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Abstract

Macroevolutionary theory predicts high rates of evolution should occur early

in a clade’s history as species exploit ecological opportunity. Evidence from

the fossil record has shown a high prevalence of early bursts in morphologi-

cal evolution, but recent work has provided little evidence for early high

rates in the evolution of extant clades. Here, I test the prevalence of early

bursts in extant data using phylogenetic comparative methods. Existing mod-

els are extended to allow a shift from a background Brownian motion (BM)

process to an early burst process within subclades of phylogenies, rather than

an early burst being applied to an entire phylogenetic tree. This nested early

burst model is compared to other modes of evolution that can occur within

subclades, such as evolution with a constraint (Ornstein-Uhlenbeck model)

and nested BM rate shift models. These relaxed models are validated using

simulations and then are applied to body size evolution of three major clades

of amniotes (mammals, squamates and aves) at different levels of taxonomic

organization (order, family). Applying these unconstrained models greatly

increases the support for early bursts within nested subclades, and so early

bursts are the most common model of evolution when only one shift is anal-

ysed. However, the relative fit of early burst models is worse than models

that allow for multiple shifts of the BM or OU process. No single-shift or

homogenous model is superior to models of multiple shifts in BM or OU

evolution, but the patterns shown by these multirate models are generally

congruent with patterns expected from early bursts.

Introduction

The adaptive radiation of morphological traits is a key

part of macroevolutionary theory. In an adaptive radia-

tion, a clade’s early history is characterized by move-

ment into new areas of morphospace, usually in

response to ecological opportunity (Simpson, 1944;

Schluter, 2000; Losos, 2010). This definition is distinct

from early high rates of speciation: adaptive radiations

are defined by the rapid acquisition of diverse morpho-

logical traits within closely related clades (Givnish,

2015). Within this framework, early bursts of morpho-

logical evolution are modelled on phylogenetic trees by

having high early rates of change that slow

exponentially through time (Simpson, 1944; Blomberg

et al., 2003; Harmon et al., 2010).

Phylogenetic analyses of trait evolution have shown

that early bursts are not a common feature in living

groups (Cooper & Purvis, 2010; Harmon et al., 2010),

but are not entirely absent (Harmon et al., 2003; Bur-

brink & Pyron, 2010; Slater et al., 2010; Derryberry

et al., 2011). Some methodological issues may cloud the

detection of early bursts in extant clades (Slater et al.,

2010; Slater & Pennell, 2014), but their prevalence in

living groups is still equivocal. However, patterns of

morphological evolution are more widely recognized in

the fossil record where the theory of early bursts was

first formulated (Foote, 1994; Wagner, 1997; Hughes

et al., 2013).

Here, I relax the assumption that early bursts must

occur on entire phylogenies. Previously, early burst

models have been applied to whole phylogenies
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representing traditional taxonomic groups (Harmon

et al., 2010), although a similar relaxation of clade rates

is also available in BAMM (Rabosky et al. 2013;

Rabosky, 2014). Models of Brownian motion (BM) rate

homogeneity (Felsenstein, 1973, 1985) have previously

been extended by allowing nested clades to have differ-

ent rates (O’Meara et al., 2006; Thomas et al., 2006),

and evolutionary modes (Ingram & Mahler, 2013; Mah-

ler et al., 2013; Uyeda & Harmon, 2014; Khabbazian

et al., 2016). Here, I implement a similar approach to

model nested early bursts in subclades of the phylogeny

against background BM process. Additionally, I test the

relative fit of these models against similar models of

evolution that constrain traits to an optimum value

(Hansen, 1997; Mahler et al., 2013; Pennell et al.,

2015), and to models that allow for a different rate of

evolution in nested clades (O’Meara et al., 2006;

Thomas et al., 2006).

Using these models, I test the prevalence of nested

early bursts in body size evolution in three speciose

clades of extant amniotes: mammals, aves and squa-

mates. There has been little previous evidence for early

bursts within mammals overall (Cooper & Purvis,

2010), but some support in subclades of mammals,

birds and squamates (Harmon et al., 2003; Slater et al.,

2010; Derryberry et al., 2011; Slater, 2015). All models

were applied to phylogenies of mammals, birds and

squamates, at the order and family level. At these tradi-

tional levels of organization, there is limited evidence

for early bursts. When the assumptions are relaxed so

early bursts models can occur in nested subclades

within these phylogenies, early burst patterns become

more prevalent. However, the relative fit of these mod-

els is worse than that of models that allow for multiple

shifts (> 1) in a BM or OU process, but there is evi-

dence to indicate these models still possess signals

expected from an early burst pattern.

Materials and methods

Models

Here, I extend previous models of early bursts (EB) so

that they can occur in nested monophyletic clades

within a phylogeny. This nested EB process is set

against an ancestral BM model which describes the

evolution of traits for species outside of the nested

monophyletic clade. Specifically, I apply the two mod-

els of nested early bursts: the nested EB model in which

the early burst process inherits the basal BM rate; and

the nested EB rate model that is similar to the nested EB

model except a scalar also allows for a higher rate of

evolution within the nested clade compared to the

ancestral rate of BM evolution. Both the nested EB and

nested EB rate models allow for early increases in the

rate of evolution at the base of a clade: the branch

leading to the most recent common ancestor of the

nested clade undergoes an increase in rate compared to

the background BM rate in both the nested EB and

nested EB rate models. This increase is then followed by

an exponential slowdown in both the nested EB and

nested EB rate models. In the nested EB model, the

increase and slowdown is relative to the ancestral

Brownian rate, but in the nested EB rate model, the rate

increase and exponential decrease is relative to the rate

scalar applied to this clade (Fig. 1).

