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As one of the classical traditional Chinese medicine (TCM) prescriptions in treating gynecological tumors,
Guizhi Fuling Decoction (GFD) has been used to treat breast cancer (BRCA). Nonetheless, the potential
molecular mechanism remains unclear so far. Therefore, systems pharmacology was used in combination
with high throughput sequencing-based high throughput screening (HTS2) assay and bioinformatic tech-
nologies in this study to investigate the molecular mechanisms of GFD in treating BRCA. By computation-
ally analyzing 76 active ingredients in GFD, 38 potential therapeutic targets were predicted and
significantly enriched in the ‘‘pathways in cancer”. Meanwhile, experimental analysis was carried out
to examine changes in the expression levels of 308 genes involved in the ‘‘pathways in cancer” in
BRCA cells treated by five herbs of GFD utilizing HTS2 platform, and 5 key therapeutic targets, including
HRAS, EGFR, PTK2, SOS1, and ITGB1, were identified. The binding mode of active compounds to these five
targets was analyzed by molecular docking and molecular dynamics simulation. It was found after inte-
grating the computational and experimental data that, GFD possessed the anti-proliferation, pro-
apoptosis, and anti-angiogenesis activities mainly through regulating the PI3K and the MAPK signaling
pathways to inhibit BRCA. Besides, consistent with the TCM theory about the synergy of Cinnamomi
Ramulus (Guizhi) by Cortex Moutan (Mudanpi) in GFD, both of these two herbs acted on the same targets
and pathways. Taken together, the combined application of computational systems pharmacology tech-
niques and experimental HTS2 platform provides a practical research strategy to investigate the func-
tional and biological mechanisms of the complicated TCM prescriptions.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

According to the Global Cancer Report released at the end of
2018, breast cancer (BRCA) is the most common malignancy in
female patients, and it ranks second place in terms of morbidity
among all malignancies [1]. Apart from chemotherapy and radio-
therapy, complementary and alternative therapy (CAM) has gradu-
ally become a new therapeutic option. As an indispensable
component of CAM, traditional Chinese medicine (TCM) has been
increasingly applied in cancer prevention and treatment over the
last few decades [2]. Compared with chemotherapy which has a
series of adverse reactions, TCM therapy has certain advantages
in treating breast cancer, including less adverse reactions, safer
property and higher patient compliance [3].

Guizhi Fuling Decoction (GFD) is originated from a classic med-
ical book named the Synopsis of the Golden Chamber (Jingui Yaolue)
written by the famous Chinese physician Zhang Zhongjing at about
1800 years ago. It is composed of 5 herbs, including Cinnamomi
Ramulus (Guizhi), Poria (Fuling), Radix Paeoniae Rubra (Chishao),
Cortex Moutan (Mudanpi), and Persicae Semen (Taoren). In ancient
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clinical practice, Chinese physicians have used GFD to prevent and
treat gynecological malignant tumors included mammary tumors,
which provide theoretical support for the treatment of breast can-
cer [4]. In addition, numerous experimental researches have fully
proved GFD could inhibit the proliferation and induce the apopto-
sis of breast cancer cells [5,6]. However, the underlying molecular
mechanisms remain largely unknown for the time being.

Systems pharmacology, an emerging discipline that emphasizes
integrity and systematization, is a more appropriate approach to
investigate the complicated mechanisms of TCM, which commonly
functions in a multi-component and multi-target manner [7]. Sys-
tems pharmacology has been successfully adopted in previous
studies to predict the primary bioactive substances and to eluci-
date the potential therapeutic mechanisms of TCM prescriptions,
such as Huanglian Jiedu Decoction [8]. Nonetheless, the suitable
verification method is lacking to verify the results predicted by sys-
tems pharmacology, which leads to the uncertainty of research.
Therefore, this study applied a novel and powerful research tech-
nique called high throughput sequencing-based high throughput
screening (HTS2) [9,10].

HTS2, a high-throughput screening platform based on gene
expression signature, is mainly composed of the RASL strategy
and the next-generation sequencing technology. This platform
allows us to simultaneously examine the expression of thousands
of genes in human cells treated with thousands of herbs; impor-
tantly, it provides the large-scale herb-cell-gene datasets for effec-
tively validating the predicted results of systems pharmacology,
and brings new research inspiration. Moreover, it can quantita-
tively analyze gene matrices related to a specific phenotype or
focusing on a specific pathway. Compared with genome sequenc-
ing, the HTS2 technique is more targeted and cost-effective.

In this study, systems pharmacology was employed to construct
an active ingredient-BRCA target network, so as to screen the most
significantly enriched anti-BRCA signaling pathway of GFD. There-
after, HTS2 assay was carried out to verify the effect of drug inter-
vention on gene expression involved in this pathway. Finally,
Fig. 1. Experimental te
bioinformatics analysis was performed to identify the key targets
of GFD and to explain its anti-BRCA mechanism. Fig. 1 presents
the research flowchart in this study.

2. Materials and methods

2.1. Construction of the chemical component database

All the chemical components of GFD were collected from the
Traditional Chinese Medicine Systems Pharmacology Database
(TCMSP) (http://lsp.nwu.edu.cn/, version 2.3, updated on May
31st, 2014) [11] and the NCBI PubChem Database (https://pub-
chem.ncbi.nlm.nih.gov/, updated on May 8th, 2019) [12].

