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Abstract

Background

Heart failure (HF) is a major cause of morbidity and mortality. However, much of the clinical

data is unstructured in the form of radiology reports, while the process of data collection and

curation is arduous and time-consuming.

Purpose

We utilized a machine learning (ML)-based natural language processing (NLP) approach to

extract clinical terms from unstructured radiology reports. Additionally, we investigate the

prognostic value of the extracted data in predicting all-cause mortality (ACM) in HF patients.

Materials and methods

This observational cohort study utilized 122,025 thoracoabdominal computed tomography

(CT) reports from 11,808 HF patients obtained between 2008 and 2018. 1,560 CT reports

were manually annotated for the presence or absence of 14 radiographic findings, in addi-

tion to age and gender. Thereafter, a Convolutional Neural Network (CNN) was trained, vali-

dated and tested to determine the presence or absence of these features. Further, the
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ability of CNN to predict ACM was evaluated using Cox regression analysis on the extracted

features.

Results

11,808 CT reports were analyzed from 11,808 patients (mean age 72.8 ± 14.8 years; 52.7%

(6,217/11,808) male) from whom 3,107 died during the 10.6-year follow-up. The CNN dem-

onstrated excellent accuracy for retrieval of the 14 radiographic findings with area-under-

the-curve (AUC) ranging between 0.83–1.00 (F1 score 0.84–0.97). Cox model showed the

time-dependent AUC for predicting ACM was 0.747 (95% confidence interval [CI] of 0.704–

0.790) at 30 days.

Conclusion

An ML-based NLP approach to unstructured CT reports demonstrates excellent accuracy

for the extraction of predetermined radiographic findings, and provides prognostic value in

HF patients.

Introduction

Heart failure (HF) is a complex chronic condition that is associated with significant morbidity

and mortality [1]. Such increased utilization of healthcare resources through frequent medical

encounters (either inpatient or outpatient) and performance of diagnostic radiologic studies

typically results in the generation of a significant amount of data in the form of unstructured

reports. Recently, clinical research in this field has focused on developing predictive models

for the occurrence of adverse events within contemporary HF cohorts [2–4]. Unfortunately,

most existent models have limited discriminatory performance as they rely on limited clinical

or socio-economic variables that are structured and readily available, and as a result, fail to

capture the complexity of such a disease process through incorporation of data that is available

in unstructured radiology reports.

The process of data collection and extraction from electronic medical records (EMRs) for

such a comprehensive approach can be arduous and time-consuming. Imaging techniques, in

particular, typically do not yield structured reports; rather, radiologists dictate or enter free

text reports detailing their findings into the EMR. Such a workflow necessitates advanced

computational techniques to render the non-structured data computable and amenable to sta-

tistical analyses. Natural Language Processing (NLP) is a branch of computer science that

focuses on developing computational models for understanding natural (human) language

[5,6]. NLP has been increasingly used to automate information extraction from EMRs to

streamline data collection for clinical and research purposes [7–9]. Recently, deep learning

architectures, especially the ones based on Recurrent Neural Network (RNN) have been

shown to exhibit good performance for clinical NLP tasks. For instance, Long Short-Term

Memory (LSTM) and Convolutional Neural Network (CNN) have been used for sentiment

analysis and sentence classification, and in the clinical realm an Artificial Neural Network

(ANN), Context-LSTM-CNN, that combines the strength of LSTM and CNN with a context

encoding algorithm was used to determine the presence of a drug-related adverse event from

medical reports [10–12]. Further, LSTM was successfully used for the classification of relations

within clinical notes [13].
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In the present manuscript, we investigate a CNN based NLP pipeline to convert unstruc-

tured thoracoabdominal computed tomography (CT) reports into a machine-readable struc-

tured format for utilization in outcomes research. We demonstrate that with reasonably

limited manual efforts, our NLP pipeline can generate structured dataset of the magnitude of

order of big data to facilitate clinical research, which is essential in cohorts of patients with

complex and multifactorial disease pathologies. Additionally, we show that such data extracted

provides incremental prognostic information for the prediction of all-cause mortality (ACM)

in a cohort of HF patients.