I compare these nested models to similar models that

have been previously implemented: nested models of

the Ornstein-Uhlenbeck (OU) model process (Ingram &

Mahler, 2013; Uyeda & Harmon, 2014; Khabbazian

et al., 2016); nested models in which the rate of BM

can change throughout a phylogeny (O’Meara et al.,

2006; Thomas et al., 2006); and models of BM, OU and

EB applied to the whole phylogeny. Nested OU and

nested BM models are not novel, but for consistency

BM
Original phylogeny(a)

Nested EB(b)

Nested EB rate
Scalar rate = 2×

(c)

Nested Shift
Scalar rate = 2×

(d)

Nested Shift
Scalar rate = 0.5×

(e)

Fig. 1 Comparison of the tree branch length transformations

performed by the BM (a), nested EB (b), nested EB rate (c), nested

shift rate increase (d) and nested shift rate decrease (e) models. For

each phylogeny, it is assumed that there is change from the

ancestral BM (dark branches) in a nested clade (coloured

branches). No transformation occurs in the BM model (a). In the

nested EB (b) and nested EB rate (c) models, there is an exponential

increase on the branch leading the most recent common ancestor

of the nested clade (red branch) followed by an exponential

slowdown (pink branches). In the nested EB model, this

exponential change is relative to the ancestral Brownian rate (b),

and the exponential change in the nested EB rate is relative to the

ancestral Brownian rate multiplied by a scalar. These nested EB

models are distinct from the nested shift models: in the nested shift

models, there is a linear increase (d) or decrease (e) applied to all

branches with no slowdown or increase in rate, respectively.
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within the manuscript, they are designated as nested OU

and nested shift. In the nested OU model, a mono-

phyletic subclade inherits the basal BM rate, but is con-

strained to an optimum value by the attraction

parameter (a) and collapses to BM when a = 0; and in

the nested shift model, a monophyletic subclade is char-

acterized by increased or decreased rates, and this is

equal to BM when the nested clade has rate 1. The rel-

ative fit of models is judged by estimating the small-

sample Akaike Information Criterion (AICc) (Burnham

& Anderson, 2004). All models are used to find a maxi-

mum of one shift. In an extension of this model, it

would be possible to model a greater number of shifts,

but this may not be appropriate with an AIC-based

approach (Ho & An�e, 2014; Khabbazian et al., 2016).

Nested early bursts

The nested EB models are modifications of the widely

used BM model of trait evolution (Felsenstein, 1973,

1985; Hansen, 1997; Blomberg et al., 2003; Harmon

et al., 2010). Harmon et al. (2010) introduced the EB

model in which rates exponentially slow through time

as a modification of the models introduced by Blomberg

et al. (2003). In the models presented here, nested

clades can undergo an early burst in which the branch

leading to the most recent common ancestor of a clade

undergoes an increase in rate compared to the back-

ground and the subsequent crown clade experiences a

decrease in rate.

To calculate likelihood under the BM process, it is

necessary to estimate the rate parameter r2 and the

phylogenetic mean l using maximum-likelihood esti-

mation or by phylogenetic independent contrasts

(Felsenstein, 1973; Freckleton, 2012). The likelihood of

the traits given the phylogeny of n tips can then be

given by eqn 1:

lnðLÞ ¼ � 1

2
n logð2pr2Þ þ ðy� l̂XÞTV�1ðy� l̂XÞ

r2

� �
; (1)

where V is an n 9 n variance–covariance matrix of

branch lengths shared between n species (tips) on a

phylogeny, X is the column vector of 1 and y is the

expected mean vector of the traits. In an early burst, V

is transformed by the parameter r, so edge lengths, and

modelled rates, reduce exponentially through time.

According to Harmon et al. (2010), the variance–covari-
ance matrix is modified in eqn 2:

Vij ¼
ZSij

0

r20e
rt ¼ r20

ersij � 1

r

� �
; (2)

where Sij represents the branch length to be modified, t

is the time since the origin of the phylogeny (or the

origin time of the nested clade) and r is the early burst

parameter (restricted to be lower than zero to model

rates that decrease through time). In this model, the

integral is calculated over the time (t) since the origin

of the clade to the present (0). In both the nested EB

models, the branch leading to the nested clade is con-

sidered as part of the EB process, but the decrease in

rate starts at the crown node (Fig. 1). This approach

allows for an increased rate compared to the back-

ground rate on the branch leading to the crown node.

The start of this branch has a negative age compared to

the crown node, so this edge length is increased in an

early burst process.