2.2. Screening the active ingredients

The chemical components of GFD were filtered by Oral bioavail-
ability (OB) and Drug-likeness (DL). Of them, OB in vivo (%F), which
represents the unchanged fraction of the orally administered dose
that achieves systemic circulation, is one of the most commonly
pharmacokinetic parameters used in drug screening. In this study,
a robust calculative system, OBioavail 1.1, was employed to predict
the compound OB [13]. Then, compounds with OB �30% were
selected as the active ingredients in this study. Besides, DL is
defined as a delicate balance among the various molecular proper-
ties that affect pharmacodynamics and pharmacokinetics, which
ultimately affects its absorption, distribution, metabolism, and
excretion (ADME) in the human body like a drug. In this study,
the DL index of a new compound was calculated according to the
Tanimoto similarity [14].

f A;Bð Þ ¼ A:B

Aj j2 þ Bj j2 � A:B

Where A represents the new compound and B stands for the aver-
age DL index of all the 6511 molecules in the DrugBank database
based on the Dragon soft descriptors.
chnical roadmap.
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Afterwards, compounds with DL <0.18 were removed. Finally,
compounds with both OB �30% and DL �0.18 were considered
as the active ingredients, as suggested by the TCMSP database.

2.3. Prediction of the potential targets of active ingredients

SysDT, the drug-target prediction model, was adopted in this
study to predict the targets of active ingredients. Notably, SysDT
is based on 6511 drugs and 3987 targets of the DrugBank database,
as well as the mutual correlation degree [15]. It is established
according to the support vector machine (SVM) algorithm, with
the consistency, sensitivity, and specificity of 82.83%, 81.33% and
93.62%, respectively. Using this model, targets with SVM >0.7 were
predicted as the potential targets of active ingredients. Addition-
ally, the target information from the STITCH (http://stitch.embl.
de/, version 5.0) [16], the Therapeutic Target Database (TTD)
(http://bidd.nus.edu.sg/group/cjttd/, updated on September 15th,
2017) [17], and the Uniprot (https://www.uniprot.org/, updated
on July 31st, 2019) [18] databases, was integrated to supplement
this prediction model.

2.4. Collection of BRCA therapeutic targets and network mapping

All BRCA therapeutic targets were collected from the OMIM
(https://omim.org/, updated on June 28th, 2019) [19], the Drug-
Bank (https://www.drugbank.ca/, version 5.1.4, updated on July
2nd, 2019) [20], and the TTD (http://bidd.nus.edu.sg/group/cjttd/,
updated on September 15th, 2017) [17] databases. Thereafter,
the BRCA target network was established using Cytoscape v3.7.1
[21], which was then mapped with the compound-target network
to obtain the active ingredient-BRCA target network of GFD,
including all the GFD-related targets for BRCA treatment. More-
over, the Venn diagram was acquired through the Venn diagram
web tool (http://bioinformatics.psb.ugent.be/webtools/Venn/) to
visualize the overlapping targets.

2.5. Functional enrichment analysis

The functional enrichment analysis of the overlapping targets
was performed by DAVID (https://david.ncifcrf.gov/, version 6.8)
[22]. Later, the gene ontology (GO) biological process (BP) terms
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
were enriched based on the adjusted P-value of <0.05. Thereafter,
the top 10 signaling pathways were drawn into a bubble chart
using the R software [23].

2.6. Genetic alteration and survival analysis

cBioPortal (https://www.cbioportal.org/, updated on August
13th, 2019) [24], a web-based integrated data mining system,
was utilized to examine the genetic alterations and to perform sur-
vival analysis on GFD-related targets for BRCA treatment.

2.7. The HTS2 assay

HTS2 is a high-throughput screening platform based on the gene
expression signature that quantitatively analyzes cell transcrip-
tional profiles at a large scale [9,25]. In this study, the HTS2 assay
was carried out to detect the regulation of GFD on the most signif-
icantly enriched signaling pathway in BRCA cells.

2.7.1. Cell culture and materials
MDA-MB-231 cells were obtained from the China Infrastructure

of Cell Line Resources (Beijing, China), and cultured in DMEMmed-
ium (Gibco) supplemented with 10% fetal bovine serum (FBS, Gem-
ini), 100 U/mL streptomycin and 100 U/mL penicillin (Gibco) under
the humidified atmosphere of 95% air and 5% CO2 at 37℃. Mean-
while, the extracts of five herbs contained in GFD were provided
by CapitalBio Corporation (Beijing, China). All probes were pur-
chased from Invitrogen (Shanghai, China).
2.7.2. Preparation of herb extracts
Firstly, the five herbs, namely, Cinnamomi Ramulus, Poria, Radix

