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Position and orientation 
measurement adopting camera 
calibrated by projection geometry 
of Plücker matrices of three-
dimensional lines
Guan Xu1, Anqi Zheng1, Xiaotao Li2 & Jian Su1

A position and orientation measurement method is investigated by adopting a camera calibrated 
by the projection geometry of the skew-symmetric Plücker matrices of 3D lines. The relationship 
between the Plücker matrices of the dual 3D lines and the 2D projective lines is provided in two vertical 
world coordinate planes. The transform matrix is generated from the projections of the 3D lines. The 
differences between the coordinates of the reprojective lines and the coordinates of extracted lines are 
employed to verify the calibration validity. Moreover, the differences between the standard movement 
distance of the target and the measurement distance are also presented to compare the calibration 
accuracy of the 3D line to 2D line method and the point-based method. Furthermore, we also explore 
the noise immunity of the two methods by adding Gaussian noises. Finally, an example to measure 
the position and orientation of a cart is performed as an application case of this method. The results 
are tabled for the reproduction by the readers. The results demonstrate that the line to line method 
contributes higher calibration accuracy and better noise immunity. The position and orientation 
measurement adopting the line to line method is valid for the future applications.

Camera is an important measurement instrument as it bridges the scales from the 3D space to the 2D space1,2. 
Camera calibration is the bridge to estimate the transformation matrix of the camera from a captured photo-
graph3. Consequently, the camera calibration is widely studied in the vision measurement and optical inspection, 
such as object reconstruction4, computed tomography5, pose estimation6, and robot arm positioning7. As the 
transformation matrix of the camera contains the position and orientation information of a measured object in 
a captured image, we focus on the position and orientation measurement technique using a calibrated camera by 
the projection geometry of Plücker matrices of three-dimensional lines.

Various methodologies have been explored to solve the camera calibration problem. These technologies are 
approximately classified by the methods based on 3D, 2D, and 1D calibration targets. The 1D target is firstly 
described by Zhang8. The target should rotate to a fixed point in the calibration. Qi9 introduced a calibration 
method using the 1D object with three or more markers. The constraint equations of the camera parameters are 
provided by the rotation around one marker which is moving in a plane. 1D calibration method provides sim-
ple structure and easy operation. However, the accuracy of 1D calibration methods is generally low due to the 
insufficient information on the 1D bar. Consequently, many calibration methods are mainly based on the 3D or 
2D targets. To promote the camera calibration accuracy, Ricolfeviala10 proposes an optimal calibration method 
based on several images of a 2D pattern. The optimal conditions are proposed to resolve the calibration process 
accurately. Bethea11 develops a camera calibration technique by employing three parallel calibration planes and 
two cameras. Heikkila12 presents an approach to calibrate the camera by circular control points identified on two 
perpendicular planes. In this paper, 3D target is chosen to calibrate the camera due to the high calibration accu-
racy and the sufficient information of the calibration target.
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Various patterns are employed on the calibration objects, such as points, circles, lines, and color patterns. Most 
of the calibrations adopt the feature points of the target13,14. Point-based calibration method achieves the advan-
tages of high speed and easy operation. However, it is easily affected by the image noises. The circle-pattern-based 
calibration technique also attracts many investigators due to the high noise immunity. Xue15 describes a method 
using concentric circles and wedge grating for camera calibration. An improved calibration method is proposed 
by Rui16 to increase the camera and projector calibration accuracy simultaneously by detecting the edge of the 
circles. Xu17 investigates a camera calibration method using the perpendicularity of 2D lines in the target obser-
vations. A study is presented by Yilmaztürk18 for full automatic calibration of color digital cameras using color 
targets. Nevertheless, the color distortion is an unavoidable element in the process of capturing the color photos. 
Although the circle-pattern-based calibrations contribute high noise immunity, the method shows low efficiency 
due to the low speed of extracting the circles. The line-pattern-based calibration method is selected in this paper 
considering the moderate speed of extracting lines and good noises immunity. The original line-pattern-based 
calibration method employs the geometry relationship between the 2D line on a planar calibration target and 
the 2D projective line in the image. The essence of the method above is a 2D line to 2D line homography. The 3D 
calibration target is chosen to calibrate the camera owing to the high accuracy. However, it is difficult to build the 
homography from the 3D line on the target to the 2D line in the image as the coordinates of a 3D line are generally 
indicated by the equations of two planes. Therefore, there is a lack of the calibration method adopting the projec-
tive geometry from 3D line to 2D projective line.

