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Robust learning from noisy, incomplete, high-
dimensional experimental data via physically
constrained symbolic regression
Patrick A. K. Reinbold1, Logan M. Kageorge1, Michael F. Schatz 1 & Roman O. Grigoriev 1✉

Machine learning offers an intriguing alternative to first-principle analysis for discovering new

physics from experimental data. However, to date, purely data-driven methods have only

proven successful in uncovering physical laws describing simple, low-dimensional systems

with low levels of noise. Here we demonstrate that combining a data-driven methodology

with some general physical principles enables discovery of a quantitatively accurate model of

a non-equilibrium spatially extended system from high-dimensional data that is both noisy

and incomplete. We illustrate this using an experimental weakly turbulent fluid flow where

only the velocity field is accessible. We also show that this hybrid approach allows recon-

struction of the inaccessible variables – the pressure and forcing field driving the flow.
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Revolutionary advances in our ability to collect, store, and
process vast amounts of information has unleashed
machine learning as a dramatically different approach to

scientific discovery1–3. Initial efforts have focused on purely data-
driven methods to synthesize knowledge in the form of equations.
For instance, symbolic regression has been applied successfully to
extract both evolution laws expressed as ordinary differential
equations4 and conservation laws in the form of algebraic
equations5 from low-dimensional data with low levels of noise.
Unfortunately, to date, purely data-driven approaches have been
unable to handle high-dimensional data sets representing com-
plex or spatially extended non-equilibrium phenomena such as
cancer, fusion plasmas, earthquakes, weather, or climate change.
A key difficulty is that, without appropriate constraints, the high
dimensionality of the data makes the model search space far too
large for any purely data-driven approach to be tractable.

In principle, machine learning can be used to construct suitable
models (e.g., nonlinear partial differential equations (PDEs)) of
spatially extended systems6,7; however, numerous difficulties arise
when using data from the real world. First and foremost, all the
variables (or fields) that are necessary to describe the phenomena
of interest should be identified; no existing purely data-driven
approach can help with this. Second, some of the required vari-
ables may not be accessible in a real-world problem; to date, no
known machine learning method has been successful in model
discovery based on incomplete data. Third, data from real-world
problems often involve significant uncertainty due to both ran-
dom and systematic errors, which, as a consequence, makes
accurate evaluation of particular, crucially important model terms
infeasible. Finally, unlike the test cases using synthetic data gen-
erated by a reference model6,7, assessing the quality of a model
learned from real-world data is not straightforward. The fusion of
domain knowledge with data science8 is essential for addressing
these challenges.

Here we present such a hybrid approach that uses appropriate
physical constraints (e.g., locality, smoothness, symmetries) to
dramatically constrain the search space containing various can-
didate models. Our approach incorporates three key ingredients:
(1) general physical principles used to identify the variables and
candidate models, (2) weak formulation of differential equations
to reduce noise sensitivity and eliminate dependence on inac-
cessible variables, and (3) ensemble symbolic regression to
identify a parsimonious model that balances accuracy and sim-
plicity. To illustrate, we examine an experimental fluid flow in a

thin layer that exhibits complex spatiotemporal behavior when
driven by time-independent forcing9 (see Fig. 1 and the “Meth-
ods” section). We show that a quantitative 2D model of this flow
can be discovered using experimental measurements of the hor-
izontal components of the velocity field u(x, t). Furthermore,
using this model, all latent fields (here pressure and forcing) can
also be reconstructed.

We start by describing the three key components of the hybrid
approach to model discovery. Additional details are provided in
the “Methods” section. The first two steps of model discovery are
to identify a set of variables (fields) required to describe the data
and construct a sufficiently broad library of candidate models that
will later be narrowed down to obtain a parsimonious description.
In practice, these two steps may be hard, or even impossible, to
separate and, for systems of high dimensionality, require addi-
tional considerations based on domain knowledge. For the system
considered here, the general physical assumptions of causality,
locality, and smoothness can be used to write the model in the
form of Volterra series10. Each term Fn of the series involves a
product of the velocity field u, latent fields, and/or their partial
derivatives. Since we are dealing with a fluid flow, we can rely on
the more specific domain knowledge recognizing the fluid flow is
driven by external and internal stresses. Hence, the evolution of
the velocity field should depend on body forces f and pressure p,
which are the latent fields here:

∂tu ¼ ∑
n
cnFn½u; p; f ;∇u;∇p;∇f; ¼ �: ð1Þ

The library of candidate models can be further constrained by
using another general physical concept of Euclidean symmetry
which reflects the uniformity and isotropy of the fluid layer.
Truncating the sum at a sufficiently low order in the fields and
derivatives yields11

∂tu ¼ c1ðu � ∇Þuþ c2∇
2uþ c3uþ c4u

2uþ c5ω
2u

þ c6ð∇ � uÞuþ c7ð∇ � uÞ2u� ρ�1∇pþ ρ�1f ;
ð2Þ

where ω ¼ ẑ � ð∇ ´ uÞ is the vorticity and u2= u ⋅ u. Isotropy
constrains the functional form of the library terms, each of which
transforms as a vector, while uniformity implies that the
unknown coefficients are constants, i.e., independent of position
and time. Note that, without loss of generality, the coefficients of
the last two terms can be set to ±ρ−1, where ρ is an arbitrary
constant with the units of mass density; this simply amounts to
fixing the units (and sign) of the pressure and forcing fields.