For the nested EB and nested EB rate, a BM model

starts at the root and changes to an early burst process

in a nested subclade. The variance–covariance matrix

of the whole phylogeny, V, in these models is the

sum of the background BM process V0 and Veb which

represents the modified nested clade from (2). The

n 9 n matrix V0 contains nonzero covariances for taxa

not found in the nested clades, and all other covari-

ances are filled as zero (including those from within

the nested subclade). The n 9 n matrix representing

the nested clade, Veb, has nonzero entries for covari-

ances of taxa within the nested clade if they share

branch lengths and zero entries for all other covari-

ances. Thus, the sum of V0 + Veb is equal to V which

represents the variance–covariance matrix for the

whole tree. The notation and approach used here fol-

lows that of Thomas et al. (2006), but these matrices

are equivalent to those designated as C in Revell &

Collar (2009). In the calculation of the nested EB

model, the nested matrix Veb is transformed by the

maximum-likelihood estimate of r, and the combined

matrix (V) is transformed by the maximum-likelihood

estimate of r2.
It is possible that a nested EB process can be very sim-

ilar to a simple clade-wide decrease in rate (O’Meara

et al., 2006; Thomas et al., 2006), which could closely

mimic an exponential decrease in rate, particularly with

small values of r. Even so, the two models are not iden-

tical. Therefore, in the nested EB rate model, rates can

be higher than the ancestral process as the rate of the

clade is increased by a scalar, and this differs from

the nested EB model in which the nested clade inherits

the ancestral rate. The Brownian variance of the pro-

cess is given by eqn 3:

r2 ¼ 1

n� 1
ðy� l̂XÞTðV0 þ hVebÞ�1ðy� l̂XÞ; (3)

where the rate scalar h allows for a simultaneous increase

in the rate of evolution in the nested early burst clade –
this scalar modifies the ancestral rate variance of the BM

process (Thomas et al., 2006). This scalar has a lower

limit of 1 in which the model inherits the ancestral rate

variance (i.e. nested EB rate collapses to the nested EB

model when h = 1). For the nested EB rate model, there

are four parameters: the Brownian rate, the phylogenetic

mean, the scalar and the parameter r.
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Shifts are fit to all nodes on the phylogeny that are

ancestral to clades with at least n species. The final

model is chosen by identifying the node that produces

the lowest AICc score. One issue is that this approach

can lead a high type 1 error rate (Alfaro et al., 2009;

Thomas & Freckleton, 2012; May & Moore, 2016). To

alleviate this, I estimated the type 1 error rate with

1000 data sets simulated under BM and found the nec-

essary AICc cut-off to lower the final model error rates

to 5%. This correction is idiosyncratic to the data so

must be performed for each analysis as the use of gen-

eral cut-offs has been shown to be inadequate in simi-

lar models (May & Moore, 2016).

Implementation

I implemented this model in custom written code in R

(R Core Team, 2016) using maximum likelihood (avail-

able on GitHub, https://github.com/PuttickMacroevolu

tion/cladeMode). Optimization of model parameters

was achieved using the function optim available in the

base stats package in R. Parameters were optimized by

supplying upper and lower bounds of values using the

method L-BFGS-B. The starting parameter for the BM

rate was set as the variance of character trait divided by

the age of the clade, and bounds of 1e-8 and 20 were

used in the parameter search. Identical parameters were

used for the rate scalar parameter. A value of �0.01

was used for the EB parameter r with an upper bound

of �1e-6 and a lower bound of ln(1e-5)/age of clade.

The attraction parameter a was optimized in the OU

models with a starting value of 0.05 with a lower

bound of 1e-8 and upper bound of 2.71. For each

parameter search, a single run was used with 100 itera-

tions.

Simulations

To test the performance of models, I ran a series of sim-

ulations in R. The simulations were used to judge the

ability each model to differentiate between different

scenarios of evolution. To this end, data and trees were

simulated, and then, the data sets were tested under

each model considered in the study (BM, EB, nested EB,

nested EB rate, nested OU and nested shift). I simulated

birth–death (k = 1, l = 0.5) ultrametric trees with 50,

100, 200 and 500 tips using the R package TreeSim

(Stadler, 2011). All trees were then scaled to unit

length.

A range of simulation parameters were set in each

analysis, with basal rate of BM (r2) of 1. In models of

early burst, the upper bound of the parameter of expo-

nential decrease (r) is generally set to ln (1e-5) divided

by the age of the root (1 in the unit length trees). In all

EB simulations (EB, nested EB, nested EB rate), the maxi-

mum value of r was set to ln(1e-5)/1, and in separate

simulations, a range of smaller parameter values were

based on products of this maximum value (1x, 0.95x,

0.75x, 0.5x, 0.25x and 0.05x the maximum r). In the

nested EB and nested EB rate models, the shift node was

selected at random from nodes that were ancestral to at

least 25% tips of the phylogeny. For the nested EB rate

model, the concurrent shift in the rate of BM (using

the scalar h) was set to 2x, 5x and 10x the underlying

BM rate, and data were simulated under the full range

of r values for each rate shift value, respectively. Nested

EB models were also assessed on ability reconstruct

evolution when the model is violated. In these simula-

tions, the shift node was selected from nodes that are

ancestral to < 25% tips of the phylogeny, but the

model search based on these simulated data only con-

sidered nodes that were ancestral to 25% and above.

To test for type 1 errors in the two nested EB models,

data were simulated using EB (whole phylogeny), OU,

nested OU and nested shift models. For the OU and nested

OU models, the maximum value of the attraction

parameter (a) was set to exp(1), and six alternative val-

ues based on this value were used in the simulations

(1x, 0.95x, 0.75x, 0.5x, 0.25x and 0.05x the maximum

value of a). The values for the rates of evolution within

nested clade with the nested shift model were based

upon the same values in the nested EB rate model (2x,

5x and 10x the original rate).