In the paper, the position and orientation of an object are obtained from the captured image of a calibrated 
camera. Therefore, we firstly explore the camera calibration method adopting the projection geometry from the 
Plücker matrices of 3D lines to the 2D projective lines. A projective line in the image is determined by the cor-
responding 3D line on the calibration target and the projective plane. The transformation matrix of the camera 
is generated from the geometrical relationship between 3D lines and 2D projective lines. The 3D line to 2D line 
method is compared with the point-based method to verify the measurement validity, the measurement accuracy 
and the noise immunity. Then, a cart with the 3D target is chosen as the application example. The transformation 
matrix of the camera is decomposed to the rotation matrix, translation vector and the intrinsic matrix. The posi-
tion and orientation of the measured cart is generated from the translation vector and the rotation matrix, and 
verified by the absolute and relative errors of the reconstructed displacements.

Results
According to the 3D line to 2D line method, the transformation matrix P is generated from n 3D lines Li and n 2D 
projective lines li. The coordinates of the 2D projective lines are extracted by the Hough transform19. The recogni-
tion results of the lines are shown in Fig. 1. The results indicate the Hough transform can extract the lines exactly.

The differences between the coordinates of the reprojective lines and the line coordinates extracting by the 
Hough transform are employed to evaluate the accuracy of the 3D line to 2D line method. The comparison of 
the average logarithmic errors adopting the 3D line to 2D line method and the point-based method20 is shown 
in Fig. 2. The image resolution is 1024 ×​ 768. Moreover, in order to explore the relationship between the errors 
and the movement distance, the calibration board is moved by 10 mm, 20 mm, 30 mm, and 40 mm respectively. 
In the first group of experiments, the images are captured at the measurement distance of 1000 mm. The mean of 
average logarithmic errors using the line to line method are 1.11 ×​ 10−4, 1.67 ×​ 10−4, 2.78 ×​ 10−4, and 4.09 ×​ 10−4 
corresponding to the movement distances of 10 mm, 20 mm, 30 mm, and 40 mm. The mean of average logarith-
mic errors of the point-based method is 3.19 ×​ 10−4, 5.11 ×​ 10−4, 8.55 ×​ 10−4, and 1.41 ×​ 10−3 corresponding to 
the movement distances of 10 mm, 20 mm, 30 mm, and 40 mm.

Figure 1.  Experiment results of line extraction. (a–d) Are the line recognition results in the first group of 
experiments as the movement distances are 10 mm 20 mm 30 mm and 40 mm, respectively. (e–h) Are the line 
recognition results in the second group of experiments as the movement distances are 10 mm 20 mm 30 mm and 
40 mm, respectively.
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Besides, the second group of experiments are performed at a smaller measurement distance. The images are 
observed by the camera at the measurement distances of 800 mm. Similar to first group of experiments, the 3D 
line to 2D line method is compared with the point-based method to verify the measurement accuracy in Fig. 3. 
The mean of average logarithmic errors using the line to line method are 1.01 ×​ 10−4, 1.61 ×​ 10−4, 2.50 ×​ 10−4, and 
3.99 ×​ 10−4 corresponding to the movement distances of 10 mm, 20 mm, 30 mm, and 40 mm. The mean of aver-
age logarithmic errors adopting point-based method are 3.12 ×​ 10−4, 4.81 ×​ 10−4, 8.08 ×​ 10−4, and 1.34 ×​ 10−3 
corresponding to the movement distance of 10 mm, 20 mm, 30 mm, and 40 mm. The results of the two groups of 
experiments both show that the errors increase with the increasing movement distance. Moreover, the errors of 
the 3D line to 2D line method are all smaller than the point-based method at the movement distances. The results 
indicate that the line to line method provides higher calibration accuracy. Furthermore, the errors of the images 
at the distance of 800 mm are smaller than the errors of the images at the distance of 1000 mm. The two methods 
achieve higher measurement accuracy in the small measurement distance.

Furthermore, three levels of Gaussian noises are added to study the effects of the noises. The 3D line to 2D 
line calibration method is also compared with the point-based method in the two groups of experiments. The 
measurement errors are evaluated by

∆ = ′ −L L L (1)

where L′ is the reconstructed movement distance of the calibration board from the first place to the next place. 
L is the standard movement distance. L′ is generated from P. The standard distances are 10 mm, 20 mm, 30 mm, 
and 40 mm, respectively. We perform 20 experiments at the standard distances. The results of two groups of 
experiments are shown in Figs 4 and 5, respectively. In the first group of experiments, the means of Δ​L adopting 
the 3D line to 2D line method without noises are 0.26 mm, 0.43 mm, 0.84 mm, and 1.35 mm when the movement 

Figure 2.  The average logarithmic errors related to the movement distance and the line, in the 3D line to 
2D line method and point-based method in the first group of experiments. 