Fig. 1 Experimental setup and sample data. Schematic top (a) and side (b) views are shown for laboratory studies of weak turbulence in a thin electrolyte
layer inside a rectangular container. Flow is driven by Lorentz forcing f, which arises by applying a current density J in the presence of a magnetic field
B from a permanent magnet array (dashed lines). The heatmaps illustrate snapshots of measured velocity fields in the x- (c) and y- (d) directions at
Reynolds number Re= 22.17, when the flow is weakly turbulent.
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While the forcing in this particular experiment is time-indepen-
dent, the pressure varies in time and so requires its own model. A
corresponding library of candidate models can constructed in a
similar way which, after truncation to lowest-order terms, yields

∂tp ¼ c8∇ � uþ c9∇ � f þ c10p: ð3Þ
Here each term transforms as a scalar, and c8, c9, and c10 are

additional unknown constants. We can further constrain both
libraries using the experimental observation that, to high accu-
racy, the velocity field is divergence-free, which corresponds to
setting c6= c7= 0 in Eq. (2) and c8→∞ in Eq. (3).

The need for including in the model the dependence on the
pressure and forcing fields could be discovered from data directly
without relying on the knowledge of fluid dynamics. We can
rewrite Eq. (2) in the form

ρs ¼ �∇pþ f ; ð4Þ
where s represents the sum of all the terms that depend only on u
and its partial derivatives. In general, we would find s ≠ 0 for any
choice of the coefficients. Helmholtz decomposition requires
s=∇ϕ+∇ ×A, where ϕ and A are the scalar and vector
potentials. Hence two additional fields, one scalar and one vector,
are required to satisfy Eq. (4): p=−ρϕ and f= ρ∇ ×A.

Although symbolic regression could be performed using the
strong form of the model, e.g., by directly evaluating each term in
Eq. (2) at different spatiotemporal locations, this presents two
problems. The most obvious one is that we cannot evaluate the
terms involving latent fields. Pressure could, in principle, be com-
puted by taking the divergence of Eq. (2) and solving the resulting
pressure-Poisson equation, if the forcing f were known or at least
divergence-free. In our case, this is not an option, since f satisfies
neither condition. Furthermore, taking a derivative greatly amplifies
the noise present in the data, whether this is done using finite
differences6,12, polynomial interpolation11, or spectral methods13,14.
Instead, we use a weak form of the model to address both noise
sensitivity and the dependence on latent variables. This approach

was originally introduced in the context of ordinary differential
equations15,16. In the context of PDE models, it was shown to be as
general as prior approaches based on the strong form6,7 and
superior in terms of both its flexibility and robustness17,18.

Let us choose a set of spatiotemporal domains Ωi and weight
functions wj (see the “Methods” section and Fig. 2) and define

hwj; Fnii ¼
Z

Ωi

wj � FndΩ; ð5Þ

where dΩ= dx dy dt and n= 0 corresponds to the term ∂tu.
Evaluating the integrals in equation (5) for different i and j and
stacking the results to form vectors qn, we arrive at a linear system
of equations for the unknown coefficients

Qc ¼ q0; ð6Þ
where c ¼ ½c1; � � � ; cN �T and Q= [q1⋯ qN].

A parsimonious model describing the data can be found by
solving an overdetermined system (6) using any standard algo-
rithm such as LASSO19, ridge regression20, sequentially thre-
sholded least squares21, or various information-theoretic
criteria22. Here we adopt the computationally efficient iterative
procedure introduced in ref. 18, which is an adaptation of the
latter algorithm. At each iteration, Eq. (6) is solved to find
parameters c1 through cN. Then, the magnitude of each term is
computed. If it is below some threshold, say ∥cnqn∥ < ε∥q0∥ for a
given choice of ε, the corresponding term is removed from the
library by setting cn= 0 and the column qn is removed from the
matrix Q. The process is then repeated until all remaining terms
have a magnitude that is above the threshold.