Methods

Patient population

Thoracoabdominal CT reports were obtained from the Clever-Heart registry, which is a sin-

gle-center registry created to predict outcomes in HF patients. The Weill Cornell Medicine

Institutional Review Board (WCM IRB) approved this study and the written informed con-

sent for participants was waived since the registry is retrospective and did not require patient

contact or disclosure of identifying information. The registry includes both structured clini-

cal data and unstructured free-text reports. The registry consists of 21,311 patients who were

admitted to the New York-Presbyterian Hospital/Weill Cornell Medicine (NYPH/WCM)

and discharged with a billing diagnosis of HF (defined by an ICD-9 code of 428. � or an ICD-

10 code of I50�) between January of 2008 and July of 2018. The cohort was extracted from the

EMR using the Architecture for Research Computing (ARCH) groups Secondary Use of

Patients’ Electronic Records (SUPER) landing zone. As detailed in previous work (10),

SUPER aggregates data from multiple electronic resources that are in use at NYPH/WCM.

For this analysis, exclusion criteria included patients without thoracoabdominal CT reports

(n = 8,788) and age <18 at the time of CT acquisition (n = 715). As a result, 11,808 patients

were included in the final analysis (Fig 1). The occurrence of death was determined using

data extracted from SUPER and was defined as one of the following: (1) death as determined

by in-hospital mortality, (2) death as recorded in EMR, (3) an instance of an autopsy report

in EMR, or (4) death as recorded in the Social Security Death Master File. Each patient’s

most recent follow-up was also calculated using data from SUPER and the various sources

from which it draws, including both inpatient and outpatient EMRs. The most recent CT

report, including the closest CT report prior to a death event, was selected for each

individual.

Choice of radiographic findings

The investigation included a combination of 14 common findings in HF patients as well as

commonly reported findings on thoracoabdominal CT reports. These features were: (1) aortic

aneurysm, (2) ascites, (3) atelectasis, (4) atherosclerosis, (5) cardiomegaly, (6) enlarged liver,

(7) gall bladder wall thickening, (8) hernia, (9) hydronephrosis, (10) lymphadenopathy, (11)

pleural effusion, (12) pneumonia, (13) previous surgery, and (14) pulmonary edema. 1,560 CT

randomly selected reports were manually annotated by an experienced cardiologist (S.J.A.) for

the presence or absence of these 14 radiographic findings, in addition to age and gender.

Thereafter, a randomly chosen set representing 15% of the total annotations (225/1500) by

physician 1 were independently validated by physician 2 with 3 years of C.T. experience (A.V.

R.). The inter-observer variability was less than 2%.
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Rule-based NLP for determination of ground truth

Rule-based methods for tasks involving unstructured data perform well for many tasks, espe-

cially when there is syntactical uniformity in text and low level of lexical variation [11]. To

develop a rule-based approach to extract our target features, a simple ruleset was developed

using the manually annotated features from the 1,560 CT reports. This ruleset was based on

"phrase-matching" against the corpus of reports: for example, the simple presence of the phrase

"pleural effusion" was considered evidence for the presence of the feature "pleural effusion."

This approach was based on the assumption that the free-text report would mention a particu-

lar finding only if it was present in some measure. However, there are several problems with

this approach, including both the relatively high prevalence of negated mentions (i.e. Pleural
effusion is not present) as well as lexical variations, including typographical errors (i.e. Pleural
effusion present in . . .). Though not very accurate, this provided a good starting place for the

generation of ground truths. In addition to the 14 radiographic findings, simple regular

expression rules were also identified to extract age (date of birth) and gender. Age and gender

extraction were fairly accurate owing to the uniformity of age and gender syntax on CT

reports.

