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Abstract 

Radiomics has increasingly been investigated as a potential biomarker in quantitative imaging to facilitate personal-
ized diagnosis and treatment of head and neck cancer (HNC), a group of malignancies associated with high heteroge-
neity. However, the feature reliability of radiomics is a major obstacle to its broad validity and generality in application 
to the highly heterogeneous head and neck (HN) tissues. In particular, feature repeatability of radiomics in magnetic 
resonance imaging (MRI) acquisition, which is considered a crucial confounding factor of radiomics feature reliability, 
is still sparsely investigated. This study prospectively investigated the acquisition repeatability of 93 MRI radiomics 
features in ten HN tissues of 15 healthy volunteers, aiming for potential magnetic resonance-guided radiotherapy 
(MRgRT) treatment of HNC. Each subject underwent four MRI acquisitions with MRgRT treatment position and 
immobilization using two pulse sequences of 3D T1-weighed turbo spin-echo and 3D T2-weighed turbo spin-echo 
on a 1.5 T MRI simulator. The repeatability of radiomics feature acquisition was evaluated in terms of the intraclass 
correlation coefficient (ICC), whereas within-subject acquisition variability was evaluated in terms of the coefficient 
of variation (CV). The results showed that MRI radiomics features exhibited heterogeneous acquisition variability and 
uncertainty dependent on feature types, tissues, and pulse sequences. Only a small fraction of features showed excel-
lent acquisition repeatability (ICC > 0.9) and low within-subject variability. Multiple MRI scans improved the accuracy 
and confidence of the identification of reliable features concerning MRI acquisition compared to simple test-retest 
repeated scans. This study contributes to the literature on the reliability of radiomics features with respect to MRI 
acquisition and the selection of reliable radiomics features for use in modeling in future HNC MRgRT applications.
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Introduction
Head and neck cancer (HNC) represents a group of 
malignancies associated with high heterogeneity, not only 
in terms of organs and tissues of origin, but also etiologi-
cal, molecular, and mutational differences [1]. The global 
incidence of HNC has been continuously rising in recent 
decades [2]. Treatment options for HNC treatment 

include surgery, radiation therapy (RT), chemotherapy, 
targeted therapy, immunotherapy, and combinations of 
these methods. However, the heterogeneity of HNC par-
tially accounts for the frequency of unsatisfactory treat-
ment outcomes, particularly in advanced stages [3].

Traditionally, magnetic resonance imaging (MRI) has 
played an important role in the diagnosis, prognosis, and 
treatment planning of HNC by virtue of its superior soft-
tissue image contrast and various functional imaging 
capabilities [4–7]. In recent years, with the introduction 
of treatment with MRI-integrated linear accelerator (MR-
LINAC) systems to clinical use [8–10], the role of MRI in 
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HNC has considerably extended from conventional diag-
nosis to image-based guidance of radiation delivery in 
RT, referred to as MR-guided radiotherapy (MRgRT) [9]. 
Despite in its infancy, MRgRT has shown promise as an 
innovative technique for HNC treatment [11–13], allow-
ing for better delineation of target organs and organs at risk 
(OARs), daily treatment plan adaptation, real-time motion 
monitoring, gating, and tracking for dose delivery, as well as 
intra- and inter-fractional treatment response evaluation.

There has been an increased demand for developing 
biomarkers to facilitate personalized diagnosis and treat-
ment of HNC. Radiomics [14–16] has attracted increasing 
research interest as a multidimensional data mining tech-
nique in medical imaging for the diagnosis and prognosis 
of HNC in recent years [17–21]. Despite the promising 
results reported in these studies, the reliability of radiom-
ics features remains a major obstacle to the broad validity 
and generality of radiomics in routine clinical use [22–24].

