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Abstract: Of children with recurrent wheezing in early childhood, approximately half go on to
develop asthma. MicroRNAs have been described as excellent non-invasive biomarkers due to their
prognostic utility. We hypothesized that circulating microRNAs can predict incident asthma and
that that prediction might be modified by vitamin D. We selected 75 participants with recurrent
wheezing at 3 years old from the Vitamin D Antenatal Asthma Reduction Trial (VDAART). Plasma
samples were collected at age 3 and sequenced for small RNA-Seq. The read counts were normalized
and filtered by depth and coverage. Logistic regression was employed to associate miRNAs at
age 3 with asthma status at age 5. While the overall effect of miRNA on asthma occurrence was
weak, we identified 38 miRNAs with a significant interaction effect with vitamin D and 32 miRNAs
with a significant main effect in the high vitamin D treatment group in VDAART. We validated the
VDAART results in Project Viva for both the main effect and interaction effect. Meta-analysis was
performed on both cohorts to obtain the combined effect and a logistic regression model was used
to predict incident asthma at age 7 in Project Viva. Of the 23 overlapped miRNAs in the stratified
and interaction analysis above, 9 miRNAs were replicated in Project Viva with strong effect size
and remained in the meta-analysis of the two populations. The target genes of the 9 miRNAs were
enriched for asthma-related Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways.
Using logistic regression, microRNA hsa-miR-574-5p had a good prognostic ability for incident
asthma prognosis with an area under the receiver operating characteristic (AUROC) of 0.83. In
conclusion, miRNAs appear to be good biomarkers of incident asthma, but only when vitamin D
level is considered.

Keywords: vitamin D; asthma; miRNA; circulating microRNA; biomarker

1. Introduction

Asthma is a chronic inflammatory disease characterized by airway hyper-responsiveness,
mucus hypersecretion, and airway remodeling [1]. According to the Centers for Disease
Control and Prevention (CDC) report in 2018, about 25 million Americans have asthma,
including 7.5% of children (age < 18 years) and 7.4% of adults (age 18+ y) [2]. Asthma is
more common in children than adults and the number of cases with childhood asthma
increased from 2014 to 2018 by 744,397 in the US [2]. The cost of asthma in direct and
indirect medical care is estimated to exceed 18 billion dollars each year [3].
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Recurrent wheeze in early childhood is a significant risk factor for asthma, but not
all children who wheeze go on to develop asthma. According to epidemiologic studies,
60% of young wheezers are symptom-free at the age of 6 y, and a majority of them remain
asymptomatic at the age of 11 and 16 [4–6]. Although wheezing in early childhood is
common, finding a way to predict who will continue to wheeze and develop asthma is
important for asthma diagnosis and management.

Vitamin D is a fat-soluble secosteroid that can be produced in response to the skin
being exposed to sunlight but is present in the diet. Vitamin D is essential for bone
growth and remodeling and is also involved in immune system function [7,8]. Currently,
epidemiologic and experimental evidence has suggested an association between higher
vitamin D levels in pregnant women and reduced asthma in their offspring, but the results
of these observational studies differ in the results [9]. To address this problem, the Vitamin
D Antenatal Asthma Reduction Trial (VDAART) was developed, as a randomized, double-
blind, placebo-controlled trial with the primary outcome to determine whether prenatal
vitamin D supplementation in pregnant women can decrease asthma incidence in the
women’s offspring [10].

MiRNAs are small non-coding RNAs with a length of 21–24 bp and they can be
loaded into RISC (RNA-induced Silencing Complex) to bind to the 5′-UTR of mRNAs
and thus down-regulate gene expression [11]. MiRNAs also exist in a variety of biofluids
(extracellular RNAs), such as plasma, serum, sputum, and urine [12]. With the development
of next-generation sequencing, an increasing number of studies have profiled small RNA-
Seq for miRNA expression [13,14] and miRNAs have been utilized as the non-invasive
biomarkers of both diseases and treatment responses [13,15–18]. Some miRNAs have been
identified to associate with childhood asthma in several studies [19–22].

In this study, we sought to identify circulating miRNAs that can predict incident
childhood asthma and assess that prediction in relation to vitamin D treatment.