Development of Word2vec

Word2vec is an effective way to obtain distributed vector representations of words given a spe-

cific vocabulary [12]. It has shown to be very powerful in learning precise syntactic and seman-

tic word relationships. Skip-gram models are used to find word representations by predicting

the surrounding words, given a central word [13]. It is imperative to train word-vector repre-

sentations on a corpus consisting of medical literature, to avoid a significant number of

Fig 1. Overall study design and workflow. 11,808 thoracoabdominal CT reports from 11,808 patients were included in the final analysis.

https://doi.org/10.1371/journal.pone.0236827.g001
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out-of-vocabulary medical words that may appear in the data. Training Word2Vec typically

requires medical corpora that are both large and diverse. Since our corpus comprised thora-

coabdominal CT reports, we utilized a pre-trained word2vec as detailed by Pyysalo et al [14].

This model was trained using articles from PubMed and PMC texts. Word2Vec was trained

using a skip-gram model with a window size of 5. Hierarchical softmax training was employed,

with a frequent word-subsampling threshold of 0.001 to create 200 dimensional vectors [15].

CNN model pipeline

The task of retrieving clinical terms from CT reports was treated as a multi-class, multi-label

sequence classification task [16]. On average, 67% of each report contained clinical informa-

tion while the remaining 33% contained patient identifiers. Accordingly, a redaction module

was designed to ensure the utilization of only the relevant clinical information. The redaction

module assumes that the header and footer of the reports are dedicated principally to patient

identifiers. This module trims down the reports by removing the first and last n lines, defining

n by scanning through a small vocabulary of start words of radiologic reports to determine the

number of lines to be redacted. In a similar fashion, the footers were also removed. The output

of the redaction module was then passed to the filtering module for the removal of special

characters while retaining alphanumeric characters (S1 Fig).

The annotated 1,560 CT reports were split into training and testing sets at a ratio of 80%-

20%. The training set was further split into training and validation sets, also at a ratio of 80%-

20%. As proof of the generalizability of the deployed CNN architecture (S2 Fig), the test set

was held to ensure the validity of the performance metrics. The validation set was used for a

grid search to tune the hyper-parameters of the CNN model. We chose filter sizes of 3, 4 and 5

with 128 filters for each size. To reduce overfitting, we used dropout with 0.5 keep probability.

In addition, we also used l2-regularization on the weights, with a value of lambda as 0.01. We

trained each model for 50 epochs and chose the one with the highest categorical accuracy on

the validation set. We optimized the categorical cross-entropy loss utilizing Adam optimizer

with learning rate set to 0.001.

To benchmark the performance of the proposed approach, a classifier was trained by first

converting the output of the filter module into word embedding using Term frequency-inverse

document frequency (TF-IDF), then training a Naive Bayes and a Support Vector Machine

(SVM) classifiers (considered as traditional machine learning algorithms). Python’s scikit-

learn library was used to train the benchmark model.

Performance metrics and outcomes investigated

Binary classifiers for each clinical finding were evaluated using the Receiver Operator Charac-

teristic (ROC) curve approach. A ROC curve is a plot of false-positive rates and true positive

rates charted over a range of decision thresholds. A purely random guessing classifier would

be near the y = x line on the ROC plot, while a perfect classifier would look like a unit-step

function for 0<x<1 and will have Area Under Curve (AUC) of 1. We also report F1-score,

precision and recall as additional robust metrics given the imbalanced dataset that was

available.

Prediction explanation using layer-wise relevance propagation

Bach et al. [17] introduced a layer-wise relevance propagation (LRP) in a feed-forward net-

work to explain pixel-level classification decisions in CNNs. Starting with the output layer,

LRP proceeds layer by layer and assigns the relevance of the target neuron to other units of the

layers. They proposed two relevance propagation rules for the layer, assuming that the lower
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layer neurons that mostly contribute to the activation of the higher layer neuron receive a

higher relevance. While the convolutional network shows promising performance, the connec-

tion between the CNN learned features and the clinical findings might be difficult to see. By

visualizing the contribution of specific words toward the classification task by the network pro-

posed by Bach et al and Ancona et al, [17,18] one can identify more clearly the relationships

derived by the CNN.