Image acquisition is a crucial procedure that substan-
tially influences radiomics feature values for all imaging 
modalities, in particular for MRI [25–30]. Firstly, the 
image intensity of normal anatomical MRI is semi-quan-
titative, being comprehensively influenced by many tis-
sue properties such as relaxation times, proton density, 
fat-water composition, and susceptibility, without rep-
resenting an exact physical meaning. Second, different 
hardware and configurations of MRI scanners from vari-
ous vendors considerably impact image quality and char-
acteristics and thus radiomics features. Third, the variety 
of MRI pulse sequences, imaging parameters, and recon-
struction algorithms also dramatically influences MR 
image contrast and quality. Moreover, radiomics features 
values can also vary with organ motion during acquisi-
tion and the administration of contrast agents.

To facilitate radiomics in HNC MRgRT, the acquisition 
repeatability of MRI radiomics features prior to the use of 
these features must be investigated directly for diagnosis 
or prognosis modeling. Of note, MRgRT exhibits some 
unique characteristics compared to diagnostic MRI. In 
contrast to diagnostic MRI, in which one (for cross-sec-
tional studies) or two (for longitudinal studies) MRI scans 
per patient are normally involved, multiple MRI scans 
are required in MRgRT fractions to obtain the required 
daily anatomical information for treatment adaptation. 
MRI acquisition in MRgRT relies heavily on 3D pulse 
sequences to obtain isotropic voxel sizes and better 
geometric fidelity than 2D sequences. In particular, 3D 
T2-weighted (T2W) turbo spin-echo (TSE) is heavily uti-
lized in MRgRT without the need for administration of a 
contrast agent. In addition, patients are typically scanned 
with flexible RF coils that are compatible with the immo-
bilized treatment position, rather than diagnostic volu-
metric coils. Finally, radiomics in MRgRT mainly utilizes 

within-subject inter-fractional longitudinal radiomics 
feature variation for response evaluation and treatment 
adaptation, which is also known as delta-radiomics [31, 
32], in contrast to the between-subject radiomics feature 
difference used in diagnostic radiology to perform lesion 
differentiation or characterization.

Thus, in this study, several aims were considered 
in investigating the repeatability of the acquisition of 
MRI radiomics features for MRgRT applications spe-
cifically. They were (1) to identify repeatable MRI fea-
tures in two pulse sequences of  3D T1-weighed turbo 
spin-echo (3D-T1-TSE) and 3D T2-weighed turbo 
spin-echo  (3D-T2-TSE), (2) to investigate whether fea-
ture acquisition repeatability varies with different HN 
tissues; (3) to evaluate whether and how a multi-scan 
study design could impact the determination of repeat-
able radiomics features compared to the commonly used 
test-retest (repeated scan) study design, and (4) to estab-
lish a benchmark for feature variability in MRI acquisi-
tion from normal HN tissues of use in future research on 
delta-radiomics in MRgRT.

Methods
This study was approved by the research ethics commit-
tee of Hong Kong Sanatorium and Hospital. A total of 15 
healthy volunteers (8 men and 7 women with ages rang-
ing from 24 to 40 years) were prospectively recruited for 
this study. Informed consent was obtained from each 
subject.

MRI acquisition
All MRI scans were conducted using a 1.5 T MRI scan-
ner dedicated to radiotherapy simulation (MR-sim) 
(Magnetom Aera, Siemens Healthineers, Erlangen, 
Germany). Each volunteer underwent four scans (with 
an interval of approximately 15 mins between scan) 
while immobilized with a 5-pin head, neck, and shoul-
der thermoplastic mask (Orfit Industries, Belgium). 
For each scan, the volunteers were precisely aligned 
using a 3-dimensional external laser (DORADOnova 
MR3T, LAP GmbH Laser Applikationen, Luneburg, 
Germany) and scanned in the same treatment posi-
tion on an RT-indexed flat coach top (Diacor, Salt Lake 
City, Utah, USA). Two flexible 4-channel flexible coils, 
one 18-channel flexible coil, and a spine coil were used 
in combination for MRI signal reception. Each scan 
consisted of a 3D-T1W-TSE sequence followed by a 
3D-T2W-TSE sequence. A vendor-provided received 
B1 field-inhomogeneity correction, i.e., prescan nor-
malization, was conducted to minimize the bias field of 
the MR images. 3D geometric distortion correction was 
also enabled on the console for image acquisition. The 
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imaging parameters prescribed for each sequence are 
listed in Table. 1.