How well a model describes a particular data set can be
quantified in terms of the relative residual

η ¼ k Qc� q0 k
max
n

k cnqn k
; ð7Þ

where we expect η≪ 1 when all the relevant terms in the model
have been identified. The magnitude of η however tells us little

Fig. 2 Symbolic regression algorithm based on weak formulation. a Integration domains, shown as red boxes, are randomly sampled throughout the 2D
space-1D time data set. b For each integration domain Ωi, the data u ¼ uxx̂þ uyŷ and the weights wj ¼ ∇ ´ ½ϕj ẑ� are used to evaluate the scalar product
〈wj ⋅ Fn〉, as discussed in the “Methods” section. The result determines the matrix element Qkn (for n≠ 0) or the k-th element of q0 (for n= 0), where the
composite index k runs over all integration domains i and weights j. The columns are labeled using the corresponding terms in the model instead of the
index n to make the relation with the linear system (6) more transparent. c A sparse solution to the system is then found via sequential thresholding, where
one (or more) columns are removed from the matrix Q (and the model) at each iteration, until a parsimonious model balancing accuracy with simplicity is
identified (bottom of (c)).
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about the functional form of the model or the magnitude of the
respective coefficients. For instance, including a term such as
c6(∇ ⋅ u)u with an arbitrary coefficient c6 in Eq. (2) does not
change η for a flow that is incompressible, but does change the
model11. The robustness of the functional form of the model and
the accuracy with which the coefficients cn are determined can
both be quantified by performing symbolic regression for an
ensemble of different samplings of the data (or even different data
sets)18. Here, each ensemble includes different distributions of
integration domains in the temporal direction. The variation in
the functional form of the identified model across the ensemble
can be used to detect missing or spurious terms, while the stan-
dard deviation of the coefficients cn can be used to quantify their
accuracy.

Results
To test our approach for model discovery, we measured the
velocity field components in the plane of the fluid layer and
performed symbolic regression for an ensemble of 30 different
random distribution of spatiotemporal domains Ωi. We found
that choosing 0.1≲ ε≲ 0.3 gives the best balance of robustness
with accuracy (Fig. 3f). For higher ε, the model does not fit the
data accurately, as measured by η. For lower ε, the functional
form of the model acquires a sensitive dependence on the choice
of spatiotemporal domains Ωi, which is a sign of overfitting.

Over the range of Reynolds numbers 17.8≲ Re≲ 36, symbolic
regression consistently identified a parsimonious model

∂tu ¼ c1ðu � ∇Þuþ c2∇
2uþ c3u� ρ�1∇pþ ρ�1f; ð8Þ

with η as low as 0.02 (see Fig. 3d). This model allows easy
interpretation, since its form is similar to the Navier–Stokes
equation which represents momentum balance. The first term on
the right-hand side describes advection of momentum. The sec-
ond and third terms describe momentum flux due to viscosity in
the horizontal and vertical direction9,23, respectively. The fourth
and fifth terms also appear in the Navier–Stokes equation and
describe (isotropic) internal stresses and external stresses,
respectively.

It is worth emphasizing that the form of the 2D model iden-
tified by symbolic regression is identical to that derived from the
first principles9,24 under a number of assumptions, including
the divergence-free condition on the horizontal components of
the velocity. Dropping this assumption produces a more general
model25, which is a special case of the system (2)–(3) with c6 ≠ 0,
c7= 0, c8 ≠∞, and c9= c10= 0. In both cases, the coefficients c1,
c2, and c3 are nonzero and given by explicit expressions in terms
of the material parameters and the geometry of the fluid layer9.
The theoretical values of parameters are compared with the
respective values identified by symbolic regression in Fig. 3a–c.

Note that all three parameters identified using experimental
data are close, but not identical, to the theoretical values
(Fig. 3a–c). This helps explain the discrepancy in the critical Re of
the primary instability in this system in experiment and
numerics24. The original study estimated that a 22% increase in
the value of c3 would be required to match the observed value
with the model predictions, assuming the other two parameters
do not change. The identified values of c3 are about 25% higher
than the theoretical value (Fig. 3c), which is consistent with that
estimate.

Fig. 3 Regression results. Model parameters, shown in (a–c) are consistently well estimated from experimental data for a range of Reynolds numbers Re,
particularly when the amplitude of flow time dependence is sufficiently large, as illustrated in (d) and (e). For the results shown, flows in experiments are
time-periodic for Re≲ 19, and weakly turbulent otherwise. In (a–c), parameters obtained using ensemble averaging (black dots) are compared with the
corresponding value obtained using first-principle analysis (dashed line) performed for time-independent flows at low Re. In (d), low values of the residual η
(Eq. 7) indicate good parameter fits; the relative quality of fit deteriorates in a regime (Re≲ 19) where flow time dependence is weak and, therefore, the
maximum magnitude of terms in Eq. (6) is small (e). The terms retained in a parsimonious model depend on a choice of threshold ε; the probability of
retaining the term Fn as a function of ε shown in (f) indicates the model given by Eq. (8) is consistently identified by choosing 0.1≲ ε≲ 0.3. The vertical
error bars in (a–d) represent the standard deviation over the ensemble (in most instances they are smaller than the symbol size) and the horizontal error
bars represent the variation in Re over the data set.
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The accuracy with which the parameters of the model are
estimated via symbolic regression can be judged based on both
their standard deviation for each ensemble and the variation of
the mean between different data sets at roughly the same Re. The
former is much smaller than the latter, and so may underestimate
the true uncertainty. Different data sets represent separate
experiments, so, conversely, the variation in the mean could also
reflect the (small) variation in the conditions of the experiment
(e.g., the thickness of the fluid layers). While the difference in the
mean values of c2 for the two data sets at Re ≈ 36, where the flow
is weakly turbulent, is probably attributed to just such a variation
in the conditions, the much larger variation in the mean of c2 and
c3 for the three data sets at Re ≈ 18 (Fig. 3b, c) is most likely due
to a qualitative change in the dynamics.

