend on user experience in selecting a
powerful feature extraction algorithm. In this article, we proposed a multistage model that is based on the spectrogram of
biosignal. -e proposed model provides an appropriate representation of the input raw biosignal that boosts the accuracy of
training and testing dataset. In the next stage, smaller datasets are augmented as larger data sets to enhance the accuracy of the
classification for biosignal datasets. After that, the augmented dataset is represented in the TensorFlow that provides more services
and functionalities, which give more flexibility. -e proposed model was compared with different approaches. -e results show
that the proposed approach is better in terms of testing and training accuracy.

1. Introduction

In healthcare systems, data are not publicly available, and
these data are limited in nature too. For example, in the
current pandemic, the COVID-19, no data are publicly
available and some institutes have very limited data [1, 2]. As
a result, machine learning and big data analytics cannot be
performed on such limited data. One possible solution is to
augment limited data and increase the data for testing and
training of various machine learning algorithms. -e main
purpose of Data Augmentation (DA) is to increase the data
size [2]. Also, DA is a technique that strongly invades the
field of data mining and processing for regression and
classification purposes, particularly in healthcare applica-
tions. -e expression DA denotes the techniques used to

generate virtual samples. -e created latent samples are
introduced to the original data to produce a high-dimen-
sional one. -e newly generated augmented data are used in
training the suggested model. DA algorithms become nu-
merous. -e manipulation between DA algorithms is to
achieve high accuracy results and at the same time,
implementing modest and rapid algorithm is a typical
matter of talent [2].-e appropriately selected DA technique
drives the accuracy values to a dramatic level. Researchers
developed an approach to combine, search, and select the
best augmentation scheme between deterministic, marginal,
and conditional different augmentations methodologies.
-is developed approach was applied to three different
classes of systems and achieved good results among these
systems [1–3].

Hindawi
Journal of Healthcare Engineering
Volume 2021, Article ID 6624764, 9 pages
https://doi.org/10.1155/2021/6624764

mailto:adel.al-jumaily@ieee.org
https://orcid.org/0000-0001-6731-7246
https://orcid.org/0000-0002-0967-1885
https://orcid.org/0000-0003-0297-2463
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6624764


Augmentation may be applied in two domains; the first
domain is the data domain, while the second one is the
feature domain [4]. Many studies demonstrated the art of
DA by generating numerous training samples [5]. Other
studies focused on the advantage of DA and how it might act
as an organizer to prevent associated overfitting during
training of neural networks [6] and develop the execution to
avoid problems that may be correlated with the classes that
are not represented equally [7]. Many researchers pro-
spected in the field of DA to achieve high accuracy values
and enhance the classifier performance. A punch of distorted
and warped samples of characters are generated by the DA
technique [8]. -is was not the only example of creating
deformed samples of characters as it was reported in [9],
where the malformed samples are generated in a random
manner.-e latter mentioned methodology was extended to
be applied on backpropagation neural networks and reduced
the error rate to 0.4% on theMNISTdatabase [10]. After that,
in [4], the researchers followed two augmentations tech-
niques. -e first applied augmentation technique was data
wrapping or DA on the input of MNISTdataset before being
introduced to neural networks, then the output features
from the neural networks were augmented in the feature
domain. -ey used SVM, ELM, and backpropagation neural
networks as classifiers, where the accuracy percentage
ranged between 97.75% and 100% for training samples.

In the same context, DA was hired by generating virtual
samples [11]. Generally speaking, the virtual samples can be
generated by following two techniques.-e first methodology
depends on generating virtual samples from important in-
formation. For example, in the field of image processing and
recognition, we can generate virtual samples from the same
image by producing a 3D view, which in turn helps in creating
virtual samples for the same image from a different angle [12].

Consequently, the proposed model has the ability to
enhance learning performance, especially when dealing with
a few samples. A lot of these mentioned sample generation
techniques have shown considerable potential to improve
classification and prediction performance. In spite of that,
none of the previous studies are built on the overlapping
found in the features step. Accordingly, this article presents a
new model based on generating a virtual sample that also
considers solving overlaps between each of the features in
the corresponding classes. Moreover, this model is distinct
by its ability to create and treat with a massive amount of
new virtual samples that are hundreds of thousands of
samples rather than tens or hundreds of virtual samples.

In this article, previous works are presented in Section 2.
In Section 3, we illustrated the proposed model that consists
of data acquisition, random virtual generation equations,
and experiment. -en, in Section 4, we presented and
explained the results. Finally, in Section 5, the conclusion
and future work are discussed.

2. Previous Work

DA was recalled and implemented in many studies. For
example, in [13], the researchers established a relation be-
tween the iterative computational time for the expectation-

maximization procedure and extension of the space pa-
rameter with augmenting the data. -e recognized relation
was an expansion to the applied space parameter applied
along with DA, where the iterative computation time was
expected to be shorter. Earlier, scientists calculated the
posterior probability for the augmented data when the normal
likelihood could not be reached [14]. -e DA was used in
different fields as, for example, in [15] the concept of repli-
cating the data in the field of chemistry. Image recognition
was one of the fields where DA took innovative steps, as in
[16]. -e scholars applied manual augmentation techniques
in conjunction with deep neural network that led to an en-
hanced achievement. Moreover, the experimenters imple-
mented DA algorithm for hand-drawn dataset and a fine-
tuned deep neural network to extract useful features from the
introduced dataset [17]. Recently, the authors of [18] applied
the DA Markov chain Monte Carlo (MCMC). Furthermore,
the scholars in [19] applied augmentation in both data do-
main and feature domain along with using the neural network
for an acoustic signal, while in [20], the authors applied
augmentation to the speech signal to prove that the gap
between real room impulse response and simulated one was
reduced to its minimum value. In addition, the authors of [21]
combined the deep belief networks and DA algorithm, adding
gamma variables to the original signal. In the field of image
processing, the scholars augmented the input image by
generating a 3D copy to be processed in the neural network
[22]. Finally, researchers in [23] applied the augmentation
and balancing to the electroencephalography (EEG) signal.

On the other hand, the tensor representation was used
in different research fields to allow for a better represen-
tation of the dataset. In 20th century, scientists paid at-
tention to the value of tensors and their applications [24].
In the field of continuum mechanics, tensor fundamentals
and enforcement were discussed [25]. A study addressed
the tensor decomposition technique [26] and treated it as a
generalization for matrix decay. In [27], the concept of deep
tensor neural network (DTNN) was initially introduced
where one of the layers was substituted by a double pro-
jection layer. -ose two inserted are totally nonlinear.
-erefore, any input vocabulary speech was mapped to the
newly introduced in conjunction with a tensor layer. -e
model was capable of anticipating the next layer in the deep
neural network design. -e proposed model resulted in
reducing error by 3% relatively. -e researchers in [26] and
in [28] developed a model that was able to estimate an
approximation for tensor rank 1 by disintegrating tensor
and estimating Canonical Polyadic Decomposition (CPD)
by using a sparse matrix of the banded type. In 2014, the
inequality of the M tensors was discussed in [29], where the
upper and lower values for the eigenvalues were obtained.
In [30], the authors demonstrated the modeling of
earthquake waveform to estimate the moment tensor so-
lution. -e estimation of tensor parameters was deeply
analyzed in [31]. Furthermore, tensor decomposition
techniques were presented in [32] to give the opportunity
for a more latent dataset than that based on the matrix
domain. Recently, in [33], the authors applied the tensor
decomposition on the genetic expression to a group of
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latent components used to find a relation between any
biological development and genetic variation.

In [34] to increase the accuracy of the soft sensor under
the small sample issue, they proposed a new locally linear
embedding based virtual sample generation approach. In the
proposed approach, the first step is producing features from
the original data space by using locally linear embedding.
-e next step is generating effective virtual samples in the
sparse region of the original data by using a method of
random interpolation and a backpropagation neural net-
work. To test the performance of the proposed approach, a
couple of studies were conducted: the first study is a process
of high-density polyethylene and the second study is de-
veloping soft sensors for a production system of purified
terephthalic acid. -e outcomes showed that the precision
with virtual samples improved for the soft sensor. Moreover,
the proposed method achieved more accuracy than other
approaches in virtual sample generation.

Finally, in [35], the study simulated the process of
fishermen rectifying nets; this method was named Kriging-
VSG and it was put forward to produce feasible virtual
samples in data-sparse zones. -is method was based on a
distance-based criterion by imposing each dimension to
recognize important samples with huge data gaps. Similar to
the procedure of fishermen rectifying nets, a specific di-
mension was fixed at various quantiles. -e numerical
simulations and a real-world application from a cascade
reaction process for high-density polyethylene were
achieved to check the performance of the proposed method.
-e performance was superior to other methods.

3. The Proposed Model

-is section shows detailed steps to explain the model we
developed in this work, from data acquisition to the gen-
eration of the virtual samples required and from con-
structing the model to the classification tool.

3.1. Data Acquisition. Our proposed model was examined
on different datasets. -e two datasets are classified into
finger movements and the UCI machine learning respira-
tory. -e first dataset was recorded by implementing two
surface channels by using FlexComp device. -e sensors
were of type T9503M and were positioned on the patient
forearm, as shown in Figure 1.

Nine participants were asked to perform ten finger
movements. Each finger movement consumed five seconds,
then there was a rest for another five seconds, and then the
participant was requested to execute the next finger
movement and so on till finishing the ten finger movement
classes, which are shown in Figure 2. -e mentioned data
collection process were repeated for six times.

-e second dataset was for amputee patients. -e nine
participants missed their left hand. -e goal of collecting
these data was to classify between six different gestures to
understand and analyze the controlled upper limbs pros-
theses. -e six gestures were flexion, index flexion, fine
pinch, tripod grip, hook grip, and spherical grip. It was a very

challenging task to record the surface signal from amputee
participants with three different force levels. -e skin was
cleaned with alcohol and prepared using the abrasive
method. -e allocated electrodes were Ag/AgCl electrodes.

-e surface signal was recorded from 8 channels at three
levels of forces for nine amputee participants. -e first
dataset was amplified by 1000; the first and second datasets
were sampled at 2000Hz. Figure 3 shows the allocation of
the electrodes and the collection of the surface signal from
amputee participants.

For the above-mentioned datasets, threefold cross-val-
idation was applied, where 2/3 of dataset was assigned to the
training set, whereas 1/3 was allocated to the testing set. -e
data were filtered to secure the precision and removal of
noise. -e training and testing accuracies were estimated on
average basis where the accuracy was calculated per subject
and the overall accuracy was the summation of each ac-
curacy per subject divided by the number of subjects.

Other datasets were imported from UCI machine
learning respiratory, which was considered as a strong ar-
chive that was cited more than 1000 times by machine
learning community researchers. -e performance of the
proposed model was observed on additional five datasets
that were archived at the UCI website. -ose multiclass
datasets were Iris, Breast Cancer, Seeds, Sonar, Mines vs.
Rocks, and Indian Liver Patient. -e Iris dataset is one of the
most popular datasets that has been implemented in the
pattern recognition field. -e Iris dataset had three classes:
one class was linearly independent of the other two classes
and could be easily separated, whereas the other two classes
were not separable. -e three targeted classes for Iris dataset
were Iris setosa, Iris virginica, and Iris versicolor. -e Breast
Cancer dataset was collected from the doctor clinic and
classified into six classes, of which two were benign and the
other four classes were dedicated for malignant type. -e
dataset was collected for three different sorts of wheat. -e
three different classes for the seeds dataset were Kama, Rosa,
and Canadian, which were recorded via X-ray plates. -e
Sonar, Mines vs. Rocks dataset was to discriminate between
metal and rock. -e last recalled dataset was Indian Liver
Patient. -e dataset was collected from 441 male Indian
participants and 142 female participants to discriminate if
this participant could be classified as a liver patient or not.

3.2. Random Virtual Generation Equations. Let us assume
that we have dataset e � (x, f(x)), where e represents the
original training samples, x ∈ Rn, and f(x) � −1, 1{ }.
Assume that we have previous information k, and we need to

Flexor policis longus (FPL)
Flexor digitorium superificialis (FDS)

Figure 1: Posture of the electrodes.
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map our training set to the new domain. -erefore, if we
have a convert that equals T � yT, the dataset e will be
transformed via this conversion equation to generate virtual
samples (Tx, yT(f(x)). -e generation of mathematical
transformation T and yT depends primarily on the previous
information, which may result in either simple or complex
transformation formula.

However, the second algorithm depends on adding noise
to the original signal [36]. Most of the techniques that were
used to create virtual samples suffer from the lack of
combining reasonableness and adaptability simultaneously.
Accordingly, we followed an algorithm to generate virtual
Gaussian samples [2]. -is method started to calculate the
mean and standard deviation for Gaussian distribution, as
shown in Figure 4. -en, the virtual samples could be
generated following this technique, and finally, the virtual
generated samples were added to the original ones [37]. So,

x1, . . . xn, xn+1, . . . xk􏼈 􏼉 represents the original dataset,
which belongs to R. -e first n samples of the dataset are
continuous, whereas the k − n samples are discrete. -e m

random variables are generated by Gaussian algorithm N �

(μ, η2) for the first n continuous samples knowing that μ
represents the mean and η represents the standard error.
However, for the samples k − n that are assigned to be
discrete ones, the values will not be transformed and in order
to keep the consistency between the discrete and continuous
part, we may generate random variables for the discrete part
by using N � (μ, η2) with η2 equalling zero. Figure 1 shows

the normal distribution for augmented data for one feature
only. -is technique was utilized in our proposed model,
where the main motivation was to secure a normal distri-
bution for the stochastic electromyography signal.

-e tensor can be defined as a multidimensional array
with respect to a basis; however, for a vector, it can be
represented as a single-dimensional array with respect to the
same basis. In brief, tensors can be evaluated as a multi-
dimensional vector. Tensors can be deemed as a mathe-
matical method to represent values in a multidimension
matrix. Tensors are considered the comprehensive version of
matrix, vector, and scalar. -erefore, matrix, vector, and
scalar can be measured as subcomponents of tensor. -e
generation of tensor can be done by following transfor-
mation laws. Tensors are characterized as having various
coordinate systems. -erefore, the coordinate systems with
their transformation laws will be analyzed in the next
section.

Assume that we have xi, where i � 1, 2, . . . , N. So, by
substituting the different values of i, we can getN values of x

in a N-dimensional space x1, x2, . . . , xN. Moreover, the set
of xi can be expressed as x1, x2, . . . , xN for N-dimensional
coordinates. In the same context, keeping the same trans-
formation laws for x′ to x′ leads to the following trans-
formation equation:

x
i

� x
i

x
1
, x

2
, . . . x

N
􏼐 􏼑, i � 1, 2, . . . , N. (1)

Thumb Index Middle Ring Little

Hand-closeThumb-littleThumb-ringThumb-middleThumb-index

Figure 2: Ten different finger gestures (classes).

Figure 3: Electrodes allocation for amputee participants.
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Figure 4: -e normal distribution for one feature after DA [1, 2].
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-e above equation creates an independent relation
between the two different coordinates xi and xi for
i � 1, 2, . . . , N. As long as the relation is kept independent, it
can be recalled for transformation.