Image registration and volumes‑of‑interest drawing
The digital imaging and communications in medicine 
format MR images were imported to the 3D Slicer 
v 4.10.2 [33] for registration and volume  of  interest 
(VOI) drawing. The first-scan 3D-T1W-TSE MRI set 
was used as the positional reference for image regis-
tration. Other images were rigidly registered to the 
reference 3D-T1W-TSE images to compensate for the 
residual positional shifts, although these shifts have 
been reported to be very small (approximately several 
millimeters) owing to the immobilization of the subject 
by the thermoplastic mask [34, 35].

Ten spherical or ellipsoidal VOIs of pons (2075.34 ± 675.17 mm3), 
left (L) and right (R) parotid glands (L: 5693.71 ± 2614.65 mm3, R: 
5336.53 ± 2497.18 mm3), mandible (1008.58 ± 526.79 mm3), 
tongue (4077.71 ± 1030.59 mm3), L/R pterygoid muscle (L: 
2455.70 ± 992.56 mm3, R: 2290.83 ± 927.36 mm3), thyroid 
(550.40 ± 243.95 mm3), and L/R submandibular gland (L: 
2241.13 ± 966.31 mm3, R: 2255.08 ± 880.35 mm3) were man-
ually drawn by an MRI physicist on the first-scan (reference) 
3D-T1W-TSE images and validated by a second MRI physi-
cist. Then, all VOIs were propagated to other registered 
image sets and visually checked by both MRI physicists 
to ensure the tissue coherence of the propagated VOIs. A 
typical MRI scan setup and VOIs overlaid on the 3D-T1W-
TSE and 3D-T2W-TSE images are shown in Fig. 1.

Radiomics feature extraction and calculation
3D radiomics features were calculated using PyRadiomics 
v.2.2.0 [36]. Ninety-three first-order and texture radiomics 

features in five categories of gray-level co-occurrence 
matrix (GLCM), gray-level dependence matrix (GLDM), 
gray-level run length matrix (GLRLM), gray-level size 
zone matrix (GLSZM), and neighboring gray-tone dif-
ference matrix (NGTDM), mostly compliant with Image 
Biomarker Standardization Initiative (IBSI) standards [37, 
38] (first-order, n = 18; texture_GLCM, n = 24; texture_
GLDM, n = 14; texture_GLRLM, n = 16; texture_GLSZM, 
n = 16; texture_NGTDM, n = 5) were extracted from the 
original MRI images. Shape radiomics features were not 
included in the analysis mainly because they were theoreti-
cally independent of MRI acquisition and constant VOIs 
were applied for all MRI datasets. For the mathematical 
definition of each radiomics feature, the reader is referred 
to the PyRadiomics documentation (https://​pyrad​iomics.​
readt​hedocs.​io/​en/​latest/​featu​res.​html).

The default bin size of 25 in the software was used to 
perform image intensity discretization. No scaling of 
the image voxel size was applied due to the isotropic 
voxel size of the acquired images. Image intensity nor-
malization was not performed because the images were 
acquired using a single MRI scanner with fixed imag-
ing parameters. No image denoising, filtering, or other 
post-processing was conducted prior to radiomics fea-
ture calculation to minimize their influence on feature 
values [39]. Default configuration settings were applied 
in PyRadiomics for feature calculation unless otherwise 
specified.

Data analysis
Inter‑scan acquisition repeatability of radiomics features
The intraclass correlation coefficient (ICC) (2-way mixed 
effects, absolute agreement, single rater) calculated based 
on all four MRI scans was used to assess the acquisi-
tion repeatability of radiomics features. The feature 
repeatability was classified as excellent (ICC > 0.9), good 
(0.9 > ICC > 0.75), moderate (0.75 > ICC > 0.5), and poor 
(ICC < 0.5) when the calculated ICC and its 95%CI were 
both within the thresholds according to Koo and Li [40]. 
If the 95%CI of the calculated ICC was located across 
two or more ranges, the corresponding feature was clas-
sified as the lowest repeatability class. Based on the ICC 
classification, the radiomics features showing excellent 
acquisition repeatability were identified for each VOI and 
each sequence. Then, features universally showing excel-
lent acquisition repeatability in all VOIs for both pulse 
sequences were identified.

To assess whether multi-scan substantially affected the 
calculated ICC values and feature repeatability determi-
nation, the ICCs were also calculated based on the first 
two and the first three MRI scans, and compared to the 
corresponding ICCs based on all four MRI scans.

Table 1  Imaging parameters of the two 3D pulse sequences

LR Left/right, SI Superior/inferior, AP Anterior/posterior, GRAPPA Generalized 
autocalibrating partial parallel acquisition

Scanning Sequence 3D-T1W-TSE 3D-T2W-TSE

TR/TE [ms] 420/7.2 2300/303

Echo train length 40 185

FOV (LR × SI × AP)
[mm3]

470 × 470 × 269 470 × 470 × 269

Matrix size (LR × SI 
× AP)

448 × 448 × 256 448 × 448 × 256

Voxel size [mm3] 1.05 × 1.05 × 1.05 1.05 × 1.05 × 1.05

Acceleration factor 
(GRAPPA)

3 3

Partial Fourier factor 6/8 6/8

Pixel Bandwidth [Hz/
pixel]

657 620

Scan duration (mm:ss) 05:01 05:24

https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
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The intra-subject radiomics feature variability due to 
multi-scan acquisition was quantified in terms of the 
coefficient of variation (CVintra-subject), defined as the ratio 
of the standard deviation (SD) to the mean of the radi-
omics feature values calculated from four MRI scans. 
Similarly, inter-subject radiomics feature variability was 
quantified by CVinter-subject, defined as the ratio of the 
SD to the mean of radiomics feature values across all 
subjects.

Statistical analysis
Descriptive statistics were represented in the form of 
mean ± SD. The Mann-Whitney U-test was conducted to 
compare the (4-scan derived) ICC values between T1 and 
T2 pulse sequences. The Kruskal-Wallis test was used to 
compare ICCs derived from two, three, and four MRI 
scans for each sequence. The Mann-Whitney U-test and 
Wilcoxon signed-rank test were also conducted to com-
pare the CVs for different VOIs and feature categories in 
each pulse sequence. A p-value smaller than 0.05 indi-
cated statistical significance. All statistical tests were con-
ducted using RStudio 2021.09.0 Build 351 (RStudio PBC, 
Boston, MA, USA).

Results
Inter‑scan acquisition repeatability of radiomics features
The repeatability of radiomics feature acquisition 
assessed by ICC varied with feature categories, VOIs, and 
pulse sequences. Figure 2 shows boxplots of ICC in dif-
ferent VOIs for both pulse sequences. As shown in Fig. 2, 
the ICC values were significantly different (ANOVA, 
p  < 0.001) between different VOIs for both pulse 
sequences. In general, ICCs associated with 3D-T1W-
TSE (0.418 ± 0.270) were significantly lower (p  < 0.001) 
than those associated with 3D-T2W-TSE (0.473 ± 0.249), 
implying that better feature acquisition repeatability 
could be obtained with the 3D-T2W-TSE sequence. For 
3D-T1W-TSE, the VOI of the R parotid gland showed 
the highest ICCs (0.539 ± 0.250), whereas the VOI of 
the thyroid showed the lowest (0.283 ± 0.355). In com-
parison, for 3D-T2W-TSE, the VOI of the R parotid gland 
also showed the highest ICCs (0.548 ± 0.285), whereas 
the VOI of the R pterygoid muscle showed the lowest 
ICCs (0.316 ± 0.258). The ICCs of the paired VOIs of L/R 
parotid gland, L/R pterygoid muscle, and L/R subman-
dibular gland did not differ significantly (all p > 0.05) for 
both pulse sequences.