2. Materials and Methods
2.1. Participant Selection

We selected 75 participants from the VDAART (ClinicalTrials.gov Identifier: NCT00920621)
based on the presence of recurrent wheezing occurring at 3 years of age. These participants
provided plasma samples at age 3 and were followed up at 5 years of age when their
asthma status was diagnosed by physicians. Two participants were not followed up at age
5 years and were removed in the following analysis.

2.2. Small RNA Sequencing

Total RNA was isolated from samples by the Qiagen miRNAeasy Serum/Plasma
extraction kit and QIAcube automation. Small RNA sequencing libraries were prepared
using the Norgen Biotek Small RNA Library Prep Kit and then sequenced on the Illumina
NextSeq 500 platform at 51 bp single-end reads.

We used the exRNA-processing toolkit (exceRpt) to assess the read quality and profile
the miRNAs [23]. Raw read counts were log-transformed and quantile normalized. Read
counts less than 5 and miRNAs with coverage less than 80% of all samples were removed.

2.3. Statistical Analysis

Statistical analysis was performed using R software version 3.6.3 (Bell Laboratories,
Murray Hill, NJ, USA). Logistic regression was used to assess the association between the
miRNAs normalized count and asthma status (asthma: Y = 1 and no asthma: Y = 0) at age
5 years for participants in VDAART. We first examined the association in all candidate
participants and then in the interaction and stratified analyses by the vitamin D treatment
status (high vitamin D treatment group (4400 international units (IU)/day): TG = 1 and
low vitamin D treatment group (400 IU/day): TG = 0).
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2.4. Validation

We selected 20 participants in Project Viva (ClinicalTrials.gov Identifier: NCT02820402)
a pre-birth cohort established to examine the association between prenatal diet and other
factors with maternal and child health [24]. All of these 20 participants had a history of
recurrent wheeze at 3 years old when the blood draw was taken. These plasma samples
were prepared and sequenced in the same way as the VDAART samples, as well as having
the miRNA profiling performed.

The vitamin D concentration was measured by both an automated chemilumines-
cence immunoassay and a manual radioimmunoassay at 16–26 weeks’ gestation from each
mother. We used the average of the two values to estimate the maternal 25(OH)D concentra-
tion [25] and divided mother-child pairs into adequate (maternal levels ≥ 20 ng/mL) and
inadequate (maternal levels < 20 ng/mL) groups according to the report from the Institute
of Medicine (IOM) [26]. For the 20 mother-child pairs in Project Viva, 12 children were from
the adequate group and the other 8 children were from the inadequate group of maternal
25(OH)D concentration. The primary outcome was the asthma status at 7 years of age. We
validated our results in the maternal 25(OH)D adequate group as well as considering the
interaction by maternal vitamin D status.

2.5. Meta-Analysis

To combine the results from both VDAART and Project Viva, we performed a meta-
analysis of the two data sets. The R package “metafor” was employed to combine the odds
ratio (OR) values via the restricted maximum-likelihood estimator [27].

2.6. MiRNA-Target Gene Network and Kyoto Encyclopedia of Genes and Genomes (KEGG)
Pathway Enrichment Analysis

We built the miRNA-target genes interactions network and performed Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway enrichment analysis through miRNet
2.0 (McGill University, Montreal, Quebec, Canada) [28]. MiRNA-target interactions (MTIs)
came from miRTarBase release 8.0 [29]. Nominal p values of pathways were adjusted for
false discovery rate (FDR).

2.7. Prediction

We built a logistic regression model to predict asthma status at age 7 years in the
Project Viva adequate vitamin D group. The area under the receiver operating characteristic
(AUROC) was calculated to measure the performance of our logistic regression model in
the prediction of asthma status.

3. Results
3.1. Baseline Characteristics

A total of 75 participants in VDAART were selected, of whom 31 were children with
asthma at age 5 years, 42 were healthy controls and 2 were lost follow-up. The baseline
characteristics of the 73 subjects with available outcome for asthma status at age 5 years
were shown in Table 1. Of the 73 participants, 33 were in the treatment arm of the VDAART
trial where the children were born to mothers who had received 4400 IU of vitamin D3 per
day during pregnancy and 40 were in the placebo arm (control group) where the children
were born to mothers who had received regular multivitamins containing 400 IU of vitamin
D3 per day. Sex, race, and other characteristics were evaluated and found not to be different
between treatment arms.