Empirical data

I used published data from three major clades of extant

amniotes: mammals, birds and squamates. I applied the

models to extant squamates (Title & Rabosky, 2016;

Zheng & Wiens, 2016), mammals (Bininda-Emonds

et al., 2007) and birds (Jetz et al., 2012). Body size data

were taken from the amniote comparative database

(Myhrvold et al., 2015). Body size is a biologically infor-

mative trait that is known to correlate with a large

number of ecologically and physiological characters

(Peters, 1983), so evidence of early bursts in body size

shows evidence of an adaptive radiation (Ingram et al.,

2012).

Zero-length branches in the Bininda-Emonds et al.

(2007) mammal phylogeny may affect model inference.

For example, it may favour an OU process by mimick-

ing the expected tree shape when shared history is

destroyed (Cooper et al., 2016), or it could favour an

early burst by focusing change on a branch preceding a

zero-length branch, as no change is possible on a zero-

length edge. However, this is not an issue with the

squamate and avian phylogenies, and cut-offs were per-

formed on all trees to reduce potential errors, including

those from branch lengths.

Empirical analysis

I applied BM, OU, EB, nested shift, nested OU, nested EB

and nested EB rate models individually to orders
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(Mammalia, Aves), and individual families that con-

tained at least 100 species (Mammalia, Aves, Squa-

mata). I selected phylogenies with 100 species as the

simulations indicate that they are large enough to accu-

rately capture the process of evolution, and this is a

common size of data sets in comparative phylogenetics

(Chira & Thomas, 2016). Overall models were fit to 43

clades that including seven mammal and 10 bird orders,

and eight mammal families, 14 bird families and four

squamate families, respectively. As these data represent

both families and orders, each data set is not necessarily

independent, as the same species can appear in two dif-

ferent analyses. The adequacy of different models was

tested by comparing the significance of six different

metrics of model adequacy using the R package Arbu-

tus (Pennell et al., 2015).

Models that allow for multiple shifts

The models considered here allowed for up to one

nested shift only, so it is possible comparable models that

allow for more shifts produce a superior model fit. I

applied a multirate BM model that allows for different

rates within nested clades using the auteur model in gei-

ger (Eastman et al., 2011; Pennell et al., 2014), and a

model that allowed for multiple optima in an OU pro-

cess (Khabbazian et al., 2016). The ‘1ou model was fit

using the ‘1ou package with up to 10 shifts in optima

detected using the phylogenetic lasso method (Khab-

bazian et al., 2016). This model differs from the nested

OU model which allows the attraction parameter a to

be applied in nested clades, whereas the ‘1ou method

sets a tree-wide rate of a and estimates different trait

optima within nested clades. I calculated the AICc for

the ‘1ou model and for the auteur model using the

maximum a posteriori (MAP) model from the post-burn-

in MCMC run.

Results

Simulations

There is generally high accuracy of models in the simu-

lations, and accuracy increases with phylogeny size

(Fig. 2). Accuracy was measured by the numbers of

times the true model has the best relative AICc score.

The error with the BM simulated data is improved sub-

stantially when model AICc scores are penalized to cor-

rect type 1 errors (Fig. S1). For all further simulation

and empirical analyses, these corrected BM AICc values

are used to judge the relative fit of models.

There is good power of the nested EB model on the

simulation data, and support for the correct nested EB

model increases with tree size and parameter values

(Fig. 2). There is over 80% support for the correct

nested EB model with parameter values of 0.5x, 0.75x

and 1x the maximum rate of r on all trees (Table S1).

When the nested EB and nested EB rate models are con-

sidered together, there is over 95% support at the high-

est parameter value (1x) on trees of 100 tips and more.

There is a high level of accuracy for the estimation of

the early burst parameter r with the nested EB model

(Fig. S2a).

The nested EB model receives higher support than the

nested EB rate model when data are simulated under both

nested EB and nested EB rate models, but the highest sup-

port is for one form of the nested EB models. With data

generated under the nested EB rate model, the parameter

estimates for the early burst parameter r are lower than

the true value in the nested EB rate model (Fig. S2b–d).
The support for both nested EB models combined is over

95% for higher parameter values in trees with 100 tips

and above (with one exception – highest shift rate (10x)

on the tree with 100 tips).

The nested EB models have no support when model

assumptions are violated. When shifts were simulated

on nodes smaller than 25% of tips on the phylogeny,

the nested EB model receives minimal support (median

5.6% support for the correct model) (Figs S2 and S3).

There is an acceptable level of error for the two nested

EB models with data simulated under the EB, OU and

nested shift models (Tables S2 and S3). Erroneous sup-

port for the nested EB models increases with data simu-

lated under the nested OU model. Most of the erroneous

support is for the nested EB rate model, as support for

the nested EB model is under 5% for all parameter val-

ues on trees with 100 tips and above (Table S3). A sim-

ilar pattern is seen with data simulated under the nested

shift model.

Amniote orders

When homogenous models are fit to the whole phy-

logeny, BM (33 clades) is the most widely supported

model compared to EB (9 clades) and OU (1 clade). This

pattern changes when homogenous models are consid-

ered alongside nested models of evolution as one form of

EB is the most supported model (31/43 clades) in all

analyses (Figs 3 and 4). Of these 31 clades supporting

early bursts, the majority show support for nested EB rate

(22 clades) compared to support for nested EB (5 clades)

and EB (4 clades). Full parameter values are shown in

the supplementary materials (Tables S4–S6).
Across all analyses, the relative performance of the

different models was compared after applying AICc cor-

rections to avoid type 1 errors; these AICc corrections

were applied to each model individually. A potential

source of bias may be that some models are overpenal-

ized whereas others (e.g. EB models) are not. However,

if the AICc correction is not performed across all clades,

one form of the EB model is still favoured: 26/43 sup-

port one form of the EB model compared to 31/43 of

clades supporting the EB model when there is no AICc

correction (Table S7).
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When models are applied to the order level, nested

early burst shifts are only found at the base of one rec-

ognized, named family. Only Trochilidae within Apodi-

formes (nested EB rate model) shows congruence

between taxonomic rank and model selection

(Table S8).