Fig. 1  Subject positional verification setup and the acquired 3D TSE MR images. (a) A subject immobilized using thermoplastic mask aligned with 
the external laser system; (b) a subject setup and the coil setting on the MR-sim; (c) all ten VOIs on MRI image
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Figure  3 shows boxplots of ICCs of different radi-
omics feature categories for all VOIs for both pulse 
sequences. The ICCs of first-order radiomics fea-
tures were significantly higher (p  < 0.001) than those 

of texture radiomics features for both sequences. 
The GLSZM features exhibited the lowest ICCs (T1: 
0.279 ± 0.242; T2: 0.387 ± 0.262) in all feature catego-
ries for both sequences.

Fig. 2  Boxplots of ICC values in different tissue VOIs for both pulse sequences

Fig. 3  Boxplots of ICC values for different radiomics feature categories in all VOIs for both pulse sequences
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Fig. 4  Percentages of excellent, good, moderate, and poor ICCs of radiomics features in different tissue VOIs for (a) 3D-T1W-TSE and (b) 3D-T2W-TSE 
pulse sequences
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Figure  4 illustrates the percentages of radiomics fea-
tures showing excellent, good, moderate, and poor ICCs 
in different VOIs for the 3D-T1W-TSE and 3D-T2W-
TSE sequences. There were only (5.27% ± 4.00%) and 
(4.41% ± 2.66%) radiomics features that showed excel-
lent repeatability for 3D-T1W-TSE and 3D-T2W-TSE, 
respectively, in different VOIs. For both sequences, the 
VOI of the R parotid gland exhibited the largest number 
of excellent repeatability features (T1W: 10.75%, 10/93; 
T2W: 7.53%, 7/93), while tongue had no excellent repeat-
ability feature at all.

Figure 5 shows the radiomics features with their acqui-
sition repeatability classifications for each VOI and each 
sequence. Only four features showed mostly good or 
excellent ICCs in all VOIs (except for the tongue), with-
out significant differences in the ICC between the two 
sequences. They were firstorder_Energy, firstorder_Total-
Energy, GLDM_GrayLevelNonUniformity, and GLRLM_
GrayLevelNonUniformity. These four features were 
highly repeatable and robust to image acquisition using 
the two 3D pulse sequences.

For both 3D-T1W-TSE and 3D-T2W-TSE, the ICCs 
calculated from two, three, and four repeated MRI 
scans were not significantly different from each other 
(all p > 0.05). However, the 95%CIs associated with the 
ICCs calculated from fewer repeated MRI scans wid-
ened significantly. Boxplots of ICC values based on two 
or three MRI scans in different tissue VOIs for both 
pulse sequences are shown in Supplementary Fig. 1. The 
ICCs calculated from two or three MRI scans moderately 
affected the repeatability of radiomics feature acquisi-
tion. Fewer radiomics features showed excellent or good 
repeatability, but more features showed poor repeatabil-
ity due to the much wider 95%CI of the ICC (indicating a 
larger uncertainty of the calculated ICC value) calculated 
from fewer scans. The percentages of radiomics features 
showing excellent, good, moderate, and poor ICCs based 
on two and three MRI scans in different VOIs for two 
sequences were demonstrated by the bar plots given in 
Supplementary Fig. 2.