Statistical analysis

Continuous variables were calculated and reported as mean ± standard deviation, whereas cat-

egorical variables were calculated and reported as counts and percentages. A Cox proportional

hazards model was used for constructing survival models [19]. Backward selection based on

the Akaike information criterion (AIC) was utilized for variable selection. A random survival

forest model was also used for predicting ACM, defined as death from any cause [17,20]. The

inverse probability of censoring weights was used to deal with right-censored survival data

[21–23]. In addition, the outcome of the survival analysis was time-to-event for both the Cox

model and the random survival forest model. Time-dependent AUCs were used to evaluate

model performance. Further, feature importance was assessed using VIMP (variable impor-

tance) [24]. In the present scenario, VIMP in random forests for a feature, xa, is the difference

between prediction error when xa is noised up by permuting its value randomly, compared to

prediction error under the original predictor. A p-value of less than 0.05 was considered statis-

tically significant. All analyses were performed using R software (RStudio, Boston, MA) [25].

Results

Dataset

The mean word-length of CT reports was 3,085 words, with an average length of clinical infor-

mation of 1,330 words (43%). Table 1 shows the prevalence of a positive finding for each of the

14 radiographic findings. While some features had a balanced prevalence of positive and nega-

tive occurrences (for example, previous surgery and atelectasis), other features exhibited a

Table 1. Prevalence of radiographic findings between the ground truth cohort (manually annotated reports) and the Clever-Heart cohort. For the ground truth cor-

pus, the prevalence percentage is calculated based on known, manually annotated ground truths. For Clever-Heart, values are based on predictions from the CNN model.

Ground Truth CT reports Clever-Heart (As Predicted)

No. Radiographic finding Radiographic finding Count Prevalence (%) Radiographic finding Count Prevalence (%)

1 Aortic Aneurysm 120 7.69 754 6.38

2 Ascites 299 19.16 1516 12.83

3 Atelectasis 691 44.29 5625 47.63

4 Atherosclerosis 620 39.74 5639 47.75

5 Cardiomegaly 390 25.00 3374 28.57

6 Enlarged Liver 86 5.50 162 1.37

7 GB Thickening 25 1.60 9 .0007

8 Hernia 366 23.46 2594 21.96

9 Hydronephrosis 65 4.16 136 1.15

10 Lymphadenopathy 484 31.02 2593 21.95

11 Pleural Effusion 673 43.14 4823 40.84

12 Pneumonia 278 17.82 1678 39.96

13 Previous Surgery 778 49.87 4719 39.96

14 Pulmonary Edema 94 6.02 516 4.36

https://doi.org/10.1371/journal.pone.0236827.t001
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significant imbalance between positive and negative findings. Gall bladder thickening,

enlarged liver, pulmonary edema, and aortic aneurysm were positive in less than 10% of the

reports.

Performance metric for radiographic finding extraction

For the held-out test set of 312 CT reports, the average AUC was 0.97 across the 14 radio-

graphic findings using the CNN architecture (average F1 score of 0.90). By comparison, Naive

Bayes and SVM had an average AUC of 0.69 and 0.87 respectively (average F1 score of 0.71

and 0.67, respectively) (Table 2 and Fig 2). With regards to the individual 14 radiographic

findings, the CNN model outperformed the other models on each radiographic finding. Fur-

thermore, the redaction module for de-identification improves the AUC for 13 of the 14 radio-

graphic findings. For the radiographic finding “aortic aneurysm”, disabling the redaction

module produced a slightly better AUC. Fig 3 shows examples of CT reports highlighting

words that guided the CNN model towards or away from predicting the presence of a certain

radiographic finding.

NLP pipeline for prognostication in HF

The proposed CNN based NLP pipeline was subsequently used to extract these 14 radiographic

findings from thoracoabdominal CT reports from 11,808 HF patients in the Clever-Heart reg-

istry (mean age of the study cohort 72.8 ± 14.8 years; 52.7% were male). The inter-quartile

range of follow-up was between 129 and 1,521 days, with a median follow-up of 606 days.