Model performance

Model adequacy improves when models are fit to smaller

phylogenies representing a few hundred species. When

models are fit to avian and mammalian orders, only 4/17

models are adequate according to all six metrics
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Fig. 2 Simulation results showing the relative support for each model (as judged by AICc values) when data are simulated under the nested

EB and nested EB rate models. With each model, the results are summarized when data were simulated with different values of the EB

parameter r (0.05, 0.25, 0.5, 0.75 and 1x the maximum rate), and for nested EB rate, data were also simulated with a concurrent shift in

BM rate 2, 5 and 10x the background rate, respectively. The nested EB model receives high support when it is the correct model, and tends

to have higher support with data generated under the nested EB rate model. However, most support is for one form of the EB model (nested

EB and nested EB rate).
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(Table S9). Models are prone to fail on modelling rate

heterogeneity throughout the data (Cvar), but perform

well on other metrics such as estimated overall rate

(Msig; Table S9). Similar patterns are seen when models

are applied to family data of birds and mammals (7/26

clades are fully adequate). Of all of the 11 models shown

to be adequate across all metrics, six are nested EB rate,

two nested shift, one nested OU and two OU.

Multiple-shift models

Multiple-shift BM and OU models both respectively

provide a superior fit compared to the best-fitting

nested model (Table 2). Only three of the best-fitting

nested models are superior to the multirate BM auteur

model, and only three models are a superior fit to the

‘1ou model.

The node height test can be used to test whether

these multirate models show patterns expected of early

bursts (Freckleton & Harvey, 2006; Slater et al., 2010;

Slater & Pennell, 2014). The node height test is a linear

model of the absolute phylogenetic independent con-

trasts from each internal node in a tree against the dis-

tance in time of each contrast node since the root

(Freckleton & Harvey, 2006). A significant negative

slope (higher disparity near the root of the clade) can

0.0

0.5

1.0

A
IC

c 
w

ei
gh

t

Bovidae
(a) Mammalian families

Cricetidae
Muridae

Phyllostomidae
Pteropodidae

Sciuridae
Soricidae

Vespertilionidae

0.0

0.5

1.0

A
IC

c 
w

ei
gh

t

Artiodactyla
(b) Mammalian orders

Carnivora
Chiroptera

Diprotodontia
Primates

Rodentia
Soricomorpha

0.0

0.5

1.0

A
IC

c 
w

ei
gh

t

Accipitridae
(c) Aves families

Anatidae
Columbidae

Cuculidae
Emberizidae

Furnariidae
Muscicapidae

Picidae
Psittacidae

Thamnophilidae
Thraupidae

Trochilidae
Turdidae

Tyrannidae

0.0

0.5

1.0

A
IC

c 
w

ei
gh

t

Accipitriformes
(d) Aves orders

Anseriformes
Apodiformes

Charadriiformes
Galliformes

Passeriformes
Piciformes

Procellariiformes
Psittaciformes

Strigiformes

0.0

0.5

1.0

A
IC

c 
w

ei
gh

t

Agamidae
(e) Squamata families

Colubridae
Lacertidae

Scincidae

BM
Nested shift
OU
Nested OU
EB
Nested EB
Nested EB Rate
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be interpreted as an EB pattern. The expected contrasts

were calculated for the median branch rates from the

multirate BM auteur model, and the multirate OU

model branch parameters from the l10U analysis. As

with Slater & Pennell (2014), the log of absolute con-

trasts was used to model exponential decreases through

time. Phylogenies were pruned to include only those

taxa in clades marked by an early burst process when

using the nested EB and nested EB rate models. Nineteen

of the 27 clades that support a nested EB model show a

negative slope when using contrasts from the multi-BM

model in the node height test (Table S10), and 20

clades show a negative slope with contrasts from the

multi-OU model. These negative slopes are significant

for 11 of the multirate BM models and 9 OU models,

respectively. Outliers can affect estimation of early

burst patterns through time (Slater et al., 2010; Slater &

Pennell, 2014), so the analyses were repeated by

removing contrasts with values greater than or less

than 3 standard deviations from the mean and using a

robust linear regression model (Slater & Pennell, 2014).

After outliers were removed, eight of the multirate BM

models and nine OU models showed a significant

decrease in absolute contrast values through time

(Table S10). Using the robust linear regression, 18 mul-

tirate BM and OU models show a negative decrease in

the value of contrasts through time.