3.2. Main Analysis

We investigated the association between miRNAs at age 3 years and asthma status at
age 5 years in all 73 VDAART participants and then examined the results in Project Viva.
The results are shown in Supplemental Table S1. Six miRNAs were nominally significant
(p < 0.05) in VDAART and three were present in Project Viva. Only miRNA hsa-miR-548k
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could be validated as being in the same direction of effect in VDAART and Project Viva.
Given the marginal main effects, we performed interaction and stratified analyses on our
dataset by intervention arm.

Table 1. Baseline characteristics of the Vitamin D Antenatal Asthma Reduction Trial (VDAART)
participants at enrollment according to asthma status at age 5 years.

Characteristic Asthma Status at Age 5 Years

Yes (n = 31) No (n = 42) p Value

Sex 1.0

Male 21(68%) 28(67%)

Female 10(32%) 14(33%)

Race 0.39 *

White 8(26%) 16(38%)

Black/African American 22(71%) 22(52%)

Asian 0(0%) 1(2%)

Other 1(3%) 3(7%)

Treatment 0.817

4400 IU daily 15(48%) 18(43%)

400 IU daily 16(52%) 24(57%)

History of asthma in mother 1.0

Yes 17(55%) 23(55%)

No 14(45%) 19(45%)

Maternal age at enrollment 24.51 ± 4.8 25.66 ± 5.8 0.36

Gestation at delivery weeks 37.38 ± 3.57 38.19 ± 2.85 0.3
Data presented as n (%) or mean ± standard deviation (SD); IU: international unit; * p value from Fisher’s
exact test.

3.3. Significant miRNAs in Treatment Interactions Analysis

We identified 38 miRNAs that were associated with asthma at age 5 years in the
interaction analysis (nominal p < 0.05) in VDAART. The results were ranked by effect size
(OR) and shown in Table 2. The effect modification by vitamin D status was seen in both
the positive and negative directions, with strong effect estimates noted. Sixteen miRNAs
had OR values greater than 3 and five miRNAs had OR less than 0.33. Hsa-miR-3942-5p
had the largest OR value of 178.73 [95% confidence interval (CI), 4.6 to 6947.95], a high risk
of incident asthma and hsa-miR151a-5p had the smallest OR value of 0.05 [95% CI, 0.01 to
0.42], a strong protective effect of incident asthma.

Table 2. Significant miRNAs by the Vitamin D Treatment Arm Interaction in VDAART.

95% CI for OR

miRNA OR Lower Bound Upper Bound

hsa-miR-3942-5p 178.73 4.6 6947.95
hsa-miR-151a-5p 0.05 0.01 0.42
hsa-miR-574-5p 19.2 2.38 155.11

hsa-miR-125b-2-3p 8.62 1.77 41.84
hsa-miR-6852-5p 0.12 0.03 0.58
hsa-miR-7-1-3p 7.81 1.67 36.4
hsa-miR-505-3p 0.13 0.02 0.79

hsa-miR-103a-3p 0.15 0.03 0.81
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Table 2. Cont.

95% CI for OR

miRNA OR Lower Bound Upper Bound

hsa-miR-1294 5.86 1.55 22.09
hsa-miR-342-3p 5.83 1.63 20.89
hsa-miR-95-3p 5.8 1.93 17.41

hsa-miR-193b-5p 5.55 1.99 15.45
hsa-miR-29a-3p 4.77 1.61 14.11
hsa-miR-331-5p 4.62 1.17 18.18

hsa-miR-146b-3p 4.53 1.23 16.63
hsa-miR-141-3p 4.1 1.36 12.37

hsa-miR-3605-5p 3.87 1.16 12.94
hsa-miR-760 0.3 0.09 0.98

hsa-miR-5010-5p 3.26 1.18 9.05
hsa-miR-122-5p 3.05 1.2 7.74
hsa-miR-215-5p 3.05 1.14 8.13
hsa-miR-370-3p 0.33 0.12 0.94
hsa-miR-29c-3p 2.93 1.25 6.86

hsa-miR-1273h-3p 0.36 0.13 0.96
hsa-miR-144-3p 2.74 1.04 7.23

hsa-miR-1908-5p 0.37 0.14 1
hsa-miR-4732-5p 2.71 1.09 6.75
hsa-miR-339-5p 0.37 0.18 0.76
hsa-miR-483-5p 2.67 1.13 6.28
hsa-miR-214-3p 2.58 1.14 5.85
hsa-miR-671-3p 0.39 0.16 0.95
hsa-miR-342-5p 2.51 1.3 4.85
hsa-miR-150-3p 2.3 1.11 4.77
hsa-miR-134-5p 0.44 0.19 1
hsa-miR-29b-3p 2.26 1.02 4.99
hsa-miR-369-3p 0.45 0.21 1

hsa-miR-130b-5p 0.46 0.23 0.93
hsa-miR-409-3p 0.55 0.31 0.99

3.4. Significant miRNAs in the Stratified Analysis

We also examined the association separately in both the high vitamin D treatment
group and the low vitamin D treatment group (control group). In the high vitamin D
treatment group, 32 miRNAs were associated with asthma at age 5 (nominal p < 0.05),
and of these miRNAs, 22 miRNAs were associated with a higher risk of incident asthma
(OR >1) and 10 miRNAs were protective (OR < 1). In particular, there were 7 miRNAs
(hsa-miR-3942-5p, hsa-miR-574-5p, hsa-miR-125b-2-3p, hsa-miR-95-3p, hsa-miR-342-3p,
hsa-miR-6509-5p, hsa-miR-1294) with OR values greater than 3 and 3 miRNAs (hsa-miR-
151a-5p, hsa-miR-6852-5p, hsa-miR-6842-3p) with OR values less than 0.33. Twenty-three
significant miRNAs occurring in both the high vitamin D treatment group analysis and the
interaction analysis. The results are listed in Table 3.

Compared with the 32 significant miRNAs in the high vitamin D treatment group,
there were only 6 significant miRNAs in the low vitamin D treatment group (control group),
of which hsa-miR-505-3p and hsa-miR-340-3p had a higher risk and the others having
a protective effect. Four miRNAs, including hsa-miR-7-1-3p, hsa-miR-505-3p, hsa-miR-
193b-5p and hsa-miR-5010-5p, overlapped with the significant miRNAs in the interaction
analysis. The results are shown in Supplemental Table S2.
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Table 3. Significant miRNAs in the High Vitamin D Treatment Group in VDAART.

95% CI for OR

miRNA OR Lower Bound Upper Bound

hsa-miR-3942-5p 73.05 2.23 2390.05
hsa-miR-574-5p 7.2 1.16 44.78

hsa-miR-151a-5p 0.14 0.02 0.86
hsa-miR-125b-2-3p 5.46 1.38 21.52
hsa-miR-6852-5p 0.19 0.05 0.79
hsa-miR-6842-3p 0.22 0.05 0.86

hsa-miR-95-3p 3.83 1.44 10.14
hsa-miR-342-3p 3.72 1.31 10.62

hsa-miR-6509-5p 3.66 1.02 13.15
hsa-miR-1294 3.47 1.08 11.11

hsa-miR-141-3p 3 1.1 8.18
hsa-miR-370-3p 0.33 0.13 0.83
hsa-miR-331-5p 2.99 1.02 8.76
hsa-miR-424-3p 2.93 1.06 8.1

hsa-miR-193b-5p 2.85 1.23 6.6
hsa-miR-146b-3p 2.82 1.01 7.88
hsa-miR-195-5p 2.71 1.09 6.76
hsa-miR-122-5p 2.68 1.21 5.96
hsa-miR-29a-3p 2.65 1.08 6.54
hsa-miR-127-3p 0.38 0.15 0.97
hsa-miR-215-5p 2.62 1.11 6.17
hsa-miR-30d-3p 0.42 0.18 0.98
hsa-miR-136-3p 0.43 0.19 0.95

hsa-miR-1224-5p 2.26 1.06 4.82
hsa-miR-4732-5p 2.25 1.09 4.66
hsa-miR-642a-3p 2.1 1.01 4.36
hsa-miR-29c-3p 2.05 1.03 4.12
hsa-miR-134-5p 0.5 0.25 1
hsa-miR-150-3p 1.9 1.02 3.53
hsa-miR-342-5p 1.89 1.09 3.29

hsa-miR-130b-5p 0.53 0.3 0.95
hsa-miR-339-5p 0.59 0.35 1

3.5. Validation in Project Viva

We performed a replication analysis in Project Viva on the 23 significant miRNAs
identified in both the high vitamin D treatment group and the interaction analysis in
VDAART. Because of the small sample size in Project Viva, we focused our validation
efforts on both the directionality and effect size. We kept miRNAs with OR≥ 2 or OR ≤ 0.5
in VDAART and kept miRNAs with OR ≥ 1.5 or OR ≤ 0.67 in Project Viva. Following this
methodology, 9 miRNAs were successfully validated in Project Viva and the results are
shown in Supplemental Table S3.