Figure 3.  The average logarithmic errors related to the movement distance and the line, in the 3D line to 
2D line method and point-based method in the second group of experiments. 
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distances are 10 mm, 20 mm, 30 mm, and 40 mm. The corresponding errors of the point-based method are 
0.36 mm, 0.72 mm, 1.03 mm, and 1.54 mm, respectively. The mean errors using the point-based method are evi-
dently bigger than the 3D line to 2D line method. When the noise level is 0.0001, the mean errors adopting the 
line to line method are 0.31 mm, 0.56 mm, 0.99 mm, and 1.51 mm with respect to the movement distances of 
10 mm, 20 mm, 30 mm, and 40 mm. The mean errors of the point-based method are 0.42 mm, 0.80 mm, 1.14 mm, 
and 1.70 mm. The mean errors of the line to line method under the noise of 0.005 are 0.35 mm, 0.55 mm, 0.98 mm, 
and 1.63 mm when the movement distances are 10 mm, 20 mm, 30 mm, and 40 mm, respectively. The mean errors 
of the point-based method under the noise level of 0.0005 are 0.44 mm, 0.84 mm, 1.18 mm, and 1.79 mm, respec-
tively. The mean errors of the line to line method under the noise of 0.01 are 0.39 mm, 0.64 mm, 1.16 mm and 
1.64 mm as the movement distance increases from 10 mm to 40 mm. The mean errors using the point-based 
method are 0.46 mm, 0.92 mm, 1.24 mm, and 1.95 mm.

The second group of experiments are carried out in the measurement distance of 800 mm. The mean Δ​L 
of the 3D line to 2D line method without noises are 0.14 mm, 0.49 mm, 0.63 mm, and 1.23 mm with the move-
ment distances of 10 mm, 20 mm, 30 mm, and 40 mm. The related mean errors of the point-based method are 
0.28 mm, 0.68 mm, 0.90 mm, and 1.43 mm, respectively. The mean errors of the line to line method are smaller 
than the point-based method. When the 0.0001 noise is added, the mean errors of the 3D line to 2D line method 
are 0.19 mm, 0.59 mm, 0.77 mm, and 1.38 mm corresponding to the movement distances of 10 mm, 20 mm, 
30 mm, and 40 mm. The mean errors of the point-based method are 0.34 mm, 0.76 mm, 1.00 mm, and 1.55 mm. 
The mean errors of the line to line method under the noise level of 0.005 are 0.21 mm, 0.65 mm, 0.84 mm, and 
1.46 mm when the movement distance are 10 mm, 20 mm, 30 mm, and 40 mm, respectively. The mean errors 
of the point-based method under the noise of 0.0005 are 0.37 mm, 0.85 mm, 1.07 mm, and 1.67 mm when the 
movement distances are 10 mm, 20 mm, 30 mm, and 40 mm, respectively. The mean errors of the 3D line to 2D 
line method under the noise level of 0.01 are 0.25 mm, 0.67 mm, 0.88 mm and 1.65 mm as the movement distance 
grows from 10 mm to 40 mm. The mean errors using the point-based method are 0.44 mm, 0.95 mm, 1.11 mm, 
and 1.77 mm, respectively.

Figure 4.  The measurement errors of the 3D line to 2D line method (LLM) and the point-based method 
(PM) in the first group of experiments. (a) Is the measurement errors without noises. (b–d) Are the 
measurement errors with noises of 0.001, 0.005, and 0.01, respectively.
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In order to explain the application on how the technique can be used, a clear example is provided to measure 
the position and orientation of a cart. The details of the example are illustrated in Fig. 6, in which a cart is attached 
by a 3D target on the top and translated with the displacements of 10 mm, 20 mm, 30 mm and 40 mm, respectively.

Figure 5.  The measurement errors of the 3D line to 2D line method (LLM) and the point-based method 
(PM) in the second group of experiments. (a) Is the measurement errors without noises. (b–d) Are the 
measurement errors with noises of 0.001, 0.005, and 0.01, respectively.

Figure 6.  The measurement example of the position and orientation of a cart attached with a 3D target.  
(a) The cart is moved with the displacements d of 10 mm, 20 mm, 30 mm, 40 mm, respectively. (b) The 
experiment image of the position and orientation measurement.
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The positions tx, ty, tz and orientations α, β, γ of the cart about the o-x, o-y, o-z axes of the camera coordinate 
system in 20 different places are shown in Fig. 7(a–f). As the orientations α, β, γ are stable in the three angles in 
Fig. 7(a–c), the cart is moved along a straight line. According to the position data of the cart in Fig. 7(d–f), the dis-
placement of the cart can be solved by the norm of the difference between the translation vector at the first place 
and the translation vector at the second place in the camera coordinate system. The absolute and relative errors of 
the reconstructed displacements in Fig. 7(g–h) are considered as the indicators to verify the measurement results 
of the cart. The measurement results are listed in Table 1.

