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Abstract

Influenza viruses elude immune responses and antiviral chemotherapeutics through genetic drift and reassortment. As a result,
the development of new strategies that attack a highly conserved viral function to prevent and/or treat influenza infection is
being pursued. Such novel broadly acting antiviral therapies would be less susceptible to virus escape and provide a long lasting
solution to the evolving virus challenge. Here we report the in vitro and in vivo activity of a human monoclonal antibody (A06)
against two isolates of the 2009 H1N1 pandemic influenza virus. This antibody, which was obtained from a combinatorial library
derived from a survivor of highly pathogenic H5N1 infection, neutralizes H5N1, seasonal H1N1 and 2009 ‘‘Swine’’ H1N1 pandemic
influenza in vitro with similar potency and is capable of preventing and treating 2009 H1N1 influenza infection in murine models
of disease. These results demonstrate broad activity of the A06 antibody and its utility as an anti-influenza treatment option, even
against newly evolved influenza strains to which there is limited immunity in the general population.
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Introduction

Controlling the spread of influenza remains a major challenge

due to the unpredictable nature of the virus. Recently, a novel

human adapted H1N1 virus has emerged and progressed globally

such that the World Health Organization (WHO) has declared the

first influenza pandemic in 40 years [1,2]. Globally, efforts have

been undertaken to produce vaccines and stockpile small molecule

antiviral reserves to prevent and treat widespread influenza

disease. While these strategies are effective, they are not without

limitations. Vaccines have not provided lasting immunity against

influenza because of viral mutation (‘‘antigenic drift’’) and

reassortment (‘‘antigenic shift’’) [3,4,5,6]. Popular small molecule

antiviral treatments (oseltamivir) have recently lost effectiveness

due to the rapid proliferation of seasonal H1N1 strain resistanc,

demonstrating the urgent need to develop novel treatments for

influenza infection and disease.

Such new treatment options would ideally be both broadly

protective and provide a novel mechanism of attack against the virus.

Antibodies have very desirable properties as prophylactic and

therapeutic agents: long serum half-life, low immunogenicity and

high specificity for antigens. In addition, antibodies are currently

being used against infectious disease. For example, antibody clinical

prophylaxis against RSV is a standard of care and antibody therapy is

in development for treatment of anthrax [7,8,9,10]. A related passive

immunity strategy against influenza was used in the past during times

of crisis, and retrospective studies have quantified the benefits of such

strategies [11]. Furthermore, it would be beneficial for this agent to

act on a highly conserved site to increase its therapeutic lifespan.

Recently, work by us and others have described novel human

monoclonal antibodies capable of very broad heterotypic protection

that could be used in the treatment and prevention of influenza virus

infections [12,13,14]. Here we report in vitro neutralization and in vivo

efficacy in prophylactic and therapeutic mouse models of the novel

2009 H1N1 pandemic influenza virus infection by one such broadly

protective antibody derived from an H5N1 avian influenza survivor.

Methods

Antibody expression and purification
Human IgG1 antibody was expressed and purified essentially as

previously described [12].

Preparation of virus stocks
The A/California/04/2009 virus used in the microneutraliza-

tion studies is a recombinogenic virus composed of the

hemagglutinin (HA) and neuraminidase (NA) gene segments from
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A/California/04/2009 and the remaining influenza viral gene

segments are from A/PR/8/34 [15]. The recombinant virus was

propagated in MDCK cell culture. All other strains were amplified

in 10–11 day old embryonated hens’ eggs.

Microneutralization assay
Microneutralization assays were performed as previously

described [12]. Briefly, two-fold dilutions of mAb were incubated

with 100 TCID50 of virus for 1 h at 37uC prior to addition to

monolayers of MDCK cells. Cell monolayers were incubated for

72 h, and the presence of virus in supernatant was determined by

HA assay of duplicate samples. The neutralizing titer was defined

as the minimum inhibitory concentration at which the infectivity

of 100 TCID50 of the appropriate virus for MDCK cells was

completely neutralized in duplicate wells.

mAbs for prophylaxis and therapy in mice
Animal experiments were performed in accordance with the

guidelines of the Mount Sinai School of Medicine and St. Jude

Children’s Research Hospital Institutional Animal Care and Use

Committees (IACUC).

Female 6–8 weeks old Balb/C (Jackson Laboratories) or DBA/2

(Charles River) mice were housed 5–6 per cage in ABSL3+
containment. Food and water were provided ad libitum. For the

prophylactic studies, mice (5–6 per group, except where noted)

received 1, 2.5, 10, or 25 mg antibody A06 per kg of bodyweight

in approximately 200–300 mL of sterile phosphate-buffered saline

(PBS) by intraperitoneal (IP) injection. The control groups received

200–300 mL of 25 mg/kg non-immune human serum IgG (Sigma)

(n = 3) or PBS by IP injection. Antibody was administered either

1 hour (Balb/C) or 24 hours (DBA/2) before being challenged

with A/California/04/09, which had been previously mouse-

adapted by 9 sequential lung passages, or wild-type A/Nether-

lands/602 virus. Mice were inoculated by intranasal administra-

tion of 3.3, 25, or 33 MLD50 (50% mouse lethal dose) influenza

virus in 30–50 mL of PBS. 2000 PFU (25 MLD50) of mouse-

adapted A/California/04/09 was used for infection of Balb/C

mice in the prophylactic and therapeutic studies, while 10 PFU

(3.3 MLD50) and 100 PFU (33 MLD50) was used for the A/

Netherlands/602 strain in DBA.2 mice. Symptoms preceding

death are weight loss .30% and general inactivity. Morbidity and

mortality were monitored either daily or at days 0, 3, 7, 10, and

14.

For therapeutic studies, Balb/C mice (10 per group) were given

a lethal virus dose of 25 MLD50 A/California/04/09 (2000 PFU)

followed by a single 15 mg/kg dose of antibody 24, 48, 72, 96,

120, or 144 hours post infection. Morbidity and mortality were

monitored for 17 days and the mice were weighed on days 0, 3, 7,

10, 14, and 17 following virus challenge. For dose escalation

studies, mice were given a viral dose of 3.3 MLD50 (10 PFU) A/

Netherlands/602/209 followed either 1 day or 2 days post

infection with a single IP injection of 2.5, 10 or 25 mg/kg dose of

antibody A06, vehicle (PBS), or non-immune IgG (25 mg/kg

dose). Morbidity and mortality were monitored for 14 days and

the mice were weighed daily following virus challenge.

All data for both the prophylactic and therapeutic studies was

plotted for days 3, 7, 10, 14, and 17 (where appropriate). Survival

data were plotted (Kaplan-Meier) and analyzed using the logrank

test to determine statistical significance (P,0.05). