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ABSTRACT
Sodium-based dual-ion batteries (Na-DIBs) show a promising potential for large-scale energy storage
applications due to the merits of environmental friendliness and low cost. However, Na-DIBs are generally
subject to poor rate capability and cycling stability for the lack of suitable anodes to accommodate large
Na+ ions. Herein, we propose a molecular grafting strategy to in situ synthesize tin pyrophosphate nanodots
implanted in N-doped carbon matrix (SnP2O7@N-C), which exhibits a high fraction of active SnP2O7 up
to 95.6 wt% and a low content of N-doped carbon (4.4 wt%) as the conductive framework. As a result, this
anode delivers a high specific capacity∼400 mAh g−1 at 0.1 A g−1, excellent rate capability up to 5.0 A g−1

and excellent cycling stability with a capacity retention of 92% after 1200 cycles under a current density of
1.5 A g−1. Further, pairing this anode with an environmentally friendly KS6 graphite cathode yields a
SnP2O7@N-C||KS6Na-DIB, exhibiting an excellent rate capability up to 30 C, good fast-charge/
slow-discharge performance and long-term cycling life with a capacity retention of∼96% after 1000 cycles
at 20 C.This study provides a feasible strategy to develop high-performance anodes with high-fraction
active materials for Na-based energy storage applications.

Keywords:molecular grafting, high-fraction active material, tin pyrophosphate, N-doped carbon,
sodium-based dual-ion batteries

INTRODUCTION
The limited reserve and uneven distribution of
lithium resource promote the development of
lithium-free energy storage systems based on abun-
dant alkali and alkaline cations such as Na+ [1–9],
K+ [10–15], Mg2+ [16–18], Ca2+ [19,20], Zn2+

[21–25], Al3+ [26–28], etc. Among them, owing
to the high natural abundance of sodium resources
and the similar electrochemical properties of Na+

to Li+, sodium-ion batteries (SIBs) are a potential
alternative to lithium-ion batteries (LIBs) for large-
scale power grids and intermittent energy storage
systems [29–36]. On the other hand, dual-ion
batteries (DIBs) have also attracted considerable
attention due to their advantages of high working
voltages, environmental benignity and low cost
[37–42]. In this cell configuration, graphite materi-
als are generally applied as both anode and cathode,

cations and anions participate in the electrochemical
redox reactions on anode and cathode, respectively
[43–47]. Therefore, if the advantages of both SIBs
andDIBs are combined, it is possible to develophigh
efficient, low-cost and environmentally friendly
sodium-based DIBs (Na-DIBs) for large-scale
energy storage applications.

However, unlike Li+ and K+ ions, it is difficult
for traditional graphite materials to act as the
anode for the intercalation of Na+ ions [48,49].
Further, the large ionic radius of Na+ (1.02 Å
vs. 0.76 Å for Li+) results in sluggish reaction
kinetics and large volume changes of the anode
materials such as Sn [50,51], MoS2 [52–54], TiO2
[55] and FePO4 [56], and thus leads to poor
rate capability and unsatisfied cycling stability
[57–59]. Several approaches have been applied
to improve the electrochemical performance
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Figure 1. Schematic synthesis process of the SnP2O7@N-C composite.

of these anodes, including nanoscale modifica-
tion and carbon-based composite construction
[60–65], for example, carbon-based tin pyrophos-
phate (SnP2O7) composite with a high carbon
content (16.8%) has been demonstrated to exhibit
enhanced cycling stability for Na+-ion storage [66].
Although the carbon matrix can improve the elec-
tronic conductivity and provide a buffer framework
for alleviating the volume expansion of these anodes,
the excessive carbon content (commonly>15wt%)
would decrease the fraction of active material and
thus reduce the energy density of batteries. There-
fore, it is necessary to increase the fraction of active
materials as high as possible and reduce the content
of inactive carbon without compromising the
conductivity of composite anodes, so that anodes
can effectively deliver their specific capacities.