The heatmaps shown in Fig. 6 depict the CVintra-subject 
of all radiomics features in different VOIs for both 
pulse sequences. The CVintra-subject of features were 
24.57% ± 25.36% and 18.06% ± 23.34% for 3D-T1W-
TSE and 3D-T2W-TSE, respectively, exhibiting pro-
nounced variability in the values of radiomics features 
in multi-scan acquisitions, with a significant difference 
(p  < 0.001) between the two sequences. In compari-
son, the CVintra-subject was significantly lower than the 
CVinter-subject (3D-T1W-TSE: 49.70% ± 72.97%; 3D-T2W-
TSE: 51.22% ± 142.09%) (p  < 0.05). The results showed 
a significant difference in CVintra-subject between the 
first-order and texture features for both 3D-T1W-TSE 

and 3D-T2W-TSE (p < 0.05). The boxplots in Fig. 7 illus-
trate the within-subject feature CVintra-subject with regard 
to the tissue VOIs. There was a significant difference 
in CVintra-subject (p  < 0.05) between tissues. The VOI of 
the mandible showed the smallest CVintra-subject (T1: 
13.44% ± 9.97%; T2: 12.80% ± 9.26%), whereas the VOI of 
the thyroid showed the largest CV (T1: 47.17% ± 43.37%; 
T2: 25.36% ± 30.79%) in both sequences.

Discussion
This study prospectively investigated the multi-scan 
acquisition repeatability and variability of IBSI-compli-
ant MRI radiomics features for two pulse sequences of 
3D-T1W-TSE and 3D-T2W-TSE in a cohort of healthy 
volunteers, to support potential applications of MRI radi-
omics in HNC MRgRT. To the best of our knowledge, the 
present work is the first to investigate the repeatability of 
radiomics features for the acquisition of MRI data on the 
HN specifically.

In recent years, an increasing number of studies have 
reported promising preliminary results on the use of 
radiomics for the diagnosis and prognosis of HNC 
[17–21]. However, the broad reproducibility, validity, 
and generality of radiomics remain open to question or 
challenge owing to the wide variety of confounding fac-
tors that could substantially impact every procedure of 
the complicated radiomics workflow and lead to uncer-
tainty, instability, or unreliability of the results of radiom-
ics analysis [22–24]. To date, the accumulated evidence 
remains insufficient to justify the deployment of radiom-
ics in routine clinical practice.

This study specifically addressed an important source 
of MRI radiomics feature unreliability due to image 
acquisition, and identified repeatable features from two 
3D sequences, which are expected to be helpful in the 
selection of reliable radiomics features and thus support 
modeling in future HNC MRgRT applications. The CVs 
presented in the results should also be useful to establish 
a reference benchmark of MRI radiomics feature vari-
ability for acquisition from normal HN tissues for future 
research on MRgRT delta-radiomics.

