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Langerhans cell histiocytosis (LCH) lesions contain an inflammatory infiltrate of immune

cells including myeloid-derived LCH cells. Cell-signaling proteins within the lesion

environment suggest that LCH cells and T cells contribute majorly to the inflammation.

Foxp3+ regulatory T cells (Tregs) are enriched in lesions and blood from patients with

LCH and are likely involved in LCH pathogenesis. In contrast, mucosal associated

invariant T (MAIT) cells are reduced in blood from these patients and the consequence

of this is unknown. Serum/plasma levels of cytokines have been associated with LCH

disease extent and may play a role in the recruitment of cells to lesions. We investigated

whether plasma signaling factors differed between patients with active and non-active

LCH. Cell-signaling factors (38 analytes total) were measured in patient plasma and

cell populations from matched lesions and/or peripheral blood were enumerated. This

study aimed at understanding whether plasma factors corresponded with LCH cells

and/or LCH-associated T cell subsets in patients with LCH. We identified several

associations between plasma factors and lesional/circulating immune cell populations,

thus highlighting new factors as potentially important in LCH pathogenesis. This study

highlights plasma cell-signaling factors that are associated with LCH cells, MAIT cells

or Tregs in patients, thus they are potentially important in LCH pathogenesis. Further

study into these associations is needed to determine whether these factors may become

suitable prognostic indicators or therapeutic targets to benefit patients.
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INTRODUCTION

Langerhans cell histiocytosis (LCH) is a rare but likely
underdiagnosed disease with approximately 1/200,000 cases
per year recorded in children under 15 years. LCH typically
presents as one or more inflammatory lesions in any bodily
tissue. Lesions comprise myeloid lineage LCH cells that often
harbor BRAFV600E or other MAPK pathway mutations (1, 2),
and whilst the presence of LCH cells is indicative of active
disease, lesions characteristically also include a range of other
immune cells. Foxp3+ regulatory T cells (Tregs) are typically
enriched in patients with LCH (3, 4) and additionally there is
a cytokine milieu within lesions that suggests LCH cells and T
cells contribute to the localized inflammation (5, 6). This cytokine
milieu may further dictate the immune environment, and soluble
cell signaling molecules are likely important for immune cell
recruitment to lesions.

The clinical outcome for patients with LCH is diverse.
Cell infiltration to risk-organs (liver, spleen and hematopoietic
involvement) often carries a poor prognosis, and approximately
50% of all patients experience recurrence following the standard
of care vinblastine and prednisone therapy. Involvement of
the central nervous system may also occur, most commonly
including infiltration of the pituitary gland, but a progressive
permanent neurodegeneration may also develop. In contrast,
untreated lesions in osseous and cutaneous tissue can sometimes
resolve spontaneously (7). Given the wide range of clinical
outcomes, the presence of a large immune infiltrate, and the
concept that lesions can self-resolve, it is likely that the immune
system is involved in LCH pathogenesis.

Elevated serum/plasma and cerebrospinal fluid levels of
various cytokines and chemokines have been reported and
associated with disease extent in LCH and may be important
for LCH cell migration and immune cell recruitment to lesions
(8–19). Corroborating on the role of the different cytokines
and immune cells addressed in these studies, cytokines that
typically, although not exclusively, are associated with pro-
inflammatory capacity have been detected at higher levels in
patients with active disease. Little is known on the relationship
between cytokine levels in blood and the relative frequencies
on the immune cells in LCH lesions (e.g., LCH cells, Tregs,
MAIT cells). Here we investigated whether plasma signaling
factors differed between patients with active LCH (AD) and
non-active LCH (NAD) (Table 1) in groups closely matched
in age (Supplementary Figure S1A), and addressed the link
between these factors and relative frequencies of immune cells
in LCH lesions.

METHODS

Lesions and peripheral blood (including plasma) were collected
from patients under approval from the Ballarat Health Services
and Saint John of God Ballarat Hospital Human Research
Ethics Committee and Federation University Australia Human
Research Ethics Committee. Patients (or parents/guardians of
children where appropriate) provided written, informed consent.
Patients were biopsy-diagnosed by pathologists as determined

by positive immunohistochemical staining of CD1a and S100
in lesions. Peripheral blood mononuclear cells were isolated
from blood, while lesional tissues were digested into single cell
suspensions as previously described (20).

A comprehensive range of immune checkpoint molecules,
pro-inflammatory chemokines and other cytokines (38 analytes
total) were examined using LEGENDplex assays (BioLegend)
as per manufacturer’s instructions (Table 2). We selected pro-
inflammatory chemokines and cytokines because they may
contribute to infiltration of inflammatory cells, and soluble
immune checkpoint molecules because plasma levels are
increasingly shown to be involved in immune regulation.

For all flow cytometry experiments, doublets and dead
cells were excluded. Viability dye (7-AAD; BD Pharmingen or
fixable viability stain 700; BD Horizon), human Fc block (BD
Pharmingen) and human antigen specific antibodies (Table 3)
were used to identify populations, utilizing gating strategies
presented in Supplementary Figure S2. Analyses to determine
statistical significance were conducted using GraphPad Prism
(GraphPad Software).

RESULTS AND DISCUSSION

We unexpectedly found that the active form of transforming
growth factor beta (TGF-β) was lower in plasma from a mixed-
age cohort of patients with AD when compared to plasma
from patients with NAD (Figure 1A.i). This was unexpected
because TGF-β was previously reported to be increased in blood
from pediatric patients with AD when compared with NAD
(9), however it is unclear whether this was free active TGF-
β or latency-associated peptide-bound TGF-β, which forms a
latent complex. Importantly, our assay tested for free active
TGF-β, which has pleiotropic biological effects. It was suggested
in one previous report that TGF-β is a potential driver of
circulating LCH-like cells in vivo (9), and it is well-documented
that TGF-β is one of the components able to drive LCH
program/state/phenotype in differentmyeloid cell subsets in vitro
(21–23). Our finding suggests that we reconsider how TGF-β
is involved in LCH pathogenesis. One may speculate that while
promoting the pathognomonic LCH program at the site of the
lesion, higher levels of circulating active TGF-β specifically in
non-active LCH patients may reflect the immunosuppressive
nature of TGF-β. The previous study also found that thymic
stromal lymphopoietin (TSLP) was elevated in patients with AD
(9) and we found a similar trend (Supplementary Figure S1B).
In addition, we identified higher levels of soluble CD25 (sCD25)
in plasma from patients with AD when compared to plasma
from patients with NAD (Figure 1A.ii). It is already established
that patients with LCH have elevated serum levels of sCD25,
which is associated with disease extent and lower survival rates
(12, 17). Our result is consistent with the previous studies
investigating sCD25 and supports that sCD25 is associated with
disease activity. The mechanistic insights into steps leading to
sCD25 elevation in LCH as well as its modulatory capacity on
immune cell populations during the active disease remain to
be elucidated.
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TABLE 1 | Relevant clinical information for the patient cohort assessed in this study.

Patient

code

Type of sampling:

Matched

blood/plasma and

LCH lesion* or

Blood/plasma only

Specimen

description

Sex Age at

diagnosis

Tissues

affected

Age at

specimen

Treatment prior to

specimen

Status

at

specimen

Other

A Matched Bone lesion, matched

blood/plasma

F 8 months Bone, skin,

lung

8 months None AD BRAF V600E+,

multifocal bone, CNS

risk lesions

B Blood/plasma only Blood/plasma M 7 months Bone 17 months Vinblastine, steroids,

cytarabine, vincristine

AD Multifocal, CNS risk

lesion

C Matched Bone lesion, matched

blood/plasma

M 2.5 years Bone, skin 2.5 years None AD Multifocal bone LCH,

including CNS risk

lesion

D Matched Bone lesion, matched

blood/plasma

M 5 years Bone 5 years None AD

E Blood/plasma only Blood/plasma F 3 years Bone 5 years None NAD Multifocal

F Matched Bone lesion, matched

blood/plasma

M 7 years Bone 7 years None AD Mutation in BRAF V600

G Blood/plasma only Blood/plasma M 3 years Lymph

nodes, bone,

skin, CNS

9 years Vinblastine, steroids AD Diabetes insipidus

H Blood/plasma only Blood/plasma F 10 years Bone 11 years None NAD

I Blood/plasma only Blood/plasma M 7 months Skin, lymph

nodes, liver,

ears, spleen,

bone marrow,

intestines,

bone

11 years Vinblastine, steroids,

methotrexate, 6-MP,

Cladribine, Cytarabine.

Modified salvage therapy

LCHIV. (no treatment prior

to the specimen)

NAD Non-BRAF mutation

J Blood/plasma only Blood/plasma M 10 years Bone, skin 12 years Cytarabine, prednisolone

and vinblastine (ceased 6

months prior to specimen

AD Diabetes insipidus,

mutation in BRAF V600

K Blood/plasma only Blood/plasma F 15 months Skin, bone,

intestines,

bone marrow

13 years Vinblastine, steroids,

methotrexate, 6-MP (no

treatment prior to the

specimen)

NAD CNS suspicion

L Blood/plasma only Blood/plasma F 10 years Bone 13 years None NAD Unifocal

M Blood/plasma only Plasma F 36 years Bone 37 years None NAD

N (AD) Matched Pulmonary lesion,

matched

blood/plasma

M 40 years Lung 40 years None AD Mild pulmonary fibrosis,

smoker

O Blood/plasma only Blood/plasma M 41 years Skin 41 years Vinblastine, prednisolone AD

N (NAD) Blood/plasma only Plasma M 40 years Lung 42 years Vinblastine, prednisolone NAD Mild pulmonary fibrosis,

smoker

P Blood/plasma only Plasma F 25 years Bone 42 years Vinblastine, prednisolone NAD Ataxia at time of

specimen

Q Blood/plasma only Plasma M 39 years Lung 52 years Vinblastine, prednisolone NAD

R Matched Skin lesion, matched

blood/plasma

F 54 years Skin 54 years None AD BRAFV600E+

S Blood/plasma only Plasma F 60 years Skin 64 years Methotrexate,

prednisolone

NAD Leg scarring

T Blood/plasma only Plasma M 67 years Bone, skin 67 years Short term oral

hydroxyurea (not well

tolerated)

NAD

U Matched Bone lesion, matched

blood/plasma

M 68 years Bone 68 years Irradiation of a prior lesion

in a different location

AD Diabetes insipidus from

age 55

* Matched blood/plasma and LCH lesion are indicated as “Matched”.
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TABLE 2 | Plasma signaling factors analyzed in this study.

LEGENDplex

panel name

Human cytokine

panel 2

Human immune

checkpoint panel 1

Human

pro-inflammatory

chemokine panel

Plasma

signaling

factors

included in

the panel

TSLP

IL-1α

IL-1β

GM-CSF

IFN-α2

IL-23

IL-12p40

IL-12p70

IL-15

IL-18

IL-11

IL-27

IL-33

sCD25 (IL-2Ra)

4-1BB

SCD27

B7.2 (CD86)

Free Active TGF-β1

CTLA-4

PD-L1

PD-L2

PD-1

Tim-3

LAG-3

Galectin-9

MCP-1 (CCL2)

RANTES (CCL5)

IP-10 (CXCL10)

Eotaxin (CCL11)

TARC (CCL17)

MIP-1α (CCL3)

MIP-1β (CCL4)

MIG (CXCL9)

MIP-3α (CCL20)

ENA-78 (CXCL5)

GROα (CXCL1)

I-TAC (CXCL11)

IL-8 (CXCL8)

All plasma samples (see Table 1) were tested for each of the 38 analytes.

TABLE 3 | Flow cytometry antibodies used for LCH cell and T cell subset

identification.

Antibody Fluorochrome Clone Company

CD1a BV605 SK9 BD Biosciences

CD3 PE-Cy7 UCHT1 BD Pharmingen

CD3 BV650 UCHT1 BD Horizon

CD3 PerCP-Cy5.5 SK7 BD

CD4 BV650 SK3 BD Horizon

CD4 BV711 SK3 BD Horizon

CD4 APC/Fire750 RPA-T4 BioLegend

CD8 APC-Cy7 SK1 BD Pharmingen

CD8 BV510 RPA-T8 BD Horizon

CD8 PE/Cy5 HIT8a BioLegend

CD11c PE-CF594 B-ly6 BD Horizon

CD19 BV510 SJ25C1 BD Horizon

CD25 PE-Cy7 M-A251 BD Pharmingen

CD25 BV711 2A3 BD Horizon

CD56 BV786 NCAM16.2 BD Horizon

CD127 BV421 HIL-7R-M21 BD Horizon

CD161 APC HP-3G10 BioLegend

CD161 PE-Vio770 191B8 Miltenyi Biotec

TCR Vα7.2 FITC 3C10 BioLegend

We next aimed to understand whether there were correlations
between the levels of plasma signaling factors and the relative
frequency of LCH cells. Our study found that the mean
concentration of active TGF-β was 13.64 pg/mL in plasma from
patients with NAD, consistent with previously reported levels in
a control group [3–16 pg/mL (24)]. The study by Carrera Silva
et al. suggested that TGF-β and TSLP might drive the plasma
induced expression of CD207 in circulating myeloid cells in LCH
patients, but LCH-like cells were not detected in the NAD group
(9), which we found to have higher levels of active TGF-β than
the AD group. Of note, we were only able to detect LCH cells
in the lesions, and never in the circulation regardless of disease

activity, in line with a recent study including 217 pediatric LCH
patients where the whole circulating mononuclear phagocyte
compartment was investigated (25). With regard to the LCH
program, multiple soluble factors may contribute to the LCH cell
phenotype, and LCH themselves are likely to produce high levels
of inflammatory cytokines, given their newly described program
of senescence and the senescence-associated secretory phenotype
(26). We therefore investigated whether there were associations
between levels of plasma factors, that may to a certain degree
reflect the inflammatory milieu at the site of the lesion, and
the proportion of LCH cells in the CD11c+ compartment from
plasma donor-matched lesions as measured by flow cytometry
(Supplementary Figure S2A).

We did not detect a correlation between LCH cells (n = 7)
and the concentration of active TGF-β (r = 0.134, p = 0.810),
TSLP (r =−0.090, p = 0.857) or sCD25 (r= −0.571, p = 0.200)
in plasma. Although patient plasma can drive an LCH-like cell
phenotype (9), the plasma levels of active TGF-β and TSLP do
not appear to directly affect the proportion of LCH cells within
lesions. Investigating associations between lesion LCH cells and
other signaling factors, we found that the proportion of LCH
cells in lesions correlated with plasma IL-11 (a cancer mediator),
soluble CD27 (sCD27; a T cell activator) and plasma CCL2
(MCP-1; monocyte chemoattractant protein-1) (Figure 1B.i–iii).
In addition to this study, it is already established that plasma IL-
23 and IL-12p40, the two subunits of IL-23 - a well-established
driver of chronic tissue inflammation (27), correlate with the
proportion of LCH cells in the CD11c+ compartment of LCH
lesions (19). The influence of plasma signaling factors on LCH
cell phenotype and pathogenesis may be more complex than
originally thought, and future studies addressing soluble and
cellular immunological phenotypes during AD and NAD in
LCH, both at the lesion site and in circulation, are warranted.
Here we highlight that several plasma factors correlate with the
proportion of LCH cells in lesions that may influence or be
influenced by LCH cells.