Paeoniae Rubra, Cortex Moutan, and Persicae Semen, were pulverized
into powders using a grinder. Secondly, the powders were
extracted with the 90% ethanol solvent in a Soxhlet extractor. Then,
the solvent was dried to extractum by the drying oven at 45 �C.
Finally, a certain amount of extractum was weighed and diluted
with DMSO to 100 lg/mL, and preserved in a refrigerator at
�80 �C for further studies.
2.7.3. Probe design
Afterwards, genes involved in the most significant KEGG path-

way in GFD were selected as the probes [26]. Typically, three pairs
of probes were designed for each gene according to exon-exon
junctions near the 30-terminal of target mRNA. Moreover, the Tm
range of those designed probes was required to limit G/C content
in probe design, and all probes must be tested to prevent the
high-affinity probes from excessively occupying the sequencing
space. Then, one pair of probes was selected to represent a
transcript.
2.7.4. HTS2 screening
Gene signature represents a phenotype of interests, which is

used to search for herbs that affect phenotype in the presence or
absence of a validated drug target. This study attempted to explore
the synergetic mechanisms of the five herbs in GFD in MDA-MB-
231 cells. To this end, about 5000 MDA-MB-231 cells were grown
in the 384-well plates for 24 h, treated with herb extracts for 24 h,
lysed with lysis buffer, and incubated at room temperature for
10 min. Then, the lysis was preserved at �80 �C for subsequent
automated HTS2 assay. Later, the sample obtained from the HTS2

assay was sequenced using the Illumina HiSeq X Ten sequenator.
2.8. Data processing

First of all, all reads were mapped to the probe sequences,
which allowed for three mismatches and were normalized relative
to the expression of 18 stable housekeeping genes. Subsequently,
to evaluate the reliability and repeatability of the transcriptional
profile, the Pearson correlation coefficients among normalized
transcriptional data were calculated by R software after treatments
with 16 replicates of DMSO and 3 replicates of the five herbs in
GFD. Notably, the correlation coefficients of >0.9 indicated that
the HTS2 assay results were reliable and repeatable. Then, the FC
and P-value of gene expression were calculated via R package
DESeq2 [27], and genes with |FC| > 2 and P-value <0.05 were con-
sidered as the differentially expressed genes (DEGs). Later, the
heatmap and volcano plots of DEGs were drawn using the R pack-
age pheatmap and ggplot2, respectively [28,29].
2.9. Interaction network construction and analysis

Based on the KEGG enrichment analysis results on DEGs, the
herb-target-pathway interaction network was constructed [26].
Besides, information related to the phenotypes associated with
the KEGG pathway was also collected. Subsequently, the herb-
pathway-phenotype interaction network was constructed based
on the links, so as to clarify the synergistic effects of herbs.

http://stitch.embl.de/
http://stitch.embl.de/
http://bidd.nus.edu.sg/group/cjttd/
https://www.uniprot.org/
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https://www.cbioportal.org/
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2.10. Construction of the protein–protein interaction (PPI) network
and screening of key targets

To screen the key targets among the DEGs verified by the HTS2

assay, all DEGs were mapped to the STRING database (https://
string-db.org/, version 11.0, updated on January 19th, 2019), a
database of known and predicted PPIs [30]. Afterwards, the PPI net-
work with a combined score of >0.9 was constructed. Subse-
quently, topological analysis was carried out using the Network
Analyzer plug-in contained in Cytoscape, and the main topological
parameters of the PPI network were obtained. In this study, the
degree centrality was adopted as the major parameter, which
was used in combination with the closeness centrality and the
betweenness centrality to identify the key anti-BRCA targets in
GFD.
2.11. Survival analysis

The Kaplan-Meier Plotter (http://kmplot.com/) was adopted for
analyzing the association of key anti-BRCA target expression in
GFD with BRCA patient survival rate (n = 3951) [31].
2.12. Molecular docking

The crystal structures of key anti-BRCA targets in GFD were
obtained from the RCSB Protein Data Bank (PDB) [32]. Then, the
crystal structure of each protein was selected based on the optimal
available resolution. Moreover, the protein preparation wizard
Fig. 2. Functional enrichment analysis. (A) The Venn diagram of the potential targets in
BRCA targets in GFD. (C) KEGG pathway enrichment analysis on 38 anti-BRCA targets in
module of Schrodinger’s Maestro Molecular modeling suit
(Schrödinger Release, 2019–1) was utilized to prepare the protein
crystallographic structures [33]. In addition, the LigPrep module
of Schrodinger’s Maestro Molecular modeling suit was employed
to obtain the 3D structures and energy minimization of the active
ingredients in GFD. Based on the specific known active sites of the
protein targets, Glide was adopted for all molecular docking simu-
lations and calculations [34]. Moreover, the ligand-target interac-
tions were visualized by the ligand interaction diagram module.
2.13. Molecular dynamics (MD) simulation

To further optimize the docking results, MD simulation was
performed by GROMACS 2019 with all-atomic force field and SPC
water model [35]. The simulation temperature was set to 300 K,
and simulation system formed by the water molecules added
around the protein was served as the periodic boundary. In the
simulation process, the particle-mesh Ewald (PME) algorithm
was used to calculate the long-range electrostatic interactions,
and 2 fs integral time step was applied. Under the NVT (keeping
the atomic number, volume and temperature constant) ensemble,
the system was balanced and the water was optimized for 500 ps.
Afterwards, another 500 ps equilibration under NPT ensemble con-
ditions (keeping atomic number, pressure and temperature con-
stant) was conducted, which was followed by a final production
run of 100 ns. The binding energy of the compound and the protein
was calculated using MM-PBSA method. And the images were
drawn by pymol 2.3 and Maestro 11.9 [33,36].
GFD and the therapeutic targets for BRCA. (B) GO enrichment analysis on 38 anti-
GFD.