3,107 death events were observed during the follow-up period. In total, 11,808 CT reports

were analyzed, with 9,378 used as the training set and 2,430 used as the test set for ACM pre-

diction. The 14 radiographic findings in addition to age and gender were included in Cox

models and random survival forest. The prevalence of the 14 extracted features in this cohort

is shown in Table 1. Using Cox modeling, there were significant associations between the 14

extracted radiographic findings and ACM (Fig 4 and S1 Table). For instance, the presence of

pleural effusion (hazard ratio [HR] 1.63, 95% confidence interval [CI] 1.48–1.78, p<0.001)

and ascites (HR 1.68, 95% CI 1.51–1.88, p<0.001) showed the strongest association with

Table 2. Performance of the Convolutional Neural Network (CNN) model benchmarked against machine learning algorithms for the extraction of 14 pre-selected

radiographic findings.

Feature Naive Bayes SVM CNN

Precision Recall F1 Score ROC AUC Precision Recall F1 Score ROC AUC Precision Recall F1 Score ROC AUC

Aortic Aneurysm 0.82 0.91 0.86 0.49 0.82 0.91 0.86 0.94 0.94 0.94 0.91 0.98

Ascites 0.62 0.78 0.69 0.73 0.64 0.8 0.7 0.9 0.87 0.87 0.84 0.98

Atelectasis 0.71 0.57 0.44 0.8 0.31 0.56 0.4 0.85 0.97 0.96 0.96 0.98

Atherosclerosis 0.55 0.58 0.45 0.77 0.34 0.58 0.43 0.83 0.9 0.88 0.89 0.98

Cardiomegaly 0.56 0.75 0.64 0.65 0.52 0.72 0.6 0.88 0.86 0.86 0.84 0.98

Enlarged Liver 0.89 0.95 0.92 0.65 0.89 0.95 0.92 0.92 0.94 0.97 0.95 0.96

Gall Bladder Wall Thickening 0.97 0.99 0.98 0.43 0.98 0.99 0.99 0.77 0.97 0.99 0.98 0.83

Hernia 0.55 0.74 0.63 0.69 0.58 0.76 0.66 0.92 0.97 0.97 0.97 0.99

Hydronephrosis 0.91 0.95 0.93 0.68 0.88 0.94 0.91 0.88 0.89 0.95 0.92 0.99

Lymphadenopathy 0.46 0.68 0.55 0.75 0.41 0.64 0.5 0.82 0.86 0.85 0.84 0.95

Pleural Effusion 0.76 0.57 0.43 0.84 0.35 0.59 0.44 0.9 0.96 0.96 0.96 0.98

Pneumonia 0.69 0.83 0.75 0.67 0.69 0.83 0.75 0.88 0.87 0.88 0.86 0.96

Previous Surgery 0.73 0.73 0.73 0.84 0.23 0.48 0.31 0.78 0.86 0.85 0.85 0.95

Pulmonary Edema 0.88 0.94 0.91 0.65 0.88 0.94 0.9 0.95 0.93 0.92 0.89 1

https://doi.org/10.1371/journal.pone.0236827.t002
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Fig 2. Receiver Operator Characteristic (ROC) curves for the 14 pre-selected radiographic findings. The Convolutional

Neural Network (CNN) is compared to Naive Bayes, Support Vector Machine (SVM), and random guessing.

https://doi.org/10.1371/journal.pone.0236827.g002
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ACM, thus indicating that the presence of such a clinical finding led to higher mortality. Simi-

larly, random survival forest also demonstrated that the presence of pleural effusion and ascites

were most highly correlated with mortality.