T cells are also suggested to contribute to the inflammatory
environment and we (4, 20, 28) and others (3, 29, 30) have
identified abnormalities in several T cell lineages in patients
with LCH. Immune dysfunction is suggested in many cancers,
and we hypothesize that T cells are also important in LCH
pathogenesis. In particular, our group is interested in the role
of Tregs due to their elevated frequency in patients with LCH
(3) and mucosal associated invariant T (MAIT) cells, due to
their lower relative frequency (20). We therefore extended our
study to determine whether relationships existed between plasma
signaling factors and these LCH-associated T cell subsets. Using
flow cytometry, Tregs and MAIT cells were measured relative
to the total CD3 population in plasma donor-matched lesions
(Supplementary Figures S2B,C). In addition to their association
with LCH cells, plasma CCL2 negatively correlated with the
proportion of LCH lesional Tregs (Figure 1C). The proportion
of MAIT cells in lesional T cells correlated with the plasma
CCL17 (TARC; thymus and activation-regulated chemokine) and
CCL5 (RANTES; regulated on activation, normal T cell expressed
and secreted) (Figure 1D.i,ii). Future studies will be needed to
address the role of these factors in relation to Treg andMAIT cell
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FIGURE 1 | Concentrations of plasma signaling factors in patients with LCH, and their associations with LCH cells and T cell subsets. (A) Plasma concentrations of (i)

active TGF-β (two-tailed unpaired Mann-Whitney test, error bars indicate median + interquartile range) and (ii) sCD25 (IL-2Rα; two-tailed unpaired t test with Welch’s

correction, error bars indicate mean +95% confidence interval) in patients with LCH. (B) Correlations between the proportion of LCH cells in lesion CD11c+ cells and

plasma concentration of (i) IL-11, (ii) sCD27 and (iii) CCL2 (MCP-1). (C) Correlation between the proportion of Tregs in T cells from LCH lesions and plasma

concentration of CCL2. (D) Correlation between the proportion of MAIT cells in T cells from LCH lesions and plasma concentration of (i) CCL17 (TARC) and (ii) CCL5

(RANTES). (E) Correlation between the proportion of MAIT cells in T cells from peripheral blood from patients with AD and plasma concentration of Tim-3. For (B–E),

Spearman’s two tailed non-parametric correlation tests were completed. Dashed lines indicate minimum (and maximum for D.ii) detectable concentrations as

determined by standard curve. For consistency, values below the detectable limit were recorded as zero (dotted lines indicate zero). NAD, non-active LCH; AD, active

LCH; CNS, central nervous system; circles represent adult patients, squares represent pediatric patients, open circles/squares represent single system disease,

closed circles/squares represent multisystem disease, red borders indicate CNS involvement, risk or suspicion, blue borders indicate known mutation in BRAFV600,

purple borders indicate BRAFV600E+ CNS risk lesion and green borders indicate mutation other than BRAFV600.

functions/dysfunctions in LCH. Interestingly, we also observed
a strong correlation between the proportion of Tregs in T cells
from the blood of active LCH patients and plasma Tim-3, that
is an emerging immune check point not only in the context of
adaptive immune system, but also innate anti-cancer immunity
mediated through dendritic cell responses [reviewed in (author?)
(31)] (Figure 1E).

CONCLUSION

This study highlights that active TGF-β is lower in plasma
from patients with AD when compared to those with NAD
and therefore it is timely to revisit the role of TGF-β in LCH

pathogenesis. We also identified several associations between
plasma signaling factors and LCH cells, Tregs and MAIT cells
in patients with LCH, thus highlighting that these factors
may potentially dictate the LCH immune environment or
be a by-product of it. Further research is needed to better
understand these associations and what role they play in
LCH pathogenesis.
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