https://string-db.org/
https://string-db.org/
http://kmplot.com/
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2.14. Plotting of the GFD-related mechanism diagram

According to the results obtained from HTS2 assay, KEGG path-
way enrichment analysis, topological analysis, and molecular
docking, a specific mechanism diagram related to those key anti-
BRCA targets in GFD was plotted to visualize the significant molec-
ular mechanisms of GFD in treating BRCA.
3. Results and discussion

3.1. Screening of active ingredients

All chemical components of the five herbs contained in GFD,
including Guizhi (2 2 0), Fuling (34), Chishao (1 1 9), Mudanpi
(55), and Taoren (66), were collected through TCMSP and Pub-
Chem. Afterwards, altogether 76 compounds with OB �30% and
DL �0.18 were identified as the active ingredients (Table S1).
Among all active ingredients contained in Guizhi (7), Fuling (15),
Chishao (29), Mudanpi (11), and Taoren (23), 6 were shared by 2
or 3 herbs. For example, beta-sitosterol was shared by Guizhi,
Chishao, and Taoren.
3.2. Potential targets of GFD

The SysDT model was utilized to predict the potential targets
for all active ingredients in GFD, and a total of 211 potential protein
Fig. 3. Genetic alteration mining and survival analysis of 38 anti-BRCA targets in GFD bas
genomic datasets available in 11 different BRCA studies. (B) Kaplan-Meier survival curv
significance.
targets were finally acquired. The detailed information about these
potential targets is provided in Table S2.
3.3. Known therapeutic targets for BRCA

To acquire all the therapeutic targets for BRCA, they were col-
lected manually from the TTD, OMIM and DrugBank databases,
respectively. In total, 58, 21 and 118 known therapeutic protein
targets for BRCA were acquired from the TTD, OMIM and DrugBank
databases, respectively. Ultimately, 182 known BRCA targets were
collected after eliminating the redundancy. The detailed informa-
tion is presented in Table S3.
3.4. Mining of overlapping targets and enrichment analysis

To obtain the anti-BRCA targets in GFD, a comparative analysis
was carried out for the potential targets in GFD and the therapeutic
targets for BRCA. The results showed that, 38 proteins overlapped
between the potential targets in GFD and the known therapeutic
targets for BRCA (Table S4), which were the anti-BRCA targets in
GFD with high confidence.

To further explore the biological mechanisms underlying
these 38 anti-BRCA targets in GFD, the GO/KEGG pathway
enrichment analysis was conducted. The top 10 most significant
GO/KEGG pathways linked to these 38 targets were selected, as
displayed in Fig. 2. Moreover, results of GO enrichment analysis
ed on BRCA studies in cBioPortal. (A) Overview of alterations in the 38 targets among
e between groups with and without alterations. P-value < 0.05 indicated statistical



Fig. 4. The heatmap and volcano plot of DEGs verified by HTS2 assay. (A) The heatmap of DEGs. (B)The volcano plot of DEGs. The cut-off criteria were set at |Foldchange| > 2
and P-value < 0.05. The blue dots represented DEGs that reached the threshold, and the red dots stood for DEGs that did not reach the threshold. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. The herb-target-signaling pathway interaction network.

Y. Dai et al. / Computational and Structural Biotechnology Journal 18 (2020) 1121–1136 1127
indicated that, those targets were involved in multiple biological
processes (BPs), including response to drug, negative regulation
of apoptotic process, oxidation–reduction process, positive regu-
lation of gene expression, xenobiotic metabolic process, response
to estradiol, positive regulation of nitric oxide biosynthetic pro-
cess, response to toxic substance, response to ethanol, and posi-
tive regulation of protein phosphorylation. Typically, response to
drug, which is also referred to as drug susceptibility/resistance,
is a key to the success or failure in cancer treatment [37].
Besides, the negative regulation of apoptotic process allows for
the infinite cell growth and division, which is one of the funda-
mental factors in carcinogenesis [38]. Some evidence suggests
that, the oxidation–reduction process has significant regulatory
effects on tumor plasticity [39].

Further, results of KEGG enrichment analysis of the 38 targets
revealed that, the anti-BRCA effect of GFD showed the highest cor-
relation with ‘‘pathways in cancer”, followed by ‘‘microRNAs in
cancer” and ‘‘proteoglycans in cancer”. Specifically, the ‘‘Pathways
in cancer” involves multiple signaling pathways and it is tightly
associated with cancer. Besides, cancer is also related to micro-
RNAs (miRNAs), which have been reported to regulate the expres-
sion of various oncogenes or tumor suppressor genes and may
serve as the diagnostic and prognostic biomarkers [40]. Proteogly-
cans exert multiple functions in cancer and angiogenesis, which is
ascribed to their polyhedric nature and their capacity to interact
with both ligands and receptors that regulate neoplastic growth
and neovascularization [41,42].
3.5. Mining of genetic alterations and survival analysis