Some of the patterns of rates through time shown by

the multirate BM model are congruent with those from

the nested EB and nested EB rate models. Analyses from

auteur show a shift in rate on the same branch as indi-

cated by either nested EB or nested EB rate models in 10
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Fig. 4 Rates of evolution in body size evolution show patterns of nested early bursts in families of Mammalia (a), Aves (b) and Squamata
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of the clades that support these two nested EB pro-

cesses (Table S10). Furthermore, for clades that support

either nested EB or nested EB rate, we would generally

expect the estimated median branch rates from auteur

in the EB clade to be lower than the non-EB rates in

the rest of the phylogeny, and for the crown branch

leading to the EB clade to have a rate higher than the

rates within the EB clade. These two measures are sig-

nificant (Wilcoxon test) for 11 of the 28 clades that show

the highest relative support either nested EB or nested EB

rate (Table S11).

Discussion

Previous evidence for early bursts of morphological evo-

lution in extant species has been equivocal, but here I

show that early bursts are more frequently detected in

living mammal, bird and squamate clades when applied

to nested clades. When applied to phylogenies represent-

ing traditional taxonomic groups – order and family –
there is little support for early burst patterns. When this

taxonomic constraint is lifted, there is a strong, general

signal for the pattern of early bursts. The increased detec-

tion of early bursts may partly reflect the lifted constraint

of rates being applied to named clades, and by allowing

for the modelling of processes that occur on branches

leading to extant clades. However, the increased support

for nested early bursts is only seen when comparing the

relative fit of homogenous or single-shift models. This

increased support for early bursts is not seen when com-

pared to models of rate heterogeneity that allow for mul-

tiple shifts in a BM or OU process (Table 2). No model

with homogenous evolution or a single shift is superior

to models with general rate heterogeneity (Table 2), but

the patterns of change shown by multirate models are

generally congruent with patterns expected from an

early burst (Table S10).

Early bursts

Although multiple shifts perform better than single-

shift models, early bursts are the most common process

when only a maximum of a single shift is allowed

(Table S2). Evidence for a high prevalence of early

bursts in extant phylogenies brings congruence

between the previously contrasting conclusions on the

relative occurrence of early bursts from analyses from

the fossil record and living species. Much of the early

theory of early bursts (Simpson, 1944), and more

recent evidence (Foote, 1994; Wagner, 1997; Hughes

et al., 2013), comes from analyses in the fossil record.

One potential reason for this difference is that analyses

in the fossil record generally focus on processes of dis-

parity whereas extant studies use rates analyses. Fur-

thermore, in fossil data there is evidence of shifts being

confined to subclades and being separated in time

(Wagner, 1997), and a similar pattern is found here.

It could be argued here that the patterns here do not

conform to classic adaptive radiations as they apply to

large phylogenies, and are not confined to named Lin-

naean taxonomic clades. There is a large amount of dis-

pute about what constitutes an adaptive radiation

(Schluter et al., 1997; Losos, 2010; Pincheira-Donoso

et al., 2015), but the most accepted definition indicates

that it is a pattern in which clades undergo high mor-

phological evolution early in their history (Schluter,

2000; Givnish, 2015). Here, I model this process but

allow it to not be constrained to traditional taxonomic

ranks. However, this still fulfils the definition of an

adaptive radiation model as a monophyletic group

undergoes a high early rate of evolution early in its his-

tory followed by a decrease in the rate (Schluter,

2000). The only difference to previous models is the

choice of group: in the past, early burst models were

usually applied to arbitrary taxonomic groups (Harmon

et al., 2010), but by relaxing this constraint, I find early

bursts in many named or unnamed monophyletic

groups (Figs 3 and 4). Another issue may be that the

definition of an early burst related as a rate that expo-

nentially decreases through time may not capture an

adaptive radiation process. The modelling of early

bursts in the way used here and described previously

(Harmon et al., 2010) may only apply to a single defini-

tion of adaptive radiations, but this definition may only

signify an early burst rather than an adaptive radiation.

The two nested EB models perform generally well

under simulations, but the nested EB rate model gener-

ally has a quite high type 2 error rate for data simu-

lated under the nested shift and nested OU models

(Table S3). A potential reason for the high type 2 error

rate with the nested EB rate model is its ability to vary

both the rate and the early burst parameter r to explain

trait evolution (Fig. S2), and the poor general power of

models to recapture OU processes (Cooper et al., 2016).

Yet it is unlikely all support for the nested EB rate model

in the empirical data set is due to errors. For example,

in all data sets the two processes for which nested EB

rate showed high type 2 errors – nested OU and nested

shifts – are the second-best model in 9/22 clades when

nested EB rate is the best relative-fitting model. Even if

nested EB rate was incorrectly supported over nested OU

and nested shift in all these cases, there are still 20 clades

that support some form of early burst process. Further-

more, in simulations the parameter space in which the

nested EB rate model shows the most power is when

data are simulated with high scalar rates (h around 10x

the background rate) and relatively low values (around

0.25–0.5x the maximum rate) of the rate parameter r

(Fig. 1). In the empirical data (Tables S4–S6), when

there is support for the nested EB rate model, parameter

values for h and r are in this region of high scalar rates

and low values of r: the estimated value of h is at least

over 5x the background rate in the majority of clades

that support the nested EB rate model, and these clades
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also show lower values of r (the estimate of r is less

than 0.5x the maximum rate). These results suggest

that support for the nested EB rate model is not erro-

neous when the relative fit of homogenous and single-

shift models is compared.

Recent analyses have indicated how the use of OU

models on clades of a small size can lead to elevated

type 1 error rates and difficulties in interpretations

(Cooper et al., 2016). Thus, the use of OU models in

the analysis can lead to similar problems. However,

there is no attempt here to interpret the biological

meaning of the OU models, and there is little support

for OU models generally (Table 1). It is always impor-

tant to carefully to adjudge comparative methods

(Cooper et al., 2016), but the use of OU models here

does not appear to present a problem. Also, problems

with the OU model are most pronounced on

phylogenies with fewer than 200 tips, and 16 of the

clades analysed here have more than 200 tips

(Table S12).