Cox survival models were constructed using features extracted from the developed CNN-

based pipeline and compared to that of non-deep learning-based featurization using Naïve

Bayes modeling (Fig 5). The CNN-based NLP pipeline for unstructured text featurization

yielded enhanced clinical risk prediction, compared to Naïve Bayes modeling for outcomes at

30 days (AUC of 0.747 vs. 0.604, respectively; p<0.01), 60 days (AUC of 0.758 vs. 0.625, respec-

tively; p<0.01) and 365 days (AUC of 0.739 vs. 0.598, respectively; p<0.01). Further, the use of

radiographic findings extracted using the CNN-based NLP pipeline resulted in the enhanced

prediction of outcomes across multiple survival models. The full Cox model showed the time-

dependent AUC for predicting ACM is 0.747 (95% CI of 0.704–0.790) at 30 days (C-statistic of

0.695 ± 0.012), 0.758 (95% CI of 0.720–0.796) at 60 days and 0.739 (95% CI of 0.708–0.770) at

1 year. The Cox model with select features (pneumonia, pleural effusion, lymphadenopathy,

Fig 3. Explaining the output of a trained CNN model using layer-wise relevance propagation. The predicted label is considered as the true class

label. The color intensities are normalized to the absolute value of maximum relevance score per report such that the deepest red denotes the word with

the highest positive relevance in the class label prediction, while the deepest blue denotes the most negative relevance score in the prediction of the same

label.

https://doi.org/10.1371/journal.pone.0236827.g003
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Fig 4. Correlation between radiographic findings and all-cause mortality. (A-B): Forest plot for the Cox model with all 14 variables

and selected 9 variables. Numbers represent hazard ratios. The range of lines indicates 95% confidence intervals. Color blue implies

significant variables with p<0.05. (C) Variable importance plot of the Random Survival Forest model. Large positive values indicate the

dependency of the outcome to get high predictive power. Values closer to zero represent a lower contribution to improved predictive

accuracy. Negative numbers indicate the predictive accuracy would improve when the variables were unspecified.

https://doi.org/10.1371/journal.pone.0236827.g004

Fig 5. Prognostication of outcomes using the CNN model. (A-C) Time-dependent ROC curves at 30, 60 and 365

days. (D) Time-dependent Brier scores.

https://doi.org/10.1371/journal.pone.0236827.g005
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hernia, cardiomegaly, atelectasis, ascites, gender, and age) according to AIC showed similar

time-dependent AUC results: 0.745 (95% CI of 0.701–0.788) at 30 days, 0.756 (95% CI of

0.719–0.795) at 60 days and 0.738 (95% CI of 0.706–0.769) at 1 year. On the other hand, the

random survival forest model performed worse than the Cox models, with time-dependent

AUC of 0.701 (95% CI of 0.659–0.744) at 30 days, 0.687 (95% CI of 0.649–0.725) at 60 days

and 0.670 (95% CI of 0.638–0.702) at 1 year. Similar results can be observed in the Brier score

plot, in which random survival forest exhibited the highest prediction error and the two Cox

models performed in a similar fashion, with lower error (S3 Fig).

Discussion

The present investigation highlights the potential of an ML framework that applies NLP to

unstructured thoracoabdominal CT reports in the accurate extraction of pre-specified radio-

graphic findings as well as a prognostication of outcomes using the extracted clinical data.

While the lack of a standard syntactical structure for free text reports across different sites

makes it difficult to retrieve clinical information using traditional rule-based approaches and

regular expressions, our analysis shows that the use of a CNN resulted in the accurate extrac-

tion of specific clinical terms. The AUC for radiographic finding extraction ranged from 0.88

to 1.0, with an average AUC of 0.96. The study also showed that the CNN model had signifi-

cantly improved performance when trained against carefully preprocessed input text: removal

of headers and footers from the CT reports boosted performance metrics for 13 out of the 14

radiographic findings. In addition, the extracted clinical information was found to be useful

for prognostication of outcomes, specifically with the occurrence of ACM, within an HF

cohort. Furthermore, such an approach could be curtailed for future clinical applications such

as stratification of HF individuals at risk for hospitalizations and readmissions, which could

reduce the significant healthcare expenditure associated with HF management.