Some notable findings were observed that deserve 
discussion. First, only a very small proportion of the 
investigated features could achieve excellent multi-scan 
repeatability measured by ICC, which is generally consist-
ent with the results of many previous MRI radiomics stud-
ies, although in different anatomies [25, 26, 30, 41–43]. 
However, the proportion of features showing excellent ICC 
obtained in this study was even smaller than that reported 
in prior works. In addition to high heterogeneity of the 
multiple HN tissues, this finding could also be attributed to 
the ICC calculation based on the four-scan MRI data and 
more stringent ICC classification by its 95%CI. First-order 
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Fig. 5  Acquisition repeatability of radiomics features for each VOI and pulse sequence. Excellent (ICC > 0.9), good (0.9 > ICC > 0.75), moderate 
(0.75 > ICC > 0.5), and poor (ICC < 0.5) repeatability was marked by green, yellow, red, and black blocks respectively
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Fig. 6  The heatmaps depicting CVintra-subject values of all radiomics features in different VOIs for 3D-T1W-TSE and 3D-T2W-TSE pulse sequences
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features were more repeatable than texture features, which 
also accords with previous studies [26, 44–47]. Second, 
regarding sequence dependence, the mean feature ICC 
was better with 3D-T2W-TSE than with 3D-T1W-TSE 
for most tissue VOIs (Fig. 2) and for most feature catego-
ries (Fig.  3). Fewer features showed poor ICC (< 0.5) in 
3D-T2W-TSE than in 3D-T1W-TSE (Fig. 4). These results 
might be partially explained by the fact that T2W MR 
Images typically exhibit a wider voxel intensity range than 
T1W MR Images. That is, T1W MR Images have more 
uniform intensities in many tissues, which causes many 
texture features to show small inter-subject differences in 
their values, thus leading to low ICC values. However, the 
number of features showing excellent ICC was not neces-
sarily larger in 3D-T2W-TSE for the different VOIs (Fig. 4). 
Third, feature repeatability was also found to be tissue-
dependent. Different tissues could exhibit substantially 
different feature ICCs owing to their intrinsic properties, 
heterogeneities, and thus different image representations. 
This finding indicates that different features might be 
chosen for the construction of tissue-specific radiomics 
models for clinical use. Next, multiple MRI scans pro-
vided additional information on feature repeatability 
compared to the simple test-retest repeated scans. Fewer 
scans were found to have a wider 95%CI and thus a larger 
uncertainty of the calculated ICC values, which might 
lead to overestimation of feature repeatability if based on 
the ICC value alone. However, by referring to the 95%CI 
of ICC for feature repeatability classification, the highly 
repeatable features for MRI acquisition could be more 

accurately identified via multi-scan than by dual-scan. In 
addition, multi-scan enabled the calculation of feature 
CVintra-subject to assess within-subject feature value vari-
ability, whereas dual-scan could only evaluate the feature 
value difference between two scans. This within-subject 
feature variability is of particular importance for individu-
alized radiomics analysis in MRgRT studies, in which lon-
gitudinal MRI datasets obtained from multiple treatment 
fractions of each subject are used. It is crucial for MRgRT 
to accurately differentiate the true variations in the value 
of radiomics features due to response to irradiation from 
variation or uncertainty due to image acquisition. Oth-
erwise, radiomics analysis could result in false positives 
discovery. The CVintra-subject results obtained in this study 
revealed that many features were subjected to pronounced 
value variations in multiple MRI scans. The CVintra-subjects 
were much larger than the previously reported values in 
a longitudinal phantom study using the same model MRI 
scanner [48]. This is not surprising because in vivo tissues 
exhibit much higher heterogeneity and are subjected to 
much more intra- and inter-scan tissue property change, 
positional variation, deformation, and motion. Thus, it is 
vital to carefully select repeatable acquisition features from 
each patient for reliable delta-radiomics analysis. However, 
the CVintra-subject was still smaller than the CVinter-subject, 
which indicated that although acquisition-induced feature 
variability can impact inter-subject radiomics analysis for 
diagnosis purpose, its impact might not be as great as in 
within-subject longitudinal radiomics analysis.

Fig. 7  Boxplots of the feature CVintra-subject values in different tissue VOIs for both pulse sequences
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This study involves several strengths and limitations. In 
addition to its prospective nature, this is the first study 
on MRI radiomics feature acquisition repeatability study 
in the HN dedicated to MRgRT applications, as noted 
above. Dedicated 3D pulse sequences for MRgRT were 
used, and multiple MRI scans were conducted under 
MRgRT treatment positioning (e.g., 3D laser alignment, 
flat couch, mask immobilization, etc.) and setting (RF 
coil selection and coil setting with dedicated holders and 
bridges). The use of mask immobilization maximized 
tissue coherence in the VOIs, alleviating the influence 
of image registration on feature quantification [26]. The 
multiple-scan study design not only reflected the pattern 
of MRI use in clinical MRgRT practice but also extended 
the capability to calculate within-subject feature CV and 
increased the ICC calculation confidence for more reli-
able feature selection. The adoption of IBSI-compliant 
features increased the transparency of the feature calcu-
lation. Confounding factors other than image acquisition 
were excluded as much as possible in the study design 
and data analysis to minimize their influence on feature 
values. As such, the results may be considered to faith-
fully reveal the feature repeatability and variability purely 
with respect to the acquisition. Paired tissue analysis for 
calibration was helpful in ensuring the validity and rigor 
of the quantification results.