Of the 9 validated miRNAs, 6 miRNAs increased the risk of incident asthma and
3 miRNAs had a protective effect on decreasing the risk of incident asthma. For example,
hsa-miR-574-5p (Supplemental Figure S1A) was associated with a high risk of incident
asthma with a large OR value of 7.2 [95% CI, 1.16 to 44.78] in the high vitamin D treatment
group and the OR of the interaction effect is also high (OR = 19.2 [95% CI, 2.38 to 155.11]).
These were both validated in Project Viva with OR values of 27.59 [95% CI, 0.19 to 3995.22]
and 3.9 [95% CI, 0.15 to 103.06] in the same direction as seen in the VDAART. Hsa-miR-151a-
5p (Supplemental Figure S1B) was associated with a protective effect for incident asthma
in the high vitamin D treatment group in VDAART with an OR value of 0.15 [95% CI, 0.02
to 0.86] and the effect modification was much stronger with an OR value of 0.05 [95% CI,
0.01 to 0.42]. Both of the values were validated in Project Viva in the same direction with
OR values of 0.34 [95% CI, 0.02 to 4.77] and 0.37 [95% CI, 0.01 to 12.54] respectively.
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3.6. Meta-Analysis of Validated miRNAs in Vitamin D Antenatal Asthma Reduction Trial
(VDAART) and Project Viva

To combine the effect in the high vitamin D treatment group of VDAART and high
maternal vitamin D group (adequate group) of Project Viva, we performed a meta-analysis
on the 9 validated miRNAs. The results are illustrated in Figure 1. All the observed effects
of 9 miRNAs were significant in the analysis (nominal p < 0.05). Hsa-miR-574-5p had the
largest risk for incident asthma with OR = 8.45 [95% CI, 1.52 to 46.97] and hsa-miR-151a-5p
had the largest protective effect with OR = 0.19 [95% CI, 0.04 to 0.82].

Figure 1. Meta-Analysis of 9 validated miRNAs. MiRNAs are ordered from left top to right bottom in terms of the effect size.
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We also performed a meta-analysis on the effect modification and the results were
displayed in Supplemental Figure S2. Both hsa-miR-574-5p and hsa-miR-151a-5p had the
largest effects in opposite directions.

3.7. MiRNA-Target Gene Network and KEGG Pathway Enrichment Analysis

The miRNA-target gene network was built and displayed in miRNet 2.0. There were
42 KEGG pathways enriched to the 9 validated miRNAs with FDR less than 0.05 and these
pathways are shown in Supplemental Table S4. Eight signaling pathways were curated
and emphasized in Table 4 with known studies about asthma. The top three signaling
pathways were Cell Cycle (FDR = 4.8 × 10−7), TGF-beta (Transforming Growth Factor
beta) Signaling Pathway (FDR = 4.12 × 10−5) and ErbB (also known as Epidermal Growth
Factor Receptor) Signaling Pathway (FDR = 1.88 × 10−4). The target genes involved in
these signaling pathways were visualized in Figure 2.

3.8. Prediction of Asthma Based on miRNAs

We predicted asthma status based on normalized miRNA counts in the high maternal
vitamin D group in Project Viva through a logistic regression model. When using a single
miRNA, hsa-miR-574-5p had the best performance with AUROC = 0.83 (Figure 3A). When
considering the combination of two miRNAs, hsa-miR-215-5p (AUROC = 0.81) and hsa-
miR-370-3p (AUROC = 0.75) performed best with AUROC = 0.86 (Figure 3B).

Table 4. Significant Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways in association with asthma.