To further explore the molecular characteristics of 38 targets
among different cohorts of BRCA patients, genetic alteration min-
ing and survival analysis were performed by cBioPortal. According
to the results, there were about 25%-80% genetic alterations among
the 11 datasets of BRCA patients. To be specific, the genetic alter-
ations of those 38 anti-BRCA targets in GFD included mutation,
fusion, amplification, deep deletion, and multiple alterations, with
mutation being the most frequently seen alteration (Fig. 3A). Nota-
bly, cases with genetic alterations were linked with poor survival
compared with those without alterations (Fig. 3B). Such results
suggested that, these 38 targets were closely correlated with the
prognosis for BRCA, which supported the clinical application of
GFD in treating BRCA.
3.6. Identification of DEGs by the HTS2 assay

Due to the incompleteness of databases and the shortcomings
of the systems pharmacology method, the predicted results might
not entirely reflect the actual mechanism of GFD in treating BRCA.
By means of HTS2 assay, the above deficiencies might be partially
corrected, and new research clues might be provided. As found in
the studies mentioned above, the ‘‘pathways in cancer” was the
most significant anti-BRCA signaling pathway in GFD. Thus, a total
of 308 genes involved in this pathway were collected (Table S5),
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and HTS2 assay was carried out to detect the expression changes in
these 308 genes within the BRCA MDA-MB-231 cells treated with
the 5 herbs of GFD, respectively (Table S6). In the heatmap
(Fig. 4A), almost all modules were blue, indicating that each of
these five herbs suppressed the expression of most genes, and such
finding was consistent with the anti-BRCA effect of GFD. In addi-
tion, the cut-off criteria were set as |FC| >2 and P-value <0.05 in this
study to screen out DEGs. In the volcano plot (Fig. 4B), altogether
70 DEGs, including 32 up-regulated and 38 down-regulated one,
were identified in Guizhi; while 8 DEGs, including 5 up-regulated
and 3 down-regulated ones, were found in Fuling. Besides, 33 DEGs
were screened in Mudanpi, including 23 up-regulated and 10
down-regulated ones; whereas 8 DEGs were discovered in Chishao,
including 5 up-regulated and 3 down-regulated ones. Not surpris-
ingly, there were least DEGs in Taoren, which only included 2
down-regulated genes, with no up-regulated one. In conclusion,
altogether 121 DEGs reached the threshold.
3.7. Interaction network construction and analysis

The ‘‘pathways in cancer” is composed by diverse signaling
pathways, such as the MAPK, p53, and PI3K-Akt signaling path-
ways; therefore, it is needed to understand the possible underlying
therapeutic mechanism further. The Cytoscape software was uti-
lized to visualize the interaction network among the five herbs of
GFD, the anti-BRCA targets and the signaling pathways from ‘‘path-
ways in cancer” (Fig. 5). As shown in Fig. 5, these DEGs were signif-
icantly enriched in the PI3K, WNT, MAPK, and JAK-STAT signaling
pathways. These pathways have been well known to be related
to cancer initiation and progression. Interestingly, these results
showed that Guizhi exerted a greater role in affecting cancer tar-
gets than the other 4 herbs in GFD (Fig. 5), and such observation
was consistent with the TCM theory suggesting that the monarch
Fig. 6. The herb-signaling pathway-
drug played the most important role in treating diseases. Notably,
the theory of monarch, minister, assistant, and guide embodies the
basic principle regarding the composition of TCM prescriptions,
and Guizhi is the monarch drug in the whole prescription of GFD.

To further explore the biological phenotypes related to the
above-mentioned signaling pathways, another network was con-
structed to indicate the interactions among the five herbs in GFD,
signaling pathways and the related biological phenotypes (Fig. 6).
Unsurprisingly, as the monarch drug, Guizhi was involved in most
signaling pathways. Besides, Mudanpi, which played the role of
minister drug in treating BRCA, exerted a synergistic effect with
Guizhi in 10 signaling pathways. In addition, Fuling, Chishao, and
Taoren, which might be used as the assistant or guide drugs,
mainly functioned to assist the monarch drug and the minister
drug in strengthening their therapeutic effects or the guide drugs
in reaching the lesions. In conclusion, all the five herbs contained
in GFD possessed their specific functions and synergistically
exerted their anti-BRCA effects at the molecular level.

Noteworthily, the biological phenotypes mainly focused on pro-
liferation, evading apoptosis, and sustained angiogenesis. The
above results suggested that GFD might execute the anti-BRCA
therapeutic effect mainly through its anti-proliferation, pro-
apoptosis, and anti-angiogenesis activities.
3.8. Construction of the PPI network and topological analysis

To seek the most critical anti-BRCA target of GFD, the PPI net-
work should be analyzed based on the DEGs verified by HTS2 assay.
To this end, a PPI network containing 90 interactive targets was
constructed (Fig. 7). Afterwards, topological analysis of this net-
work was conducted using three centrality algorithms, including
degree centrality, closeness centrality, and betweenness centrality.
Moreover, these 3 algorithms were adopted to calculate the whole
phenotype interaction network.



Table 1
The topological analysis of the PPI network.