As the movement displacement is 10 mm, the maximums of translations tx, ty, tz are −​778.28 mm, 90.41 mm 
and 1121.14 mm, respectively. The minimums of translations tx, ty, tz are −​778.64 mm, 89.98 mm and 1120.76 mm, 
respectively. The maximums of rotation angles α, β, γ are 24.92°, 44.34° and 52.86°, respectively. The minimums 
of rotation angles α, β, γ are 24.54°, 44.05°, and 52.45°, respectively. The means of measurement errors Δ​L and 
relative errors Δ​L/d are 0.18 mm and 1.85%, respectively. When the movement displacement increases to 40 mm, 
the maximal translations tx, ty, tz are −​745.61 mm, 91.17 mm and 1123.78 mm, respectively. The minimal trans-
lations tx, ty, tz are −​749.82 mm, 88.27 mm and 1120.13 mm, respectively. The maximal rotation angles α, β, γ are 
26.77°, 46.37° and 55.43°, respectively. The minimal rotation angles α, β, γ are 23.06°, 42.99°, and 51.55°, respec-
tively. The means of measurement errors and relative errors grow to 1.78 mm and 4.45%, respectively.

According to the above analysis and data in Table 1, since the translations ty, tz do not vary obviously, the o-x 
direction of the translation tx is the major movement direction. Moreover, the rotation angles about the three axes 
vary a little due to the cart is moved by a straight line. The mean of measurement errors increases with the rising 
movement displacement. The relative error also increases as the displacement is on the rise. Finally, the relative 
errors are less than 5% in most cases of experiments. It reveals that the measurement method is valid in the appli-
cations to solve the orientation and the position of an object.

Discussion
According to the analysis above, the mean errors of the 3D line to 2D line method and the point-based method 
grow with the increasing noises. The mean errors of the 3D line to 2D line method are smaller than the 
point-based method. In the test without noises, the line to line method achieves the maximum relative error of 
7.42% and minimum relative error of 0.68%. The ones of the point-based method are 7.83% and 1.13%, respec-
tively. In the test with the noises, the line to line method provides the maximum relative error of 8.14% and min-
imum relative error of 0.30%. The ones of the point-based method are 8.17% and 0.55%, respectively. The results 
show that the 3D line to 2D line method contributes higher noise immunity. Moreover, the errors in the 800 mm 
measurement distance are smaller than the ones in the 1000 mm measurement distance in the experiments. The 
data reveal that the two calibration methods provide higher noise immunity in the near-camera measurement. 
In the example to measure the position and orientation the of the object, the proposed method achieves the error 
means of 0.18 mm, 0.83 mm, 1.05 mm and 1.78 mm corresponding to the measurement displacements of 10 mm, 
20 mm, 30 mm and 40 mm. It indicates that the method is workable and reliable in the measurement applications 
of the position and orientation.

Methods
The calibration method is interpreted in the Fig. 8. A 3D line Li on the 3D target is projected to the 2D image 
plane. The projective line li in the image plane is denoted by

=l x 0 (2)i j
T

where li =​ (l1i, l2i, 1)T is the homogenous coordinate of the projected line in the image plane, xj =​ (x1j, x2j, 1)T is the 
homogenous coordinate of the points on the projective line li.

The projective plane Qi, which passes through the camera center and the 2D projective line li, is determined 
by ref. 21

=Q lP (3)i i
T

where P =​ [pmn]3×4 is the projective matrix of the camera. li =​ [li1, li2, 1]T is the vector of the projective line.
The 3D crossing line between the projective plane Qi and the O-XZ plane of the target can be expressed by the 

Plücker matrix21 as

= −⁎ Q Q Q QL (4)i i i1
T

1
T

where Q1 =​ [0, 1, 0, 0]T is the vector of the O-XZ plane of the target.
Substituting equation (3) in equation (4), the 3D crossing line is

= −⁎ Q l l QL P P (5)i i i1
T T

1
T

Equation (5) discloses the relationship between a 3D line ⁎Li  and its 2D projective line li. According to the 
definitions of Q1, li and P, we have
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Figure 7.  The measurement results of the position and orientation of a cart attached with a 3D target. 
(a–c) Are the rotation angles α, β, γ about the o-x, o-y, o-z axes of the camera coordinate system. (d–f) Are the 
translations tx, ty, tz along the o-x, o-y, o-z axes of the camera coordinate system. (g) The absolute errors of the 
reconstructed displacements. (h) The relative errors of the reconstructed displacements.
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In the other way, the dual 3D line of the 3D line ⁎Li  is defined by the Plücker matrix21 as