Table 1 The supported models when

body mass evolution is analysed at the

whole-phylogeny level (BM, OU and

EB) compared to models when the

initial mode of BM evolution can

change within nested clades (nested EB,

nested EB rate, nested OU and nested shift).

All models were also applied

individually to families, orders and

suborders with at least 100 species.

Whole-

phylogeny

model AICcW All models AICcW

Mammalia

Orders

Artiodactyla BM 0.545 Nested EB rate 0.993

Carnivora BM 0.602 Nested EB rate 0.371

Chiroptera BM 0.603 Nested EB rate 1.000

Diprotodontia EB 0.931 Nested EB rate 0.999

Primates EB 1.00 EB 0.999

Rodentia EB 1.00 Nested EB rate 0.929

Soricomorpha BM 0.626 Nested shift 0.605

Mammalia

Families

Bovidae EB 0.650 Nested EB rate 0.997

Cricetidae EB 1 EB 0.904

Muridae EB 0.650 Nested EB rate 1.00

Phyllostomidae BM 0.667 Nested shift 0.564

Pteropodidae BM 0.604 Nested EB rate 0.939

Sciuridae BM 0.634 Nested shift 0.666

Soricidae BM 0.457 Nested EB 0.503

Vespertilionidae OU 0.507 OU 0.347

Aves

Orders

Accipitriformes BM 0.656 Nested EB rate 0.919

Anseriformes BM 0.587 Nested EB rate 0.481

Apodiformes BM 0.582 Nested EB rate 0.989

Charadriiformes BM 0.5831 Nested EB rate 0.999

Galliformes BM 0.549 BM 0.389

Passeriformes BM 0.606 Nested EB rate 1.00

Piciformes BM 0.528 Nested EB rate 0.871

Procellariiformes EB 0.912 EB 0.729

Psittaciformes BM 0.588 Nested EB 0.564

Strigiformes BM 0.689 Nested EB rate 0.378

Aves

Families

Accipitridae BM 0.656 Nested EB rate 0.919

Anatidae BM 0.587 Nested shift 0.479

Columbidae BM 0.524 Nested EB rate 0.791

Cuculidae BM 0.613 BM 0.430

Emberizidae BM 0.628 Nested shift 0.470

Furnariidae BM 0.584 BM 0.468

Muscicapidae BM 0.652 Nested EB rate 0.326

Picidae EB 0.591 Nested EB rate 0.475

Psittacidae BM 0.590 Nested EB 0.537

Thamnophilidae EB 0.999 EB 0.964

Thraupidae BM 0.582 Nested EB rate 0.999

Trochilidae BM 0.583 Nested EB rate 0.998

Turdidae BM 0.680 Nested OU 0.668

Tyrannidae BM 0.582 Nested EB rate 0.999

Squamate

Families

Agamidae BM 0.664 Nested shift 0.652

Colubridae BM 0.510 Nested shift 0.607

Lacertidae BM 0.673 Nested EB 0.533

Scincidae BM 0.485 Nested EB 0.685
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Rate heterogeneity

The results here support the conclusions that hetero-

geneity of modes is a generality of clades, and this rate

heterogeneity provides superior fit to models of early

bursts. The superior fit of multirate BM and OU models

compared to the best-fitting nested models, including

the early burst models, indicates that rate heterogeneity

and different optima are characteristic of the analysed

empirical data sets (Table 2). The models here were

implemented to detect a named model of evolution,

such as the nested early burst, and compare the relative

model fit in a simple hypothesis-driven framework.

However, as these models only allow for one shift, they

are suboptimal compared to models that allow for rate

heterogeneity (Table 2). These results suggest that there

Table 2 A summary of the relative fit (as judged by AICc) of alternative models – a multirate Brownian motion model fit using Auteur and

a multi-optima OU model fit using ‘1ou – compared to the best-fitting nested models from the analyses.

Nested models Nested model AICc Auteur AICc Auteur n shifts ‘1ou AICc ‘1ou n shifts

Artiodactyla Nested EB rate 413.6701797 401.9048276 3 412.4176632 6

Bovidae* Nested EB rate 247.4473073 253.4777778 4 243.5713585 5

Carnivora‡ Nested EB rate 570.8728199 549.8762115 2 541.8213844 8

Chiroptera‡ Nested EB rate 1197.783157 1155.745902 7 1160.282015 8

Cricetidae EB 458.687641 391.4687671 6 423.6174566 7

Diprotodontia Nested EB rate 222.8277938 205.4452174 6 197.6960485 7

Muridae Nested EB rate 754.5487677 682.7626598 8 750.9958031 8

Phyllostomidae Nested shift 200.6869689 181.9618803 2 182.9925077 6

Primates* EB 174.4758496 174.9570297 3 152.0179716 6

Pteropodidae Nested EB rate 219.9480666 217.92 2 204.2372506 2

Rodentia†‡ Nested EB rate 2523.241482 2373.733735 15 2581.432859 8

Sciuridae Nested shift 483.9304195 430.0668122 4 452.7922876 5

Soricidae‡ Nested EB 330.8898721 298.1892737 4 295.4438663 9

Soricomorpha Nested shift 403.5386465 361.5558852 5 369.510108 9

Vespertilionidae OU 289.9693185 278.6502703 3 265.5770231 9

Accipitridae Nested EB rate 251.3695573 245.3411765 3 233.1219722 6

Accipitriformes Nested EB rate 279.6741831 275.6233333 4 256.6471319 5

Anatidae Nested shift 151.4251021 132.0453435 2 129.0050349 6

Anseriformes‡ Nested EB rate 159.1046522 139.1985075 2 142.9522219 5

Apodiformes Nested EB rate 130.5006444 95.20842105 4 115.7242365 5

Charadriiformes†‡ Nested EB rate 303.6593577 267.4419139 4 337.6946089 5

Columbidae Nested EB rate 152.2631899 142.0561345 2 112.5599573 8

Cuculidae BM 151.7609481 140.8640404 2 136.9780506 5

Emberizidae Nested shift 25.22289734 17.6240404 2 15.85158581 5

Furnariidae BM 128.6948998 111.2896703 3 106.6774118 7

Galliformes BM 201.8302838 183.0031579 2 180.3622616 8

Muscicapidae Nested EB rate 68.73925357 52.79972028 2 49.56107709 6

Passeriformes† Nested EB rate 2280.822468 2018.57361 15 2461.958341 8

Picidae Nested EB rate 111.4378457 106.5133333 2 101.5453547 6

Piciformes Nested EB rate 209.298013 206.5257143 3 187.9596002 6

Procellariiformes EB 132.4406716 122.0715789 3 88.87576231 7

Psittacidae† Nested EB 262.1268752 237.1444444 4 250.9552026 6

Psittaciformes Nested EB 308.0178077 280.7884615 3 292.897804 6

Strigiformes Nested EB rate 154.9907349 111.833617 4 130.936671 7

Thamnophilidae* EB 37.01375737 37.37666667 3 24.73317545 4

Thraupidae Nested EB rate 150.1047229 97.91939163 4 135.7770833 7

Trochilidae Nested EB rate 66.53074821 34.89411765 3 57.32597617 6

Turdidae Nested OU 1.341658919 �17.17904762 2 �33.83028026 7

Tyrannidae‡ Nested EB rate 134.7737292 80.368 5 108.9193106 6

Agamidae Nested shift 285.9825451 273.9373585 2 270.397899 8

Colubridae Nested shift 381.090453 369.8709735 3 369.9102853 6

Lacertidae‡ Nested EB 225.5602935 201.7807477 3 168.2160774 8

Scincidae‡ Nested EB 544.2988656 528.7714917 3 515.0596078 7

Only a handful of the best-fitting models from the nested model are superior to the best-fitting auteur model (signified by *) and the best-

fitting ‘1ou model (signified by †). No nested model is superior to both of these alternative models.

‡These clades show a rate shift at the same branch as the branch indicated by the supported nested EB or nested EB rate model.
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is a general pattern of rate heterogeneity in clades con-

taining a few hundred species (Pennell et al., 2015;

Chira & Thomas, 2016).

The general patterns shown in the multirate OU and

BM models are similar to those expected under an early

burst model. Analyses of the contrasts for the multi-BM

and multi-OU models in a node height test indicate that

there is a pattern of decreasing contrast values through

time in subclades that support nested EB or nested EB

rate models (Table S10). This is the expected pattern of

early bursts (Freckleton & Harvey, 2006; Slater et al.,

2010) and is relatively unchanged by the presence of

outliers (Slater & Pennell, 2014). Even though the two

multirate models are not named early burst processes,

they still retain signals expected of early bursts.

The models used in this study are designed to test

the prevalence of early bursts in extant data. These

models are not presented as alternatives to existing soft-

ware, especially for analysis on large phylogenies that

allow for multiple shifts. For example, the BAMM soft-

ware implements a pattern in which rates of Brownian

evolution can also slow through time (Rabosky, 2014),

and a similar model applied to mammals has shown

patterns of high rates leading to clades followed by a

slowdown (Eastman et al., 2011; Venditti et al., 2011).

In the future, the models presented here could be

extended to allow for more than one nested shift in the

EB model and other processes; this would allow for a

fairer comparison to the multiple-shift BM and OU

models. In the nested models presented here, there is

only a single shift in the mode of evolution: an ances-

tral BM model is replaced by a new model in a nested

clade. These models can be extended to allow for multi-

ple shifts, shifts within other nested shifts, and with dif-

ferent modes other than BM as the ancestral process.

However, when there are multiple shifts in a phy-

logeny, the implementation of an AICc selection proce-

dure is inappropriate and can lead to issues of

nonidentifiability (Ho & An�e, 2014). For multiple shifts,

alternative methods of model selection will be prefer-

able, such as the phylogenetic lasso method (e.g. Khab-

bazian et al., 2016) and reversible-jump MCMC

methods (Rabosky, 2014).

Conclusions

The results here present a mixed picture. It is possible

to detect a higher number of early burst processes

when they are not confined to whole phylogenies, but

this higher prevalence is not as powerful explaining

trait evolution when compared to models that allow for

multiple shifts in the underlying process. Generally,

trait evolution is a process that is best explained by

multiple modes and rate heterogeneity (Venditti et al.,

2011; Chira & Thomas, 2016), and in the future mod-

els, similar models could incorporate multiple shifts in

the early burst process.
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