Free-form language in EMR is unrestricted and is subject to endless interpreter-to-inter-

preter and site-to-site variations. The theoretical potential for lexical variation in the expres-

sion of a given concept is infinite—hence, interpretation and computational modeling of

context is crucial for the development of tools that go beyond simple string matching. Our

work here demonstrates that a CNN based NLP approach can provide enhanced performance

on these tasks by incorporating novel computational models. Illustrative examples are as in Fig

4. The CNN model predicts the presence of atelectasis by assigning the highest relevance to

"compressive atelectasis". Similarly, it learns that the clinical term “pneumonia” is present by

assessing the highest relevance to "pneumonia" in the report. However, while classifying pul-

monary edema, the model learns "pulmonary" with the highest positive relevance but at the

same time assigns "embolism" with the highest negative relevance score, demonstrating that

the model "understands" that pulmonary edema is different from a pulmonary embolism. In

the case of the term “ascites”, even though the model learns that the presence of this term is

most important for prediction of ascites, the filters of the CNN learn negation from neighbor-

ing words. As a result, even though the report says, "ascites is identified . . .” the model aggre-

gates this with the earlier negation in the report and hence was able to classify this report as

ascites-absent “no ascites is identified”. The model’s ability to comprehend free-form medical

text is further demonstrated in the analysis of “previous surgery” and “pleural effusion” classi-

fication. For previous surgery, "median sternotomy" was scored with the most positive rele-

vance. The CNN model coupled with word2vec trained on medical corpora understands that

median sternotomy is a surgical procedure even without explicit training. Words like "post"
and "undergone" help the model to learn the context and deduce that the procedure was per-

formed in the past and hence flags the report as positive for the target concept "prior surgery."
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Similarly, the “pleural effusion” prediction model learns with the highest positive relevance

that "a small right pleural effusion" was present, while simultaneously taking into consideration

the presence of the term "no left pleural effusion", assigning high relevance to that phrase as

well. The model also assigns the highest negative relevance score to "no pericardial effusion" to

prevent it from falsely flagging the feature of pericardial effusion as an instance of a pleural

effusion. Overall, the model was able to average these different inferences about pleural effu-

sion in this report and ultimately correctly deduce the presence of a pleural effusion.

While the inference on “atelectasis” and “pneumonia” could be achieved using string

matching and simple rule-sets, our model understands more complex sentences and structures

as prevalent in imaging reports. An additional benefit of this technique is the extent to which it

minimizes the need for labor-intensive human effort. In recent investigations, recurrent neural

networks (RNNs) have shown excellent results for text comprehension tasks—however, their

need for copious amounts of annotated examples makes them unsuitable for NLP applications

in the clinical field, where human annotation often requires clinical expertise, which can

become a burden within a busy clinical setting. Our CNN-based method proved to effectively

balance the need for both high performance and minimized requirement for manual effort (as

evident by the high extraction accuracy using 1,560 annotated CT reports).

NLP has been increasingly used for clinical applications over the past few years. The Lin-

guistic String Project—Medical Language Processor (LSP-MLP), conducted at New York Uni-

versity in 1987, was among the first large-scale projects using NLP within the context of

clinical research [26]. The LSP-MLP sought to help physicians extract and summarize sign/

symptom information, drug dosage, and response data, and to identify possible medication

side effects. Those results revealed the utility of various computational linguistic experiments

in the medical field. In addition, substantial efforts have been directed towards NLP pipelines

to supplement or classify conditions based on ground truths provided by the International

Classification of Diseases (ICD) codes. For example, Pakhomov et al. found that NLP algo-

rithms consistently retrieve more clinical information from free-text reports, and specifically

regarding the presence of angina pectoris, than what is provided with ICD codes [27]. A naïve

yet powerful NLP approach in evaluating clinical texts is by studying sentence modifiers. State

of the art tools, such as NegEx or NegBio look at finding possible negation to clinical entities

in discharge summaries and radiology reports, respectively [28–29]. However, the application

of NLP to clinical data and radiologic reports is an active area of research, since the field is in

the process of establishing a framework for methodological evaluation. Contemporary prac-

tices utilize human manual annotations as the ground truth and generate performance metrics

based on comparisons with the prediction models. From a clinical perspective, NLP frame-

works could prove to be a valuable resource in the care of patients with complex chronic con-

ditions such as HF. As a disease process, HF has intricate pathophysiology as well as disease

manifestations, leading to a heterogeneous expression of symptoms and subsequent outcomes.