For 17.8≲ Re ≲ 19 the flow becomes time-periodic24. The
amplitude of the temporal oscillation decreases substantially as Re
approaches Re ≈ 17.8, leading to a corresponding decrease in the
magnitude of all the terms (Fig. 3e) and an increase in η (Fig. 3d).
Indeed, the constraint (12) on the weight functions implies that
〈Fn, wj〉= 0 for all n for a stationary flow. Hence our particular
choice of the weight functions is only suitable for flows that are
time-dependent. This is the fundamental reason why the accuracy
of the reconstructed model decreases at the low end of the Re
range explored here, where the magnitude of the time-dependent
component of the velocity field becomes comparable to the
measurement error of the particle image velocimetry (PIV). The
breakdown of our approach for steady flows is not an inherent
problem of symbolic regression but is rather due to the presence
of latent variables, mainly the steady forcing which the constraint
(12) was aimed to eliminate. One way to get around this lim-
itation is to analyze transient flows relaxing toward the
steady state.

Once the parsimonious model has been identified, the latent
fields can be determined as well. Using the Helmholtz decom-
position in Eq. (4), the pressure p and forcing f can be computed
at each time t represented in the data set, as discussed in the
“Methods” section. The movie showing the time evolution of the
reconstructed pressure field is included as Supplementary
Movie 1.

The electrical current is uniform in the electrolyte layer, hence
the forcing field f ¼ f ðx; yÞx̂ that appears in the 2D model of the
fluid flow should correspond to the depth average of the Lorentz
force across the electrolyte layer:

f ðx; yÞ /
Z

JBzðx; y; zÞ dz: ð9Þ

The forcing profile reconstructed from the measured flow field
is compared with the Lorentz force computed from direct
experimental measurement of the magnetic field according to Eq.
(9) in Fig. 4, which shows that the two profiles are almost
indistinguishable.

Discussion
As we have demonstrated here, a data-driven approach based on
symbolic regression can successfully discover a quantitatively
accurate model of a fairly complicated and high-dimensional
non-equilibrium system with highly nontrivial dynamics using
noisy, incomplete experimental measurements. Unlike artificial
neural network models26,27 that trade-off interpretability for
generality, our model has the form of a PDE, which is both
straightforward to interpret and allows the latent fields to be
easily reconstructed. The discovered model can also be directly
compared with other models of the same system constructed
using first principles. This comparison suggests that the first-
principle models do capture all the relevant physical mechanisms

qualitatively, but fail to describe them quantitatively with suffi-
cient accuracy, indicating that the assumptions used in their
derivation require refinement.

Although our results validate the practical utility of data-driven
model discovery, they also highlight the need for a hybrid
approach that combines a number of general physical constraints
—most notably, locality, causality, and spatial symmetries—to
generate a library of candidate models with symbolic regression
which downselects from this library the parsimonious model that
best describes the data. Although purely data-driven approaches
such as manifold learning28 can be used to help with library
construction, it is unlikely that this approach remains tractable
for high-dimensional systems such as the one considered here.
We have also relied on fairly specific domain knowledge to
identify the latent fields that are not a part of the data. While in
our case, their presence is suggested by the structure of the model,
no general approach to identifying latent variables from data has
been developed so far.

Domain knowledge also plays an essential role in choosing the
weight functions. We used both the functional form of the terms
involving the latent variables (e.g., ∇p) and the known properties
of the latent fields (e.g., the forcing f being time-independent) to
eliminate the dependence on both p and f from the regression
problem. This would not have been possible without using some
domain knowledge, illustrating the limitations of the purely data-
driven approach. It should also be mentioned that the depen-
dence on latent fields may not always be eliminated, while still
allowing the governing equations to be identified. For instance,

Fig. 4 Forcing field. The x-component of the depth-averaged Lorentz force
J × B computed using experimental measurement of the magnetic field (a)
is virtually indistinguishable from the forcing field f reconstructed using
Eq. (8) for Re= 22.17 (b). In c, the reconstructed (blue line) and measured
(black circles) forcing profiles, both normalized by their maximum
magnitude, are compared along the line x= 0 (dashed lines in (a) and (b)).
This normalization which is used in all three panels, also removes the
dependence on an arbitrary choice of ρ in Eq. (8).
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our approach would not succeed without measurement of the
velocity field, even if the pressure were known.