Name Hits p Value FDR Function Reference

Cell cycle 41 1.44 × 10−8 4.8 × 10−7 Airway smooth muscle (ASM)
proliferation. [30]

TGF-beta signaling
pathway 28 2.47 × 10−6 4.12 × 10−5

Airway epithelial cells apoptosis,
subepithelial fibrosis, airway

smooth muscle remodeling, and
microvascular changes.

[31,32]

ErbB signaling
pathway 27 1.69 × 10−5 1.88 × 10−4 Airway hyperreactivity and

remodeling. [33,34]

Wnt signaling
pathway 36 1.35 × 10−4 1.23 × 10−3 Airway remodeling. [35,36]

Jak-STAT signaling
pathway 27 2.03 × 10−4 1.45 × 10−3 Th cell polarization and airway

inflammatory response. [37,38]

p53 signaling
pathway 19 1.27 × 10−3 5.77 × 10−3

Bronchial smooth muscle (BSM)
proliferation and mitochondrial

biogenesis.
[39]

T cell receptor
signaling pathway 22 1.04 × 10−2 3.18 × 10−2 T cell development and immune

system. [40]

Toll-like receptor
signaling pathway 21 1.81 × 10−2 4.55 × 10−2 Airway inflammation. [41,42]
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Figure 2. Network of 9 validated miRNAs and target genes. Squares denote miRNAs and circles denote target genes.

Figure 3. Prediction of hsa-miR-574-5p and the combination of hsa-miR-215-5p and hsa-miR-370-3p in logistic regression
model. (A) Prediction of hsa-miR-574-5p in logistic regression model. (B) Prediction of the combination of has-miR-215-5p
and hsa-miR-370-3p in the logistic regression model.
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4. Discussion

In our study, we identified several miRNAs that were associated with incident asthma
at age 5 years given vitamin D effect modification in VDAART; these miRNAs were
replicated in another independent birth cohort, Project Viva. This finding suggests that
miRNA may be a pivotal vitamin D related mediator of asthma risk in early childhood.
The meta-analysis of the two cohorts strengthened our results and the top miRNA had
excellent prognostic power to predict asthma at age 5 years.

We noted that hsa-miR-574-5p displayed the strongest risk effect in the high vitamin
D treatment group of all the validated miRNAs (Figure 1). Sinha and colleagues found
hsa-miR-574-5p over expressed by 3.3-fold (p = 0.04) in asthmatic patients compared
with healthy subjects in the exhaled exosome [43]. Garbacki observed miR-574-5p was
down-regulated (fold change = 0.37) with short-term exposure to an allergen but up-
regulated (fold change = 13.18) with long-term exposure to allergen in the mouse model of
asthma, implying a cell cycle regulatory function [44]. Gomez built a miRNA and mRNA
network based on the sputum of patients with asthma, and found the hsa-miR-574-5p
module positively correlated with eosinophil counts (p = 0.008) and negatively correlated
with bronchodilator response (p = 0.04) [45]. Moreover, several studies had shown that
25-hydroxyvitamin D (25OHD) or vitamin D3 could alter miRNA expression [46,47]. Hsa-
miR-574-5p was down-regulated (fold change = 1.79) in the high vitamin D group in the
plasma of pregnant mothers [48]. Together, these studies strongly suggest that hsa-miR-
574-5p may be a vitamin D-related mediator and biomarker in asthma.

Our study also showed that hsa-miR-151a-5p had the strongest protective effect on
incident asthma in the high vitamin D treatment group (Figure 1). Francisco-Garcia’s
group examined miRNAs in nanovesicles from bronchoalveolar lavage of severe asthmatic
patients and they reported that hsa-miR-151a-5p positively correlated with FEV1% (pre-
bronchodilator forced expiratory volume in one second as a percent predicted) (r = 0.48,
p = 0.03), which confirmed with our analysis [49]. Jorde et al. also observed that hsa-miR-
151a-5p was up-regulated in plasma after 1 year of 40,000 IU vitamin D3 per week [46]. In
summary, hsa-miR-151a-5p may also be a potential mediator and biomarker.