HF patients undergo numerous imaging modalities as part of the initial diagnostic workup,

monitoring of therapy, assessment of underlying structural progression, as well as evaluation

of concomitant non-cardiovascular pathologies. Extraction of imaging findings from radio-

logic reports could thus be complementary to patient-level clinical information and could fur-

ther help prognosticate and better risk-stratify individuals, especially in the setting of HF and

similar multifaceted diseases.

While our investigation has clear advantages in terms of clinical applications and novelty of

this approach, there are several limitations worthy of mentioning. Firstly, this was a single-cen-

ter study of thoracoabdominal CT reports obtained from HF patients. While the CNN model

had impressive accuracy for the extraction of 14 pre-selected radiographic findings, the perfor-

mance of this model on free-text CT reports from other sites is unknown. Secondly, several
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radiographic findings, such as gall bladder wall thickening, had a high rate of false-negative

results, which is attributable to severe class imbalance since very few reports had a positive

label for this class (i.e. most reports did not mention the presence of gall bladder wall thicken-

ing). A better sampling approach and the inclusion of gastrointestinal disease cases could be

used in the subsequent analysis to further improve the diagnostic performance of our model.

Finally, the study used the latest CT reports in the survival analysis, instead of including all

available CT reports. This was done since complex modeling is required in order to utilize

time-dependent covariates. The scope of the present investigation was to demonstrate the util-

ity of CNN for clinical finding extraction from unstructured CT reports, while subsequent

investigations will aim at developing sophisticated models that include time-dependent vari-

ables for prognostication of outcomes.

In summary, we show that a CNN based NLP pipeline applied to unstructured CT reports

accurately extracts 14 pre-specified radiographic findings in a cohort of HF patients undergo-

ing thoracoabdominal CT imaging, which in turn provides prognostic value for prediction of

ACM in such a cohort. The approach detailed herein offers the potential to supplement the

extraction of clinical data, beyond that of existing structured data in EMR systems, for out-

comes research and clinical care especially for individuals with chronic and complex medical

conditions such as HF.

Supporting information

S1 Fig. Stacked Convolutional Neural Network (CNN) architecture. The input in the train-

ing phase consisted of 1,560 free-text thoracoabdominal computed tomography reports. These

reports passed through redaction module to remove headers consisting of non-clinically rele-

vant free text. The filtering module tokenized and removed special characters. After converting

these reports into 200 dimensional vectors for each word, they were then used to train the

CNN model. The output of the training phase was a trained CNN model. A separate CNN

model for each of the 14 clinical findings constituted the model zoo. In the Go Live phase,

input consisting of 11,808 free-text reports was passed to the trained CNN models after passing

through the redaction module, the filtering module, and conversion to word vectors. The out-

put from this phase generated the database of clinical findings which, along with age and gen-

der, were used for prediction of all-cause mortality.

(TIF)

S2 Fig. Structure of the Convolutional Neural Network (CNN). (a) Filter bank with kernels

of size 2, 3 and 4. Each kernel is a 200-dimensional vector which is the same as the dimension-

ality of the word embedding used. (b) Each word of the sentence is converted to a 200-dimen-

sional vector using word2vec. For uniformity in length, shorter sentences are zero padded.

Filters of size 2, 3 and 4 are individually convolved with the sentence matrix. (c) Feature maps

generated for each filter size. (d) Max pooling over time to create single feature vector. (e)

Fully connected layer with SoftMax to classify presence or absence of the specific clinical find-

ing.

(TIF)

S3 Fig. Prognostication of outcomes using the deep learning-based method for feature

extraction. (A-C) Time-dependent ROC curves at 30, 60 and 365 days for 3 models created

using the deep learning-based method for feature extraction: (1) a full COX model, (2) a COX

model with select variables and (3) a random survival forest. Panel D shows the time-depen-

dent Brier scores.
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S1 Table. (A) Full Cox model for correlation between the radiographic finding and all-cause

mortality. (B) Select Cox model and correlation between radiographic findings and all-cause

mortality.
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