The success of any data-driven approach is also heavily
dependent on the data used29. In particular, for PDE discovery,
the data should exhibit variation in all independent coordinates.
In the present problem, we find that symbolic regression identi-
fies a sparse model with high accuracy for higher Re where the
flow is weakly turbulent and the velocity field varies in time and
both spatial coordinates. The same exact approach experiences
difficulties at lower Re where the flow becomes (nearly) sta-
tionary. Indeed, once the time dependence is lost, we have qn= 0
for all n, so that equation (6) becomes an identity which cannot
be solved for c.

Finally, it should be pointed out that the approach presented in
this paper is not limited to models in the form of a single parabolic
PDE, such as Eq. (2). It can be applied without significant mod-
ification to systems of any number of elliptic, hyperbolic, or elliptic
second-order PDEs, as well as higher-order PDEs and ordinary
differential equations. In particular, there is no need to separate out
the terms such as ∂tu, which are only present in equations gov-
erning temporal evolution. In their absence, the linear system that
appears in symbolic regression can be solved using alternative
approaches such as singular value decomposition17.

Methods
Experimental system and data collection. Our experimental setup is the same
one as used in ref. 24. The flow is produced in a shallow electrolyte–dielectric bi-
layer in a rectangular container, the top view of which is shown in Fig. 1a. The two
fluids are immiscible, and both layers have a thickness of 0.3 cm and horizontal
extent of Lx= 17.8 cm × Ly= 22.9 cm. The container sits in a thermal reservoir,
which limits temperature fluctuations to 0. 1 ºC, corresponding to a 0.3% bound on
working fluid viscosity fluctuations. The liquid dielectric serves as a lubricant to
make the flow in the electrolyte layer as close to two-dimensional as possible.
However, the no-slip condition at the bottom of the container requires the flow
velocity to vary in the vertical direction, regardless of the thickness of the fluid
layers; as a result, the fluid flow is not described by a 2D Navier–Stokes equation.

An array of 14 permanent magnets of width w= 1.27 cm placed beneath the
container generates a magnetic field that is near-sinusoidal in the center of the
domain. A direct current with density J ¼ Jŷ passes through the electrolyte layer.
Its interaction with the magnetic field produces a Lorentz force J × B that drives the
flow. The z-component of the magnetic field has been measured at a resolution of
ten points per magnet width in each of seven equally spaced horizontal planes
throughout the electrolyte layer. The average of these planes is shown in Fig. 4a in
comparison with the reconstructed forcing in Fig. 4b. These measurements were
only used as a reference to validate the results of our reconstruction procedure.

The electrolyte–dielectric interface is seeded with fluorescent microspheres in
order to measure 2D velocity fields quantifying the horizontal flow via PIV30. A
typical snapshot of the velocity field is shown overlaid on its corresponding
vorticity in Fig. 1. The strength of the flow is characterized by the Reynolds number
Re¼ �uw=�ν, where �u is the RMS velocity within the central 8w × 8w region of the
domain, and �ν ¼ 3:26 ´ 10�6 m2/s is the characteristic depth-averaged viscosity
chosen to allow direct comparison with the results of previous studies of this
experimental system9,24,31–33. For Re≲ 50, the vertical (z) component of the flow is
negligibly small, so that the horizontal flow can be considered divergence-free9.

Each data set represents the x and y components of the velocity field sampled on
a uniform grid (Δx= Δy) within the flow domain and covers a temporal interval of
at least 600 s with temporal resolution Δt= 1 s. The characteristic time scale τ of
the flow varies with Re. At low Re, the flow is periodic, with period of around 120 s.
At higher Re, the flow is aperiodic, with autocorrelation time which decreases with
Re31. The spatial resolution of the data is between 6 and 10 grid points per magnet
width w, which is the characteristic length scale of the flow. The temporal extent Lt
and the spatial resolution of each data set, labeled by the mean Re, are given in
Table 1.

Integration domains and weight functions. For simplicity, we take the integra-
tion domains to be rectangular and centered at different grid points (xi, yi, ti),

Ωi ¼ ðx; y; tÞjjx � xij≤Hx ;
�

jy � yij≤Hy ; jt � tij≤Ht

o
;

ð10Þ

where Hl is the half-width of the integration domain in the direction l= {x, y, t}. All
the domains Ωi have the same size, centered spatially and distributed temporally
throughout the data set, as shown in Fig. 2. Since integration leads to a reduction of
noise due to averaging17, the domains are chosen to be large in both spatial

directions. Their spatial width 2Hx × 2Hy was chosen to be slightly smaller than the
size Lx × Ly of the flow domain to avoid the regions near the side walls where PIV is
noisier than in the bulk. The temporal width 2Ht was chosen to be smaller than the
temporal extent Lt of the data set to limit overlap between different integration
domains, so that rows of equation (6) could remain linearly independent. Specific
values of Hx, Hy, and Ht for each data set are given in Table 1.

As mentioned previously, each partial derivative of the velocity field increases
the noise that is inevitably present in the PIV data. Hence, the derivatives are
transferred onto the smooth, noiseless weight functions wj whenever possible.
Consider for illustration the term F0= ∂tu. Using integration by parts we obtain

hwj; ∂tuii ¼ �h∂twj; uii; ð11Þ
if the boundary terms are eliminated by requiring wj= 0 at t= ti ±Ht. The complete
set of boundary conditions18 requires that wj and its spatial derivatives up to second-
order vanish at the boundary of the integration domain. Some nonlinear terms in
Eq. (2), such as ω2u, do not allow all derivatives to be transferred onto wj via
integration by parts. In such cases, the remaining derivatives on u are computed in
Fourier space utilizing both a Tukey-like windowing function and a low-pass filter.

Furthermore, the weight functions should be chosen such that the integrals
involving the latent fields disappear. To remove the dependence on the time-
independent forcing term, we require that wj be an odd function in time, such that

Z Ht

�Ht

wjdt ¼ 0; ð12Þ

We also constrain our weight function to the form

wj ¼ ∇ ´ ½ẑϕjðx; y; tÞ�; ð13Þ
so that

hwj;∇pii ¼ �h∇ � wj; pii ¼ 0; ð14Þ
eliminating the dependence on pressure.

All of the above constraints can be satisfied by choosing the scalar fields ϕj in
the form

ϕjðx; y; tÞ ¼ Pλðx0ÞPμðy0ÞPνðt0ÞEαðx0ÞEβðy0ÞEγðt0Þ; ð15Þ
where Pm(⋅) is a Legendre polynomial,

EαðwÞ ¼ ð1� w2Þα; ð16Þ
is an envelope function, and the prime denotes coordinates scaled by the
integration domain size: x0 ¼ ðx � xiÞ=Hx , y

0 ¼ ðy � yiÞ=Hy , t
0 ¼ ðt � t0Þ=Ht .

Each integral over Ωi is evaluated numerically using the trapezoidal rule, with the
accuracy of the numerical quadrature controlled by the integers α, β, and γ17. Here
we set α= β= γ= 6 to allow the use of PIV data that is relatively sparse. For
reference, regression based on direct evaluation of derivatives via a polynomial
method11 requires about 20 grid points per magnet width (e.g., 2–3 times higher
than in our data sets).

Unlike ref. 11 which considered symbolic regression for synthetic data, multiple
weight functions labeled by integer indices j= {λ, μ, ν} were used here to sample
the data more thoroughly, while keeping the large integration domains from
overlapping too much for the shorter data sets. The constraint (12) requires ν to be
an odd integer. Here we used all combinations of λ and μ set to either 0 or 1 and

Table 1 Description of the data sets used for the symbolic
regression analysis.

Re τ (s) Lt
τ

2Hx
Lx

2Hy

Ly

2Ht
Lt

Δx
w

Δt
τ

17.88 42* 14 0.80 0.80 0.17 0.15 0.024
17.93 42* 14 0.80 0.80 0.17 0.15 0.024
19.10 42* 14 0.80 0.80 0.17 0.15 0.024
19.75 26 23 0.80 0.80 0.17 0.15 0.039
19.80 28 21 0.80 0.80 0.17 0.15 0.036
22.17 28 128 0.80 0.80 0.028 0.11 0.036
22.27 25 144 0.80 0.80 0.028 0.11 0.040
22.62 24 150 0.80 0.80 0.028 0.11 0.042
23.18 26 138 0.80 0.80 0.028 0.12 0.039
30.88 12 524 0.44 0.46 0.016 0.08 0.083
31.11 13 866 0.48 0.50 0.0089 0.09 0.077
31.26 13 785 0.48 0.50 0.0098 0.09 0.077
35.52 9 2001 0.48 0.50 0.0056 0.09 0.111
35.67 9 2001 0.48 0.50 0.0056 0.09 0.111
36.34 8 149 0.81 0.85 0.083 0.09 0.125

Re denotes the mean Reynolds number. Times τ marked with an asterisk (*) represent temporal
period, whereas those without represent autocorrelation time.
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ν= 1, i.e., a total of four weight functions for each integration domain (this number
could be increased further to improve the model reconstruction accuracy). The
total number of equations in the system defined by equation (6) is therefore K= 4I,
where I is the total number of integration domains. The system has to be
overdetermined, K >N; we chose I= 50 which satisfies this condition. A higher
value would further increase the accuracy and robustness of the method.

Reconstructing the pressure and forcing field. Once the parsimonious model
describing a particular data set has been found, the horizontal forcing profile f(x)
and pressure p(x,t) can be computed using the Helmholtz decomposition of the
vector field s(x,t) in Eq. (4). Specifically,

pðx; tÞ ¼ �ρ

Z Z
ik � ŝðk; tÞ

k � k e�ik�xdk ð17Þ

and

fðx; tÞ ¼ �ρ

Z Z
k ´ ½k ´ ŝðk; tÞ�

k � k e�ik�xdk; ð18Þ

where

ŝðk; tÞ ¼ F̂0ðk; tÞ � ∑
7

n¼1
cnF̂nðk; tÞ: ð19Þ

and

F̂nðk; tÞ ¼
1

ð2πÞ2
Z Z

Fnðx; tÞeik�xdx: ð20Þ
The latent fields are reconstructed without the benefit of the weak formulation,

which plays a crucial role in increasing the robustness of symbolic regression in the
presence of noise. Since some of the terms Fn(x, t) involve derivatives, which
amplify noise, the respective Fourier transforms F̂nðk; tÞ are low-pass filtered by
eliminating frequencies ∣kx∣ > 2k0 and ∣ky∣ > 2k0 where k0= π/w is the wavenumber
corresponding to the wavelength 2w of the magnet array. This cut-off frequency is
chosen empirically to balance the inclusion of relevant modes and the exclusion of
modes corrupted by noise. The spatial derivatives were computed spectrally and
the temporal derivative term was computed using a second-order central
difference.

Note that f= ρ∇ × A involves an extra derivative compared with p= ρϕ, which
decreases its accuracy for noisy data. Since f is stationary in our experiment, its
accuracy can be improved substantially by temporally averaging Eq. (18).

Data availability
Data sets containing velocity fields and their gradients, as well as the source data used to
construct Figure 3 are available from the Open Science Framework at https://doi.org/
10.17605/osf.io/tez6c.

Code availability
MATLAB codes used to identify the governing equations can be found on GitHub at
https://doi.org/10.5281/zenodo.4653308. Any other requests should be made to the
corresponding author.

Received: 14 August 2020; Accepted: 30 April 2021;

References
1. Gaudinier, A. & Brady, S. M. Mapping transcriptional networks in plants:

data-driven discovery of novel biological mechanisms. Annu. Rev. Plant Biol.
67, 575–594 (2016).

2. Pan, S. & Duraisamy, K. Data-driven discovery of closure models. SIAM J.
Appl. Dynamical Syst. 17, 2381–2413 (2018).

3. Bergen, K. J., Johnson, P. A., Maarten, V. & Beroza, G. C. Machine learning for
data-driven discovery in solid earth geoscience. Science 363, 0323 (2019).

4. Bongard, J. & Lipson, H. Automated reverse engineering of nonlinear
dynamical systems. Proc. Natl Acad. Sci. USA 104, 9943–9948 (2007).

5. Schmidt, M. & Lipson, H. Distilling free-form natural laws from experimental
data. Science 324, 81–85 (2009).

6. Rudy, S. H., Brunton, S. L., Proctor, J. L. & Kutz, J. N. Data-driven discovery of
partial differential equations. Sci. Adv. 3, e1602614 (2017).

7. Schaeffer, H. Learning partial differential equations via data discovery and
sparse optimization. Proc. R. Soc. A: Math. Phys. Eng. Sci. 473, 20160446
(2017).

8. Karpatne, A. et al. Theory-guided data science: a new paradigm for scientific
discovery from data. IEEE Trans. Knowl. Data Eng. 29, 2318–2331 (2017).

9. Suri, B., Tithof, J., Mitchell, R., Grigoriev, R. O. & Schatz, M. F. Velocity profile
in a two-layer Kolmogorov-like flow. Phys. Fluids 26, 053601 (2014).

10. Boyd, S., Chua, L. O. & Desoer, C. A. Analytical foundations of Volterra series.
IMA J. Math. Control Inf. 1, 243–282 (1984).

11. Reinbold, P. A. & Grigoriev, R. O. Data-driven discovery of partial differential
equation models with latent variables. Phys. Rev. E 100, 022219 (2019).

12. Li, X. et al. Sparse learning of partial differential equations with structured
dictionary matrix. Chaos 29, 043130 (2019).

13. Xu, D. & Khanmohamadi, O. Spatiotemporal system reconstruction using
Fourier spectral operators and structure selection techniques. Chaos 18,
043122 (2008).

14. Khanmohamadi, O. & Xu, D. Spatiotemporal system identification on
nonperiodic domains using Chebyshev spectral operators and system
reduction algorithms. Chaos 19, 033117 (2009).

15. Shinbrot, M. On the analysis of linear and nonlinear dynamical systems from
transient-response data, National Advisory Committee for Aeronautics,
Technical Note 3288 (1954).