Herein, we propose a molecular grafting strat-
egy to in situ implant SnP2O7 nanostructure in
N-doped carbon (SnP2O7@N-C) as the anode
for Na-DIBs. Such a strategy enables high-fraction
(95.6 wt%) active materials to uniformly embed
in the carbon matrix and to effectively prevent
the exfoliation of active materials, while the N
doping leads to high conductivity even at a low
C content. It exhibits a high specific capacity of
400 mAh g−1 at 0.1 A g−1 and excellent cycling
stability with a capacity retention of 92% after
1200 cycles under 1.5 A g−1. Consequently, pair-
ing this anode with an environmentally friendly
graphite cathode yields a SnP2O7@N-C||KS6

Na-DIB, which shows excellent rate performance
up to 30 C, good fast-charge/slow-discharge ability
and long-term cycling life with a capacity retention
of 96.3% after 1000 cycles, showing a promising
potential for Na-based energy storage devices.

RESULTS AND DISCUSSION
Figure 1 schematically illustrates the synthesis pro-
cedure of SnP2O7@N-C via the molecular grafting
method. Owing to the complexing interaction be-
tween radical groups (e.g. phosphate groups) and
metal cations (e.g. tin ions) and the hydrogen bond
between organic precursors, many precursor agents
can molecularly graft into precursor composite with
a three-dimensional framework, accompanied by a
full mixing procedure. In this case, we chose phytic
acid as the phosphorous source to strengthen the ad-
hesion between active nanodots and carbon matrix
due to sufficient O-C bonds and strong complexing
ability of phosphate groups to tin cations. Simulta-
neously, the low atomic ratio of C to P can avoid
residual carbon content in the formed composite.
Besides, we chose the melamine as the N doping
source because its high atomic ratio of N to C can
result in a high concentration of nitrogen in the car-
bonmatrix. After the filtration and drying processes,
composite precursor nanoparticles were achieved.
Finally, the SnP2O7/N-C nanoparticles were syn-
thesized via calcining theprecursor composite under
an Ar atmosphere.
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In order to investigate the molecular graft-
ing process, Fourier transform infrared spectra
(FTIR) measurements of precursors and their com-
posites were carried out. The characteristic ab-
sorption peaks originating from phosphate rad-
ical (980 and 1140 cm−1), phosphate hydrogen
radical (1631 cm−1) and stretching vibration of
O-H (3329 cm−1) are observed in the FTIR spec-
trum of the phytic acid solution (Supplementary
Fig. S1a).To confirm the complexing interactionbe-
tween phosphate groups and tin cations, phytic acid
and SnCl2 were applied to synthesize a precursor
composite without the addition of melamine. Com-
pared with that of phytic acid, the FTIR spectrum
of the composite (Supplementary Fig. S1b) presents
an obvious peak shift of phosphate to 1035 cm−1,
which should be ascribed to the complexing inter-
action between phosphate groups and tin cations.
For the pure melamine, some characteristic absorp-
tion peaks involving the out-of-plane ring bending
vibration of triazine ring (810 cm−1), stretching vi-
bration of C-N (1431 cm−1), stretching vibrations
of triazine ring (1526 cm−1), scissoring vibration of
NH2 (1626 cm−1) and stretching vibrations ofNH2
(3100–3500 cm−1) were observed in its FTIR spec-
trum (Supplementary Fig. S1c). Once melamine
had been added, its three typical absorption peaks at
773, 1440 and1529 cm−1 were detected in theFTIR
spectrum of the precursor composite (Supplemen-
tary Fig. S1d). The obvious peak shift of melamine
at 810 to 773 cm−1 should be attributed to the for-
mation of intermolecular hydrogen bonds between
melamine and phosphate groups [67].

Compared with the precursor composite (Sup-
plementary Fig. S2), the synthesized SnP2O7@N-C
composite features a stable morphology without
structural collapse after calcination treatment
(Fig. 2a and Supplementary Fig. S3a–c), and is
comprised of nanoparticles with an average size
of 200 nm. The selected area electron diffrac-
tion (SAED) pattern (Supplementary Fig. S3d)
indicates that the SnP2O7@N-C sample has a well-
crystallized structure. Further characterizations via
high-resolution transmission electron microscopy
(HRTEM) images (Fig. 2b) detect that several
crystalline nanodots are uniformly implanted
in the amorphous carbon matrix. Figure 2c and
Supplementary Fig. S3e show obvious lattice fringes
with an interplanar spacing of 0.40 nm, matching
well with the (200) plane of cubic-phase SnP2O7.
X-ray diffraction (XRD) pattern and Raman spec-
trum were carried out to provide more structural
information. As observed in Fig. 2d, all sharp
diffraction peaks can be indexed to cubic-phase
SnP2O7 (JCPDSCardNo. 29-1352), in accordance
with the HRTEM observations. In contrast, those
samples calcined at 500◦C and 700◦C (Supplemen-

tary Fig. S4) do not present similar characteristic
diffraction peaks of SnP2O7. Note that a bump
peak located at ∼26◦ should originate from the
amorphous carbon matrix. Its amorphous feature is
also confirmed by the Raman spectrum (Fig. 2e),
where two characteristic peaks of carbon situated
at ∼1360 and ∼1585 cm−1 can be observed. Both
peaks are individually attributed to D band of
disordered carbon and G band of graphitic carbon.
The ratio of ID to IG approximates 1.0, implying the
carbon matrix’s dominant defective and disordered
nature. Further thermogravimetric analysis (TGA)
measurement (Fig. 2f) indicates that the fractions
of SnP2O7 nanodots and N-doped carbon are
95.6 wt% and 4.4 wt%, respectively, which is the
highest fraction of active material among previously
reported Sn-based compound/carbon composites
[66,68–70]. Both the XRD pattern (Supplementary
Fig. S5a) and the Raman spectrum (Supplementary
Fig. S5b) after the TGA test show the absence of
carbon characteristic peaks, indicating the com-
plete decomposition of the carbon component
in the TGA test. Similarly, the TGA analysis of
SnP2O7@C (Supplementary Fig. S6) shows that
the carbon content of the SnP2O7@C composite
is ∼3.7%, close to that of SnP2O7@N-C (∼4.4%),
which suggests that the addition of melamine
slightly increases the carbon content, ascribable
to its high atomic ratio of N to C. The nitrogen
adsorption/desorption isotherm of SnP2O7@N-C
(Supplementary Fig. S7) reveals that its Brunauer-
Emmert-Teller (BET) specific surface area is
∼9.0 m2 g−1.

The chemical components of the SnP2O7@N-C
sample were analyzed by X-ray photoelectron
spectroscopy (XPS). As shown in Supplementary
Fig. S8a, the survey XPS spectrum suggests the
existence of O, P, Sn, C and N elements in the
sample, consistent with the energy dispersive
X-ray spectroscopy (EDX) elemental mappings
where these elements uniformly distribute in the
SnP2O7@N-C composite (Supplementary Fig. S9).
High-resolution Sn 3d XPS spectrum (Fig. 2g)
presents a pair of characteristic peaks at 495.4 and
487.0 eV, corresponding to Sn 3d3/2 and Sn 3d5/2
of Sn4+ in SnP2O7, respectively. Besides, only
one peak at 134.0 eV referring to the P 2p can be
observed (Fig. 2h), indicating a complete transfor-
mation of P source to SnP2O7 without P doping.
The deconvoluted O 1s spectrum (Supplementary
Fig. S8b) includes two peaks. The dominant peak
is assigned to the SnP2O7, and another involves
O-C bonding. Moreover, the high-resolution C
1s spectrum (Supplementary Fig. S8c) can be fitted
into three peaks at 284.6, 285.5 and 286.5 eV,
individually originating from C-C, C-N and C-O,
exhibiting that the carbon matrix is doped with
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Figure 2. Morphology, microstructure and chemical components of as-synthesized SnP2O7@N-C. (a) SEM image, (b and c) HRTEM images, (d) XRD
pattern, (e) Raman spectrum and (f) TGA analysis of as-synthesized SnP2O7@N-C. High-resolution XPS spectra of Sn 3d (g), P 2p (h) and N 1s (i).

dominant nitrogen and slight oxygen [54]. The
high-resolution N 1s spectrum (Fig. 2i) shows the
existence of pyridinic N (398.5 eV), pyrrolic N
(400.0 eV) and quaternary N (401.1 eV) [71]. Such
structural and chemical features confirm the homo-
geneous implantation of SnP2O7 nanodots in the
N-doped carbon matrix, which is expected to opti-
mize its charge transfer kinetics and electrochemical
stability for SIBs.

We firstly carried out the cyclic voltammogram
(CV) measurement to investigate the Na+-storage
behavior of the SnP2O7@N-C anode. Figure 3a ex-
hibits the first three CV curves at 0.1 mV s−1 in the
potential range of 0.01–3.0 V. In the first sodiation
process, there are multiple peaks situated at 1.55,
1.10, 0.58, 0.39 and 0.07 V. According to previous
reports, theNa-Sn alloying reactions occurred at po-

tentials below0.9V [70,72].Thus, the first twopeaks
should involve the conversion process of SnP2O7 to
metallic Sn, and the others stem from the Na–Sn
alloying reactions [70,71]. In the following cycles,
only a broad and strong peak at 1.18 V is observed
for the conversion reaction. However, the desodia-
tion processes in different cycles always exhibit five
peaks at 0.23, 0.69, 0.86, 1.38 and 1.84 V. Such
behavior suggests the conversion reaction proba-
bly refers to a two-step reduction/oxidation reac-
tion of Sn4+/Sn2+ and Sn2+/Sn0, and theNa–Sn al-
loying/dealloying reaction is also associated with a
multi-step reaction process.

To further get insight into its Na+-ion stor-
age mechanism, the sodiation/desodiation process
of the SnP2O7@N-C anode was detected with
synchrotron X-ray absorption near edge structure
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Figure 3. Studies on the working mechanism of SnP2O7@N-C in the sodium-based half-cell. (a) First three CV curves at a sweep rate of 0.1 mV s−1.
(b and c) Sn L3-edge XANES spectra of the SnP2O7@N-C anode during discharging (b) and charging (c) processes. (d–g) HRTEM images of SnP2O7@N-C
anode at different discharging states of (d) 0.55 V and (e) 0.01 V, and different charging states of (f) 1.2 V and (g) 3.0 V. Scale bars: 5 nm.

(XANES) spectra of the Sn L3-edge (Fig. 3b and
c) at different charging/discharging states (Supple-
mentary Fig. S10), where two peaks are assigned
to the 2p3/2–5s1/2 transition [73]. As observed in
Fig. 3b, the intensities of the characteristic peaks
decrease as the discharging process proceeds, as-
sociated with the transformation of Sn4+ to Sn0

[73,74]. A reverse evolution of the peak intensities
is obviously observed during the charging process
(Fig. 3c), demonstrating the good reversibility of Sn
state during cycling. Note that the slight difference
of Sn L3-edge XANES spectra at 0.01 V and 1.2 V
should be ascribed to the de-alloying reactions of the
samplewithout obvious variation in the valence state
of Sn element.

Further, HRTEM characterizations at different
charging/discharging states were performed to ver-
ify its sodiation/desodiation mechanism. For the
pristine sample, an interplanar spacing of 0.398 nm
is clearly distinguished (Supplementary Fig. S11a),
which corresponds to (200) plane of the SnP2O7.
When the sodiation process proceeds until 0.55 V,
there are some lattice fringes with lattice spacing of
0.248 and0.217nm(Fig. 3d),whichmatchwellwith
(131) plane of Sn2P2O7 (ICSD No. 170846) and
(208) plane of Na9Sn4 (PDFNo. 31-1326), respec-
tively. And the fully sodiated state clearly contains
Na4P2O7 and Na15Sn4 two crystal phases (Fig. 3e),

further confirming that the sodiation process of
SnP2O7@N-C anode involves both conversion and
alloying reactions. Conversely, as the desodiation
process is conducted to 1.2 V, the presence ofmetal-
lic Sn is verified by the HRTEM image in Fig. 3f.
The completed desodiation process at 3.0 V is ac-
companied by the formation of SnP2O7 (Fig. 3g),
indicating a good sodiation/desodiation reversibil-
ity of SnP2O7. It is also noteworthy that, differently
from the reported results [66], there are some lat-
tice fringes with an interplanar spacing of 0.304 nm
(Supplementary Fig. S11b), corresponding to the
(−131) plane of P-1 Sn2P2O7 (ICSDNo. 170846),
which implies the presence of Sn2P2O7 during the
desodiation process. Therefore, the HRTEM result
is greatly consistent with the analyses of CV result
during sodiation/desodiation processes.

The electrochemical properties of the
SnP2O7@N-C anode were evaluated in a coin-type
half-cell. As observed in Fig. 4a, an abnormal shape
of the galvanostatic charge–discharge profile at
the first cycle is attributed to the incompletely
reversible sodiation process of SnP2O7 and the
formation of solid-electrolyte interphase (SEI)
layer [54,75]. Although a pulverization phe-
nomenon of SnP2O7 is observed after the first
sodiation/desodiation process (Supplementary
Fig. S12), there is a stable shape of galvanostatic
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Figure 4. Electrochemical performances of the SnP2O7@N-C anode in sodium-based half-cells. (a) Galvanostatic charge–discharge profiles and
(b) the corresponding cycling performance at a current density of 0.1 A g−1. (c) Nyquist plots of the SnP2O7@N-C anode before and after 100 cycles.
(d) Galvanostatic charge–discharge profiles measured at different current densities and (e) the corresponding rate capability. (f) Long-term cycling
stability at 1.5 A g−1.

charge–discharge profiles after the first cy-
cle. It shows a specific discharge capacity of
∼400 mAh g−1 at 0.1 A g−1 with a Coulombic
efficiency of ∼100% (Fig. 4b), indicating a good
stability during the following sodiation/desodiation
processes. Further, the EDXmappings of the anode
at fully discharged state (Supplementary Fig. S13)
verify uniform distributions of O, P, Sn, Na, C and
N elements, implying a homogeneous sodiation
reaction during discharging process. Such robust
charging/discharging behavior was also confirmed
by the electrochemical impedance spectroscopy
(EIS, Fig. 4c). No obvious variation in its EIS
spectra is observed before and after 100 cycles,
ascribable to the strong adhesion between SnP2O7
nanodots and N-doped carbon matrix.

Figure 4d and e present the rate performance of
SnP2O7@N-C anode at current densities from 0.1
to 5.0 A g−1. It exhibits specific capacities of 400,
381, 354, 335, 305, 295, 261 and 210 mAh g−1 at

current densities of 0.1, 0.2, 0.3, 0.5, 1.0, 1.5, 3.0
and 5.0 A g−1, respectively. The specific capacities
are recoverable as the current density is returned to
0.1 A g−1. It should be noted that the rate capabil-
ity of the SnP2O7@N-C anode is much better than
that of pure SnP2O7 (58 mAh g−1 at 1.5 A g−1),
SnP2O7@C without N doping (176 mAh g−1 at
1.5 A g−1) (Supplementary Fig. S14) and previously
reported SnP2O7 composite with 16.8 wt% car-
bon nanosheets [66]. The excellent rate capabil-
ity can be attributed to that N doping enhances
the conductivity of carbon framework and facilitates
diffusion kinetics of Na+ ions [71,76], and the ac-
tive nanodots shorten the diffusion path ofNa+ ions
[77,78]. Figure 4f and Supplementary Fig. S15 show
the composite anode’s cycling performance under
a current density of 1.5 A g−1, exhibiting excellent
cycling stability with a capacity retention ∼92%
after 1200 cycles and the corresponding Coulombic
efficiency close to 100%. In contrast, much lower
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Figure 5. (a) Schematic illustration of the proof-of-concept Na-DIB configuration assembled with the SnP2O7@N-C anode and KS6 graphite cathode.
(b) Galvanostatic charge–discharge profile of the Na-DIB in the voltage range of 1.0–4.0 V at 3 C, (c) corresponding dQ/dV differential curves, and (d) in
situ XRD contour during charging/discharging process.

capacity retentionsof∼79%and∼49%areobtained
for SnP2O7@C and pure SnP2O7 after 400 cy-
cles (Supplementary Fig. S16), respectively. Among
the reported Sn-based compound/carbon compos-
ite anodes for SIBs (Supplementary Table S1), the
SnP2O7@N-C with the lowest carbon content de-
livers a competitive specific capacity and superior
cycling performance.

Consequently, we paired this anode with an
environmentally friendly KS6 graphite cathode to
construct a proof-of-concept Na-DIB to further
explore its practical sodium storage capability in
the full cell. Figure 5a schematically illustrates its
working mechanism, where Na+ cations and PF6−

anions separately move to the SnP2O7@N-C anode
and KS6 graphite cathode during the charging pro-
cess, while both cations and anions return back to
the electrolyte from the anode and cathode during
discharging process, respectively. Its typical gal-
vanostatic charge–discharge profile (Fig. 5b) in the
voltage range of 1.0 to 4.0 V at 3 C (1 C = 100 mA
g−1) exhibits several voltage plateaus, correspond-
ing to the different intercalation/de-intercalation
stages of PF6– anions. According to the dQ/dV
differential curve (Fig. 5c), the charging process
(Fig. 5b) can be roughly separated into three voltage
regions of 2.6–3.25 V (stage I), 3.25–3.55 V (stage

II) and 3.55–4.0 V (stage III), corresponding to
three different stages of anion intercalation into KS6
graphite cathode [50,52,53]. In order to get insight
into the electrochemical process of the SnP2O7@N-
C||KS6 Na-DIB during the charging process, the
galvanostatic charge–discharge profile of Na||KS6
half-cell and corresponding dQ/dV differential
curve (Supplementary Fig. S17) were provided.The
dQ/dV differential curve also presents three differ-
ent stages, indicating the dominant role of anion
intercalation intoKS6graphite cathode.Conversely,
a reverse evolution accompanies the discharging
process, where different de-intercalation stages
occur in voltage ranges of 4.0–2.6 V (stage III′),
2.6–2.06 V (stage II′) and 2.06–1.30 V (stage I′) in
the discharging process (Fig. 5c and Supplementary
Fig. S17). Such intercalation/de-intercalation
behavior of PF6– anions was further confirmed by
the in situ XRD measurements during the charg-
ing/discharging process (Fig. 5d).Theoriginal XRD
pattern presents a characteristic (002) peak of KS6
graphite cathode at 26.7◦. In the charging process,
the characteristic peak becomes weak and splits into
two peaks individually shifting towards lower (main
peak) and higher 2θ degrees, corresponding to
the stage I of anion intercalation into KS6 graphite
cathode. The stage II involves the formation of a
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Figure 6. Electrochemical energy-storage performances of the proof-of-concept Na-DIB. (a) Rate capability and (b) corresponding galvanostatic charge–
discharge profiles at different current densities. (c) Charge–discharge profiles at a constant charging current density of 30 C and different discharging
rates and (d) the corresponding fast-charge/slow-discharge performance. (e) Long-term cycling stability and (f) the corresponding galvanostatic charge–
discharge profiles at different cycles.

stable intercalationphase at 23.6◦.Then, the stage III
relates to a sharp transition of diffraction peaks and
the formation of another stable phase at 22.1◦. Such
peak evolution is ascribable to the successful interca-
lation of PF6− anions into graphite cathode [79,80].
A reverse evolution occurs in the discharging
process, and the two peaks gradually merge into the
initial peak at 26.7◦ at the end of the discharg-
ing, indicating excellent reversibility of the
intercalation/de-intercalation process of PF6–

anions into/from KS6 graphite cathode.
Figure 6a presents the rate capability of the

SnP2O7@N-C||KS6 Na-DIB, which delivers a
reversible discharge capacity of 78 mAh g−1 at 3 C.

Even at 30 C, a specific capacity of 65 mAh g−1

can be obtained (83.3% capacity retention) with
∼100% Coulombic efficiency. The galvanostatic
charge–discharge profiles at different current densi-
ties show similar shapes and a slight shift of voltage
plateaus, indicating negligible electrochemical
polarization (Fig. 6b). Besides, it can be rapidly
charged at 30 C and slowly discharged down to 3 C
(Fig. 6c andd).Thedischarge profiles exhibit a slight
variation, and the corresponding specific capacity
can be stably delivered even at different current den-
sities, exhibiting a good fast-charge/slow-discharge
ability. Moreover, the Na-DIB shows an excellent
cycling performance with a capacity retention of
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∼96% and a Coulombic efficiency of ∼100% after
1000 cycles under a high rate of 20 C (Fig. 6e). The
galvanostatic charge–discharge profiles at 10th,
100th, 500th and 1000th cycles have the same shape
and voltage plateaus (Fig. 6f), further verifying its
stable cycling ability. As shown in Supplementary
Table S2, the SnP2O7@N-C||KS6Na-DIB presents
superior cycling performance, rate capability
and Coulombic efficiency to previously reported
Na-DIBs based on different anode materials
[50,52–56,75,80–86].

CONCLUSION
In summary, high-fraction (up to 95.6 wt%)
SnP2O7 active anode material was successfully in
situ implanted in the N-doped carbon matrix via a
molecular grafting strategy. Such a synthesis strategy
effectively enhanced the adhesion between active
materials and carbon matrix, while the N doping
led to high conductivity even at low C content. As a
result, the anode showed a high specific capacity of
∼400 mAh g−1 at 0.1 A g−1, good rate performance
up to 5.0 A g−1 and excellent cycling stability with
a capacity retention of 92% after 1200 cycles at
1.5 A g−1. Furthermore, this anode was paired with
an environmentally friendly KS6 graphite cathode
to yield a proof-of-concept Na-DIB, showing a
superior rate capability with a capacity retention of
∼83% even at a high current density of 30 C, good
fast-charge/slow-discharge ability and long-term
cycling life with a capacity retention of ∼96% after
1000 cycles at 20 C, exhibiting a great potential for
high-performance Na-based energy storage devices.

METHODS
Synthesis of SnP2O7@N-C
SnCl2·2H2O powder was dissolved in deionized
water under stirring, and then phytic acid solution
and melamine powder were sequentially added
into the above solution and subsequently stirred
vigorously. Then the mixture was transferred to a
two-necked flask and absolute ethanol was added
and refluxed under stirring. Next, the obtained
reaction product was collected by centrifugation,
successively washed with deionized water and
ethanol several times and dried under vacuum.
Finally, the powder product was calcined in an Ar
atmosphere to obtain a SnP2O7@N-C sample.

Materials characterization
The morphological and elemental features were
characterized using field-emission scanning electron

microscope (FE-SEM). The FEI Tecnai G2 F30
was applied to acquire the transmission electronmi-
croscope (TEM) images, elemental mappings and
SAED pattern. XRD analyses were implemented
on a Rigaku DMiniFlex 600 diffractometer. Raman
spectra were collected on Horiba LabRAMHR800.
N2 physical adsorption-desorption analysis was
carried out on ASAP 2020M.The chemical compo-
sition of SnP2O7/N-C samplewas determined using
XPS with monochromatic aluminum Kα radiation.
TGA were conducted from 100◦C to 700◦C. FTIR
of precursors and their composites were acquired
using a PerkinElmer Frontier FTIR spectropho-
tometer. Tests about XANES were carried out
at Synchrotron Light Research Institute (SLRI),
Thailand.

Electrochemical measurement
The electrochemical performance of the half-cells
and DIB was carried out using CR2032 coin-type
cells. The SnP2O7@N-C electrode was prepared by
coatingmixture slurry of the SnP2O7@N-C, Ketjen-
black and carboxy methyl cellulose with a weight ra-
tio of 70:20:10. For the half cells, the electrodeswere
pressed and punched into circular sheets 10 mm in
diameter. The KS6 graphite cathode was prepared
by mixing 80 wt% KS6 graphite, 10 wt% conduc-
tive carbon black and 10 wt% polyvinylidene fluo-
ride (PVDF) to form a homogeneous slurry. In or-
der to boost the full utilization of cathode material,
the cathode sheet was punched into circular sheets
10 mm in diameter. The mass loading ratio of ac-
tive anode/cathodematerials forNa-DIBwas∼1 : 1
and the corresponding size of the anode sheet was
12 mm in diameter. Glass fabric was used as the
separator, and 1 MNaClO4 in propylene carbonate
(PC) with 5 wt% fluoroethylene carbonate (FEC)
was used as the electrolyte for half cells. The elec-
trolyte for the SnP2O7@N-C||KS6 DIB was 1 M
NaPF6 dissolved in a mixture of ethylene carbon-
ate (EC)/dimethyl carbonate (DMC)/ethylmethyl
carbonate (EMC) (4 : 3 : 2 in volume). Cells were
assembled in a glove boxwithwater and oxygen con-
tent below 0.1 ppm and tested at room temperature.
Galvanostatic charge–discharge tests and rate tests
were conducted with a battery test system. EIS and
CV were performed on an Autolab electrochemical
workstation. All chemical reagents were used as re-
ceived without any further purification. The capac-
ity is calculated based on the mass of SnP2O7@N-
C for half cells. The mass of KS6 is used to calcu-
late the specific capacity of the DIB. More detailed
materials are available in the online supplementary
data.
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