We examined the miRNA prognostic ability through a logistic regression prediction
model. We noted that with an AUROC = 0.83, hsa-miR-574-5p performed best individually
compared to other examined miRNAs (Figure 3A). Hsa-miR-215-5p and hsa-miR-370-3p
had the best combinatory prognostic power with AUROC = 0.86 (Figure 3B). Both hsa-miR-
215-5p and hsa-miR-370-3p have been shown to affect the inflammatory pathway in lung.
Tsuchiya and colleagues found that the expression of hsa-miR-215-5p was elevated (10-
fold) in MPA (mucoid Pseudomonas aeruginosa) infected CF (cystic fibrosis) lung epithelial
cells and implied its pro-inflammatory function [50]. Gupta et al. observed hsa-miR-
215-5p differentially expressed (5.46 logFC) in exosome-like vesicles between primary
human tracheobronchial cells and a cultured airway epithelial cell line [51]. Hsa-miR-
370-3p was involved in inflammatory injury by a long noncoding RNA SNHG16 in LSP
(lipopolysaccharides)-induced A549 cells [52].

For other validated miRNAs, in our study, many of them were associated with allergic
inflammation. MiR-342-3p was associated with allergic airway disease in a mouse popula-
tion [53] and was also observed to suppress inflammation response in human macrophages
THP-1 cells [54]. MiR-122-5p was increased in extracellular vesicles from subjects with
asthma [55] and decreased in asthmatic bronchial epithelial cells [56]. MiR-193b-5p played
an important role in virus induced lung injury [57] and miR-125b-2-3p might affect the
G2/M phase of the cell cycle [58].

Using our 9 validated miRNAs, we built a miRNA-target gene network using the
data in miRTarBase [29] and performed a KEGG pathway enrichment analysis through
miRNet [28]. Eight signaling pathways were identified with an FDR less than 0.05. Of
these, cell cycle was the most significant signaling pathway (FDR = 4.8 × 10−7) and
some studies demonstrated that the airway smooth muscle (ASM) cell proliferation was
increased in asthmatic patients [30]. The TGF-beta pathway (FDR = 4.12 × 10−5) has been



J. Pers. Med. 2021, 11, 307 11 of 14

widely investigated and associated with the airway remodeling process in asthma [31,32].
EGFR was observed to be highly expressed in bronchial epithelial cells in asthma [33] and
the ErbB signaling pathway (FDR = 1.88 × 10−4) plays a key role in mediating airway
hyperresponsiveness and remodeling in a chronic allergic mouse model [34]. The Wnt
signaling pathway (FDR = 1.23 × 10−3) was associated with impaired lung function
in childhood asthma [35] and down-regulated by vitamin D, leading to alleviation of
airway remodeling [36]. The JAK-STAT (Janus kinase/signal transducers and activators
of transcription) signaling pathway (FDR = 2.03 × 10−4) was involved in cytokine related
regulation and could induce polarization of T helper cells, of which Th2 cells were believed
to play an important part in initiating the airway inflammatory response [37,38]. As
the central role in the p53 signaling pathway (FDR = 5.77 × 10−3), p53 was reported
for increased expression in bronchial smooth muscle (BSM) from asthmatic patients and
associated with BSM proliferation and mitochondrial biogenesis [39]. T cell receptor
signaling pathway (FDR = 3.18 × 10−2) contained complex signaling cascades and was
crucial for T cell development [40]. The Toll-like receptor signaling pathway (FDR = 4.55 ×
10−2) has been associated with innate immune system and could induce a pro-inflammatory
response, resulting in airway inflammation [41,42].

Our study has several limitations most notably the small sample size of both the
discovery and validation cohorts. However, through the use of meta-analysis, we demon-
strated that all the target miRNAs are significant in their effects. Additionally, most of these
miRNAs are associated with allergic inflammation, which is also supported by the KEGG
pathway enrichment analysis. Of all the target miRNAs, hsa-miR-574-5p and hsa-miR-151a-
5p are the strongest potential mediators and biomarkers of asthma and hsa-miR-574-5p
has an excellent prognostic power individually.

5. Conclusions

In summary, our findings show that circulating microRNAs are associated with,
and predictive of, incident asthma under the effect of vitamin D treatment. Circulating
microRNAs may be good biomarkers and mediators of asthma.
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group. (B) Boxplot of hsa-miR-574-5p in low vitamin D treatment group (control group). (C) Boxplot
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vitamin D treatment group (control group), Figure S2: Meta-analysis of the effect modification for 9
validated miRNAs.
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