-e Jacobian first-order partial transformation will be
estimated as follows:
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With an inverse transformation,

x
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x
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N
􏼐 􏼑, i � 1, 2, . . . , N. (3)

In brief, both equations (1) and (2) can be expressed in
the notation formula as follows:

x
i

� x
i
(x), i � 1, 2, . . . , N, (4)

x
i

� x
i
(x), i � 1, 2, . . . , N. (5)

x can be concluded from x and x can be deduced from x

by recalling transformation. Assume that x � y and x � z .
-e transformations are represented by T1, T2, and T3,
where
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T3 can be deduced by the product of both T1 and T2:
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orT3x � T2T1x � z by consideringT3 � T2T1,
(7)

where T1, T2, and T3 represent the first, second, and third
coordinates transformations, respectively.

4. Experiment

-e study implemented two layers of autoencoder: the first
layer was 1200 nodes, whereas the second was 900 nodes.
-e encoder transfer function was purely linear. -e sug-
gested model is shown in Figure 5.

We claimed that the suggested paradigm was able to
achieve high accuracy values for both the training and the
testing sets with a powerful signal representation. In a
preparatory step of the model, the input raw biosignal was
performed by algorithm. -e implemented window size
was 200milliseconds, while window increment was
50milliseconds. -e recommended number of sampling
points to calculate the discrete Fourier transform was 1024.
-e advantage of proceeding lies in providing an appre-
ciated representation for the input raw biosignal, which, in
turn, boosted the accuracy values for both training and
testing set. -e output of representation was fed to the DA
stage, where the above-mentioned Gaussian augmentation
was used with reiterating represented data 1000 times.
Reiterating data 1000 times was followed based on different
trials, where 1000 showed the most compromise between
simulation time and performance. -e DA enriched the
data and granted affluence to the data that improved
training and testing accuracies in return. As a final stage in
representing data, the tensor representation was hired to
give us the opportunity to demonstrate the data into a

developed perspective. -en, the data was presented to two
layers of autoencoder to learn features from high-quality
represented data. -e first layer of autoencoder was 1200
nodes, whereas the second one was 900 nodes.

-e weight regularization coefficient was set to 0.001, as
its default value, for both layers of autoencoder. -e coef-
ficient that controlled the weights of the sparsity regulari-
zation was set to 4 for both layers. -e sparsity proportion
factor determined the activation response rate of the
autoencoder neuron.-e value of sparsity proportion varied
from 0 to 1. A lower value promoted and inspired for a
higher sparsity. -e sparsity proportion was set to 0.05.
Eventually, the encoder transfer function was set to purely
linear. We executed different transfer functions like logistic
and positive saturating linear transfer functions aside from
the pure linear one, which led to promoted results. -e
output features were employed to proceed with the classifier
phase. -e paper used three different main classifiers,
namely, ELM, SVM, and SL. In terms of ELM, five activation
functions were used and picked out the activation function
that generated the most precise results. -e five executed
activation functions, namely, Sine, Triangular basis, and
Radial basis functions. As for the SVM classifier, the study
proceeded with six different functions for SVM. -e exe-
cuted SVM functions were linear, quadratic, cubic, fine
Gaussian, mediumGaussian, and coarse Gaussian SVM, and
the function that performed the best outcome was selected.
-e accuracies of the three classifiers were presented to the
classifier fusion layer to select the best local classifier per
class.
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5. Results

-e implementation of the classifier layer endorsed the
accuracies for both training and testing set as the training set.
-e classification accuracy of ten finger movements dataset
accounted for 100% for the training pack and 90.25% for
testing one. As for the high-force six finger movements
dataset, the training collection accuracy amounted to
99.74%, whereas accuracy for the testing group achieved
91.85%. -en, the executed data representation techniques
mentioned above and the deep neural network were replaced
by a typical pattern recognition model where the features
were extracted and reduced to a lower number of features by
using linear discriminant analysis and that used both the
ELM and the SVM as classifiers. However, the performance
of the ELM as a classifier was much better than that achieved
by the SVM in terms of both the simulation time and ac-
curacy. Based on the used pattern recognition model, the
training accuracy for ten finger movements was 95.76%,
whereas testing accuracy was 87.11%, as illustrated in Fig-
ure 6. In terms of the six finger movements, both the training
and the testing accuracies were lower than those values
achieved by our proposed model. -e training accuracy was
98.57%, whereas the testing one was 89.64%, as illustrated in
Figure 7.

-is study concluded that our proposed model was
explicitly better than the typical pattern recognition model.

Furthermore, the suggested system did not require any
feature as it was trained to learn features by itself and in-
dependent of the input data. Accordingly, we examined the
planned scheme on popular datasets to provide the model
with reliability and trustworthiness. -e implementation of
Iris data resulted in a training accuracy of 100 % and testing
accuracy of 98.5%. For Breast Cancer tissue dataset, the
training accuracy was 98.58% and testing accuracy was
91.7%. However, using Sonar dataset, the accuracy for
training was 85.69% and that for testing was 74.4%.
Moreover, executing liver dataset led to 96.47% as training
accuracy and 85.1% for testing one. With regard to the data,
the training accuracy accounted for 94.57%, whereas for
testing one, it amounted to 83.6%. -e UCI machine
learning respiratory datasets were executed without recalling
any classifier fusion layer and were classified by using
classifier only. -e training simulation time was more than
600 seconds. However, the time consumed for examining the
testing set on the trained network was not more than
1.5 seconds. Table 1 shows both training and testing accu-
racies for all of the above-mentioned datasets. Figure 6
shows a comparison between the testing and the training
accuracies for the suggested model and those resulted from
implementing a typical pattern recognition technique for
classifying the ten finger movements. However, Figure 7
shows the same comparison for the six finger movements.
-e recommended model did not only show better

Classifier

Input raw
data

Represented
data

Augmented
data

Tensor
represented data

Learnt
features

Training &
testing

accuracy
Best local
accuracy

Spectrogram
representation

Data
augmentation

Tensor
representation

Auto encoder
two layers

Classifier
fusion

Figure 5: Proposed model diagram.
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(Suggested deep learning model) Typical pattern recognition
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(%)

100.00%

90.25%

95.76%

87.11%
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Figure 6: Comparison between suggested deep learning model in ten finger movements.
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performance on the level of training and testing accuracies
but also saved the effort and time that might be wasted in
selecting the best features that match the application.

6. Conclusion and Future Work

We suggested a deep learning model where the data were
represented, augmented, and then transferred into the
tensor domain. Two layers of autoencoder were imple-
mented by adjusting its parameters to have the best results.
-e SVM, ELM, and SL were applied as classifiers. Also, the
best local classifier was applied to select the highest accuracy
per class. -e proposed model was applied to different
datasets to provide it with fidelity and reliability. Ten and six
finger movements were used for the advised system and for
traditional pattern recognition. -e planned diaphragm
resulted in higher accuracies than the traditional pattern
recognition system with the advantage of the classifier fusion
technique. Moreover, the pattern recognition consumed
effort and time to extract the best features set that led to
better accuracies, whereas the suggested model did not
require any features or human interventions as it was ca-
pable of learning features by itself regardless of the intro-
duced dataset. -e recommended model consumed about
600 seconds to train the network with no more than
1.5 seconds to test the trained network. -e planned model

was applied to other popular datasets and brought about
accepted accuracy values. -e main advantage behind ex-
amining data by the model was that we voided the feature
extraction engineering handcrafted techniques and fed the
model by the data that were capable of learning features by
itself and independently of the data type that was introduced,
which saved time and effort. Eventually, as a future en-
hancement, the simulation time may be reduced by
implementing different neural networks that may be able to
learn features in a superior manner without consuming a
long simulation time.
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