Name Degree Centrality Name Betweenness Centrality Name Closeness Centrality

EGFR 21 EGFR 0.205218 EGFR 0.517442
HRAS 21 WNT5A 0.160696 HRAS 0.478495
SOS1 19 HRAS 0.139867 HSP90AA1 0.470899
PTK2 17 PRKCA 0.103429 PTK2 0.468421
ITGB1 17 HSP90AA1 0.100175 SOS1 0.451777
VEGFA 16 FOS 0.079515 PRKCA 0.449495
FN1 16 CBL 0.070176 FN1 0.445
GRB2 16 NOTCH1 0.068606 CBL 0.438424
CBL 15 MYC 0.068045 VEGFA 0.436275
WNT5A 14 SMAD4 0.063676 FOS 0.429952
HSP90AA1 13 PTK2 0.059873 ITGB1 0.429952
IL6 13 ITGB1 0.057459 GRB2 0.429952
ITGAV 13 TERT 0.055979 ITGA6 0.42381
PRKCA 11 IL6 0.048006 IL6 0.421801
MYC 11 VEGFA 0.047665 ITGAV 0.413953
MET 11 FN1 0.047118 MYC 0.410138
FOS 10 SOS1 0.040494 WNT5A 0.408257
SMAD4 10 CASP7 0.039018 LPAR1 0.408257
CDKN1A 10 BCL2L11 0.035486 LAMA1 0.406393
LAMA1 10 LPAR1 0.032512 MET 0.400901

Fig. 7. Protein-protein interaction network. Red nodes represent the top 5 targets which were calculated by three centrality algorithms. Green nodes represent other 85
targets that make up the network. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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network, and the top 20 targets were summarized according to the
algorithm results (Table 1). In the degree centrality algorithm, a
higher degree of a node indicated a more significant impact on
the whole network. Noteworthily, the top five targets in the degree
centrality algorithm were among the top 20 in both the closeness
centrality and the betweenness centrality algorithms. Thus, these
top 5 targets in the degree centrality algorithm, including EGFR,
HRAS, SOS1, PTK2, and ITGB1, were selected as the key targets.

3.9. Survival analysis on the key anti-BRCA targets in GFD

To assess the potential clinical significance of the critical tar-
gets, it is necessary to analyze their possible impacts on prognosis.
Therefore, survival analysis was performed on the key anti-BRCA
targets in GFD using Kaplan-Meier Plotter. As shown in Fig. 8,
HRAS, SOS1, PTK2, and ITGB1 were significantly related to survival,
while EGFR showed no obvious correlation with survival. Mean-
while, patients with high expression of HRAS, PTK2, and ITGB1
were associated with a lower survival rate than those with low
expression of these genes. Besides, BRCA with low SOS1 expression
was linked with a lower risk of death, which was in line with the
report that SOS1 deletion prolonged the survival of Kras G12D/+ mice
[43].

3.10. Molecular docking

Virtual screening is one of the rapidly developing drug screen-
ing technologies, while molecular docking is an indispensable
means for active compound screening. It is helpful to calculate
Fig. 8. Overall survival analyses on EG
the free binding energy of a compound to a target for inferring
the binding stability. Generally, the lower free energy indicates
the more stable binding. Table 2 shows the five compounds that
best interface with the key targets. Besides, quercetin, (�)-
taxifolin, kaempferol, (+)-catechin, and ellagic acid possessed the
lowest binding energy towards EGFR, HRAS, SOS1, PTK2, and
ITGB1, respectively.

To visualize the docking results, the 3D interaction diagrams of
key targets and their corresponding best-matched compounds
were drawn, as shown in Fig. 9. Clearly, compared with other key
targets, quercetin displayed a high affinity towards EGFR, and the
interaction diagram at the active site of target protein (Fig. 9A)
revealed the formation of two hydrogen bonds with MET793. Addi-
tionally, another two hydrogen bonds formed with residues
ASP855 and GLU762 also contributed to stabilizing the interaction.
Further, the 3D interaction diagram of (�)-taxifolin at the active
site of HRAS (Fig. 9B) was investigated, which revealed that its
interaction was stable through forming hydrogen bonds with the
key residues ASP30, LYS147, and LEU120. In the meantime, a pi-
pi stacking interaction of PHE28 with the aromatic ring of (�)-
taxifolin was also observed. Besides, kaempferol showed a high
affinity towards SOS1 compared with other investigated targets,
and its interaction diagram (Fig. 9C) revealed the formation of
two hydrogen bonds with the residues LEU901 and ASP887, along
with a pi-pi stacking interaction with TYP884. The interaction dia-
gram of (+)-catechin at the active site of PTK2 (Fig. 9D) showed that
four hydrogen bonds were formed with the residues GLU506,
GLU430, GLU500, and CYS502, which contributed to stabilizing
the ligand at the active site of the target protein. Similarly, ellagic
FR, HRAS, ITGB1, PTK2, and SOS1.



Table 2
The results of molecular docking.