However, this study does involve some limitations. 
This pilot study was mainly limited to the inclusion of 
only healthy volunteers and a small sample size. Malig-
nant HN tumors might exhibit substantially different 
between-subject radiomics feature heterogeneities as 
well as their within-subject measurement uncertainties 
compared to normal HN tissues, but they could not be 
revealed because the study was conducted on healthy 
volunteers. The logistical difficulty and ethical concerns 
involved in conducting such a multi-scan study on real 
HNC patients should be recognized. However, despite 
the absence of malignant tumors in healthy volunteers, 
it is expected that this pilot study may still be useful for 
future clinical applications because radiomics can also 
be used in a variety of OARs, which are thought to be 
normal tissues but are inevitably irradiated, to assess 
their toxicities or the quality-of-life of HNC patients 
treated with MRgRT. The small sample size limited the 
statistical power of the tests. Although this study was 
designed with a focus on MRgRT applications, all MRI 
scans were acquired using an MRI simulator instead 
of an actual MR-LINAC. Considering the difference in 
the configurations of MRI hardware and implementa-
tions of 3D pulse sequence on a 1.5 T MR-LINAC from 
those of a 1.5 T MRI simulator from a different vendor, 
radiomics features and their repeatability/variability 

characteristics obtained on a 1.5 T MR-LINAC might 
be considerably different from those obtained in this 
study. Meanwhile, the approximately 1 mm isotropic 
spatial resolution obtained in this study was higher than 
that normally used for daily MRI acquisition in MRgRT. 
Although it is helpful for better tissue delineation and 
registration, this high resolution might also influence 
feature repeatability and variability. This study specifi-
cally addressed an important source of MRI radiomics 
feature unreliability due to multiple acquisitions, but 
did not assess the influence of many other confounding 
factors on feature values, such as image reconstruction, 
segmentation, and other image post-processing meth-
ods [49]. Although image acquisition has been found 
to be more impactful on feature reliability than other 
sources in MRI radiomics [24], it is equally important to 
investigate the impact of other factors on the reliability 
of radiomics features. Meanwhile, only a small subset of 
first-order and texture original radiomics features was 
included for analysis in this study among the thousands 
of radiomics features in the original and transformed 
images proposed for radiomics modeling in the medi-
cal literature. In particular, shape features indicating the 
geometric characteristics of various tissues (such as size 
or volume) are conventionally used as imaging markers 
in cancer staging [50] and treatment response evalu-
ation [51], but were not included in the present work. 
Although features in the transformed domains might 
provide more candidates for radiomics modeling and 
different information on tissue properties, it has been 
found that image transformation does not necessarily 
improve radiomics features reliability [24]. Therefore, 
the absence of transformed features in this study may 
not seriously compromise the validity and interpreta-
tion of the results.

Conclusion
This prospective study has rigorously investigated the 
multi-scan acquisition repeatability and variability of 
MRI radiomics features for 3D-T1W-TSE and 3D-T2W-
TSE sequences in normal HN tissues of a cohort of fif-
teen healthy volunteers using a 1.5 T MRI simulator with 
MRgRT treatment positioning and coil setting, focus-
ing on providing a benchmark for future MRgRT radi-
omics studies in HNC. Radiomics features repeatable 
to each sequence were identified, as measured by ICC. 
Within-subject variability in multiple MRI acquisitions 
was quantified. These results are expected to advance 
the understanding of the reliability of radiomics features 
with respect to MRI acquisition and the reliable radi-
omics features selection for modeling in HNC MRgRT 
applications.
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