16. Preisig, H. & Rippin, D. Theory and application of the modulating function
method-I. Review and theory of the method and theory of the spline-type
modulating functions. Comput. Chem. Eng. 17, 1–16 (1993).

17. Gurevich, D. R., Reinbold, P. A. & Grigoriev, R. O. Robust and optimal sparse
regression for nonlinear PDE models. Chaos 29, 103113 (2019).

18. Reinbold, P. A., Gurevich, D. R. & Grigoriev, R. O. Using noisy or incomplete
data to discover models of spatiotemporal dynamics. Phys. Rev. E 101, 010203
(2020).

19. Tibshirani, R. Regression shrinkage and selection via the LASSO. J. R. Stat.
Soc.: Ser. B (Methodol.) 58, 267–288 (1996).

20. Marquardt, D. W. & Snee, R. D. Ridge regression in practice. Am. Statistician
29, 3–20 (1975).

21. Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing equations
from data by sparse identification of nonlinear dynamical systems. Proc. Natl
Acad. Sci. USA 113, 3932–3937 (2016).

22. Mangan, N. M., Kutz, J. N., Brunton, S. L. & Proctor, J. L. Model selection for
dynamical systems via sparse regression and information criteria. Proc. R. Soc.
A: Math. Phys. Eng. Sci. 473, 20170009 (2017).

23. Dolzhanskii, F. V., Krymov, V. A. & Manin, D. Y. Stability and vortex
structures of quasi-two-dimensional shear flows. Sov. Phys. Uspekhi 33,
495–520 (1990).

24. Tithof, J., Suri, B., Pallantla, R. K., Grigoriev, R. O. & Schatz, M. F.
Bifurcations in a quasi-two-dimensional Kolmogorov-like flow. J. Fluid Mech.
828, 837–866 (2017).

25. Pallantla, R. Exact Coherent Structures and Dynamical Connections in a Quasi
2D Kolmogorov Like Flow. Ph.D. thesis (Georgia Institute of Technology,
2018).

26. Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural
networks: a deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations. J. Computational
Phys. 378, 686–707 (2019).

27. Iten, R., Metger, T., Wilming, H., Del Rio, L. & Renner, R. Discovering
physical concepts with neural networks. Phys. Rev. Lett. 124, 010508 (2020).

28. Cayton, L. Algorithms for manifold learning. Univ. Calif. San Diego Tech. Rep.
12, 1 (2005).

29. Schaeffer, H., Tran, G. & Ward, R. Extracting sparse high-dimensional
dynamics from limited data. SIAM J. Appl. Math. 78, 3279–3295 (2018).

30. Drew, B., Charonko, J. & Vlachos. P. P. QI - Quantitative Imaging (PIV and
more), 2013. https://sourceforge.net/projects/qi-tools/.

31. Suri, B., Tithof, J., Grigoriev, R. O. & Schatz, M. F. Forecasting fluid flows
using the geometry of turbulence. Phys. Rev. Lett. 118, 114501 (2017).

32. Suri, B., Tithof, J., Grigoriev, R. O. & Schatz, M. F. Unstable equilibria and
invariant manifolds in quasi-two-dimensional Kolmogorov-like flow. Phys.
Rev. E 98, 023105 (2018).

33. Suri, B., Pallantla, R. K., Schatz, M. F. & Grigoriev, R. O. Heteroclinic and
homoclinic connections in a Kolmogorov-like flow. Phys. Rev. E 100, 013112
(2019).

Acknowledgements
This material is based upon work supported by NSF under Grant Nos. CMMI-1725587 and
CMMI-2028454. The experimental data used in this work were produced by Jeff Tithof. The
magnetic field measurements were performed with assistance from Charles Haynes.

Author contributions
P.A.K.R. was responsible for conducting data analysis and interpretation of the results.
L.M.K. was responsible for performing fluid flow experiments, data acquisition, and PIV
analysis. M.F.S. was responsible for experimental design. R.O.G. was responsible for
concept and research design. All authors were involved in the preparation of the
manuscript, read and approved the final version.

Competing interests
The authors declare no competing interests.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23479-0 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3219 | https://doi.org/10.1038/s41467-021-23479-0 |www.nature.com/naturecommunications 7

https://doi.org/10.17605/osf.io/tez6c
https://doi.org/10.17605/osf.io/tez6c
https://doi.org/10.5281/zenodo.4653308
https://sourceforge.net/projects/qi-tools/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-23479-0.

Correspondence and requests for materials should be addressed to R.O.G.

Peer review information Nature Communications thanks Samuel E. Otto and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23479-0

8 NATURE COMMUNICATIONS |         (2021) 12:3219 | https://doi.org/10.1038/s41467-021-23479-0 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-021-23479-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression
	Results
	Discussion
	Methods
	Experimental system and data collection
	Integration domains and weight functions
	Reconstructing the pressure and forcing field

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