Mol ID Chemical name Glide
gscore

EGFR (PDB ID:6JZ0)
MOL000098 quercetin �7.869
MOL000422 kaempferol �7.816
MOL007022 evofolinB �7.744
MOL007005 Albiflorin_qt �7.647
MOL004576 taxifolin �7.578

HRAS (PDB ID:6E6C)
MOL001736 (�)-taxifolin �7.121
MOL000073 ent-Epicatechin �7.081
MOL007374 5-[[5-(4-methoxyphenyl)-2-

furyl]methylene]barbituric acid
�6.528

MOL002776 Baicalin �6.403
MOL004576 taxifolin �5.771

SOS1 (PDB ID:5OVE)
MOL000422 kaempferol �6.736
MOL000098 quercetin �6.599
MOL000073 ent-Epicatechin �6.465
MOL004576 taxifolin �6.374
MOL000492 (+)-catechin �6.222

PTK2 (PDB ID:618Z)
MOL000492 (+)-catechin �8.826
MOL000098 quercetin �8.77
MOL001736 (�)-taxifolin �8.683
MOL004576 taxifolin �8.507
MOL000422 kaempferol �8.499

ITGB1 (PDB ID:5XQ0)
MOL001002 ellagic acid �7.236
MOL004576 taxifolin �7.013
MOL007374 5-[[5-(4-methoxyphenyl)-2-furyl]methylene]

barbituric acid
�6.881

MOL000422 kaempferol �6.583
MOL000098 quercetin �6.549
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acid also relied on multiple hydrogen bonds to maintain its favor-
able binding with ITGB1 (Fig. 9E).

3.11. Molecular dynamics (MD) simulation

MDsimulation has been proven to be a good strategy for improv-
ing virtual screening [44]. In order to optimize the binding pattern of
compounds and key anti-BRCA targets in GFD, 100 ns MD simula-
tions were carried out and the lowest energy structures were
extracted. As shown in Fig. 10A, hydrogen bonds were formed
between quercetin and four amino acid residues at the EGFR active
site, including ASP 855, GLN 791, MET 793 and LEU 718. Similarly,
there were also four amino acid residues (SER 17、ASN 26、ALA
146 and ASP 119) at the HRAS active site interacted with (�)-
taxifolin to form hydrogen bonds (Fig. 10B). Further, the orthogonal
view of Fig. 10C revealed the formation of hydrogen bonds between
kaempferol and SOS1with the residues ASN 879 and LYS 898, along
with a pi-pi stacking interaction with PHE 890. Meanwhile, (+)-
catechin maintained its favorable binding with PTK2 through form-
inghydrogenbondswith the residuesGLU500, SER580, and LYS581
(Fig. 10D). Ellagic acid interacted with ITGB1 through hydrogen
bonds formed with the residues ASN 249 and GLY 569 and pi-pi
stacking interaction formedwith the residue TYR277,which all con-
tributed to the binding stability. Besides, the root-mean-square
deviation (RMSD) valueswere shown in Fig. S1 to evaluate the over-
all structural stability. The results of the binding free energies of
studied systems were summarized in Table S7.

3.12. Mechanism diagram of GFD

Based on all the above results, an integrated mechanism dia-
gram was plotted to reflect the anti-BRCA mechanism of GFD more
clearly. As shown in Fig. 11, GFD might exert its anti-BRCA effect
mainly through the PI3K and the MAPK signaling pathways. As
shown in Fig. S2, the HTS2 results showed that the expression of
a number of genes in PI3K pathway and MAPK pathway is down-
regulated in cells treated by each of these five herbs in GFD. Partic-
ularly, the expression of PI3K, which is a well-known key gene in
PI3K pathway [45,46], was down-regulated by Guizhi, Mudanpi
and Taoren, respectively. The expression of AKT gene, another
key gene in PI3K pathway, was also down-regulated by Guizhi, Ful-
ing, Mudanpi and Chishao, respectively. Meanwhile, among the key
genes of MAPK pathway [47,48], the expression of MEK1 was
down-regulated by Guizhi and Fuling; MEK2 was down-regulated
by Chishao, Mudanpi and Taoren; and ERK was down-regulated
by each of these five herbs.

In addition, our finding is also consistent with published
reports. It is reported that the crude terpene glycoside component
from Radix Paeoniae Rubra (Chishao) could protect against
isoproterenol-induced myocardial ischemic injury via activation
of the PI3K/AKT/mTOR signaling pathway [49]. Moreover, GFD
could sensitize the cisplatin-resistant ovarian carcinoma cell line
(SKOV3/DDP) through inactivation of the PI3K/AKT/mTOR pathway
[50].

Some studies have shown that the PI3K signaling pathway plays
a vital role in tumor invasion and metastasis, as well as cell prolif-
eration and apoptosis [51,52]. In this study, bioinformatic analysis
was carried out, which discovered that the PI3K signaling pathway
might be closely related to apoptosis, proliferation, and angiogen-
esis of BRCA, as verified by other literature reports [53–56]. More
importantly, it has been reported that over 30% of BRCA patients
harbor the PI3KCA gene mutations [57]. Moreover, the process
responsible for BRCA is also regulated by the MAPK signaling path-
way, which is involved in a series of cell physiological processes,
such as cell growth, development, differentiation, and apoptosis
[58–60]. In conclusion, the anti-BRCA effect of GFD might be per-
formed via multiple key genes in the PI3K and the MAPK signaling
pathways, which related to evading apoptosis, proliferation, and
sustained angiogenesis.
3.13. Difference in the anti-BRCA targets of GFD between systems
pharmacology prediction and HTS2 assay verification

We predicted 38 GFD’s anti-BRCA targets by systems pharma-
cology and discovered 5 GFD’s anti-BRCA targets by the experi-
mental HTS2 assay. As shown in Fig. 12, EGFR was the only
common target in both analyses. It is well known that EGFR exerts
a vital role in tumor cell growth and drug resistance [61,62].