= −X X X XL (7)i i i i iA B
T

B A
T

where XAi =​ [xAi, 0, zAi, 1]T, XBi =​ [xBi, 0, zBi, 1]T are the vectors of 3D points Ai, Bi on the 3D line Li of the target. 
Then, we have
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Considering the relationship between the 3D line ⁎Li  and its dual Li as ref. 22

d (mm) tx (mm) ty (mm) tz (mm) α (°) β (°) γ (°) ΔL (mm) ΔL/d (%)

10

Mean −​778.46 90.17 1120.97 24.71 44.22 52.7 0.18 1.85

Variance 0.085 0.11 0.13 0.09 0.081 0.11 0.11 1.05

Maximum −​778.28 90.41 1121.14 24.92 44.34 52.86 0.41 4.08

Minimum −​778.64 89.98 1120.76 24.54 44.05 52.45 0.01 0.1

20

Mean −​767.1 90.64 1122.28 24.67 44.21 52.92 0.83 3.37

Variance 0.36 0.38 0.43 0.39 0.47 0.47 0.38 1.89

Maximum −​766.07 91.23 1123.15 25.48 44.98 53.88 1.46 7.28

Minimum −​767.71 90.04 1121.45 23.79 43.36 52.02 0.03 0.16

30

Mean −​757.32 90.03 1121.99 24.33 44.31 53.22 1.05 3.43

Variance 0.56 0.54 0.58 0.65 0.64 0.59 0.5 1.57

Maximum −​756.01 91.2 1122.74 25.88 45.45 54.63 1.94 6.47

Minimum −​758.48 88.66 1120.37 23.11 43.06 51.75 0.28 0.93

40

Mean −​747.81 90.73 1121.43 24.79 44.47 52.96 1.78 4.45

Variance 0.94 0.96 0.95 0.89 0.91 1.01 0.41 1.08

Maximum −​745.6 92.17 1123.78 26.77 46.37 55.43 2.65 6.63

Minimum −​749.82 88.27 1120.13 23.06 42.99 51.55 1.11 2.78

Table 1.   The means, the variances, the maximums and the minimums of the rotation angles α, β, γ, the 
translations tx, ty, tz, the absolute errors and relative errors of the reconstructed displacements.

Figure 8.  The calibration method adopts 3D lines Li and 2D projective lines li. 
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From equations (6) and (10), we have

=p fF (11)i i1 1
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, p =​ [p11, p12, p13, p14, p21, p22, p23, p24, p31, p32, p33, p34]T, 

f1i =​ [zAi −​ zBi, xAi −​ xBi, xBizAi −​ xAizBi]T.
In a similar way, the Plücker matrices of the 3D lines on the O-YZ plane of the target provide

=p fF (12)i i2 2
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,  f 2 i  = ​ [ z C i  − ​ z D i ,  y D i  − ​ y C i , 

yCizDi −​ zCiyDi]T.
The stacking of equations (11) and (12) is

 = f (13)p

where =F [F , F ]i i i1
T

2
T T

,  = ...[F , F , , F ]n1
T

2
T T T

, =f f f[ , ]i i i1
T

2
T T

, = …f f f f[ , , , ]n1
T

2
T T T

.
The non-homogeneous linear equations are solved by

= −p ( ) (14)T 1 T   

According to the vector p solved by equation (14), projection matrix P =​ [pmn]3×4 is the obtained and can be 
denoted by its decomposition as ref. 21

= tP A[R ] (15)

where A is the intrinsic matrix of the camera, R =​ [rmn]3×3 is the rotation matrix and t =​ [tx, ty, tz]T is the transla-
tion vector from the world coordinate system defined in the 3D target and the camera coordinate system.

The translation vector t and the rotation matrix R provide the position and orientation of the measured object. 
Considering the orthogonality of the rotation matrix R and the upper triangular matrix A, the position and ori-
entation are solved by ref. 23

= −t pA (16)
1

4

α
β
γ









= −
=
=

r
r r
r r

arcsin
arctan /
arctan / (17)

31

32 33

21 11

where p4 is the fourth column of the projection matrix P, α, β, γ are the rotation angles about the o-x, o-y, o-z 
axes of the camera coordinate system, r11, r21, r31, r32, r33 are the corresponding elements in the rotation matrix 
R =​ [rmn]3×3.
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