Meaningfully, the results indicate that the combined applica-
tion of systems pharmacology prediction and HTS2 experimental
verification can help us to examine the underlying mechanisms
of TCM effectively and accurately. Typically, HTS2 assay can avoid
the shortcomings of systems pharmacology to a certain extent.
For example, we identified five key targets by HTS2, including
EGFR, HRAS, ITGB1, PTK2, and SOS1, but only EGFR was predicted
by systems pharmacology. Recent studies have demonstrated that
somatic mutations of HRAS are closely associated with the initia-
tion and development of several cancer types [63,64]. Furthermore,
SOS1 participates in the migration and invasion of breast cancer
stem cells (CSCs), as well as the occurrence and development of
some cancers [65–67]. As one of the integrin subunits that regulate
cell survival and proliferation, ITGB1 exerts an essential part in
tumor development. Nonetheless, little research shows that linc-
ITGB1 can be used as a potential prognostic biomarker for BRCA
[68]. Besides, PTK2 is over-expressed in diverse primary and meta-
static tumor tissues, which regulates cytoskeletal organization, as
well as cell proliferation, migration, and invasion [69]. As sug-



Fig. 9. 3D interaction diagrams of the lowest gscore chemicals in the active sites of key anti-BRCA targets in GFD. (A) 3D interaction diagram of quercetin in the active site of
EGFR (PDB ID: 6JZ0). (B) 3D interaction diagram of (�)-taxifolin in the active site of HRAS (PDB ID: 6E6C). (C) 3D interaction diagram of kaempferol in the active site of SOS1
(PDB ID: 5OVE). (D) 3D interaction diagram of (+)-catechin in the active site of PTK2 (PDB ID: 618Z). (E) 3D interaction diagram of ellagic acid in the active site of ITGB1 (PDB
ID: 5XQ0). The lines connecting the compound to the protein are yellow for hydrogen bonds and blue for pi-pi stacking. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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gested in one study, blocking the PTK2 activity suppresses BRCA
metastasis [70].
4. Conclusions

In this work, systems pharmacology technologies are used in
combination with the HTS2 assay and bioinformatic analysis to elu-
cidate the molecular mechanisms of GFD in treating BRCA (Fig. 13).
The application of the high-throughput drug screening technology
contributes to partially overcoming the deficiencies of systems
pharmacology and providing new research clues. Firstly, 76 active
ingredients of GFD are screened out, followed by the identification
of 38 anti-BRCA targets, with the latter are mostly enriched in the
‘‘pathways in cancer”. Secondly, the HTS2 assay is conducted, and
the results suggest that Guizhi plays the most important role in
treating BRCA, and that Guizhi exerts a synergistic effect with
Mudanpi in 10 signaling pathways. Besides, Fuling, Chishao, and
Taoren play a supporting role in treating BRCA or guiding other
herbs to reach the lesions. Thirdly, five key targets, including HRAS,
EGFR, PTK2, SOS1, and ITGB1, are identified by network construc-
tion and topological analysis, among which, HRAS and SOS1 may



Fig. 10. Structures and orthogonal views of the pocket of binding between the lowest gscore chemicals and key anti-BRCA targets in the last step of molecular dynamics
simulation. (A) Structures and orthogonal views of the pocket of binding between quercetin and EGFR (PDB ID: 6JZ0). (B) Structures and orthogonal views of the pocket of
binding between (�)-taxifolin and HRAS (PDB ID: 6E6C). (C) Structures and orthogonal views of the pocket of binding between kaempferol and SOS1 (PDB ID: 5OVE). (D)
Structures and orthogonal views of the pocket of binding between (+)-catechin and PTK2 (PDB ID: 618Z). (E) Structures and orthogonal views of the pocket of binding
between ellagic acid and ITGB1 (PDB ID: 5XQ0). The lines connecting the compound to the protein are yellow for hydrogen bonds and blue for pi-pi stacking. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. The specific BRCA-related pathways affected by the major chemicals in GFD. Arrows represent the activation effect; T-arrows stand for inhibition effect, and bias
indicates interruption. In addition, the targets correlated with GFD in treating BRCA are marked in red, while the most critical targets are labeled in yellow. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. The Venn diagram of 38 targets predicted by systems pharmacology and 5 key targets verified by the HTS2 assay.
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be the new clues for treating BRCA in the future. Finally, GFD may
exert its anti-BRCA effect via the PI3K and the MAPK signaling
pathways.

Based on the above findings, a new research paradigm combin-
ing information mining and HTS2 assay is proposed, which helps to
elucidate the complex drug mechanisms better. Typically, TCM is
characterized by the synergistic effects of the multi-component
and multi-target drugs. Taken together, this study contributes to
deepening our understanding towards TCM theory and applying
this research model in interpreting other complex prescriptions.



Fig. 13. Summary diagram regarding the molecular mechanisms of GFD on BRCA.
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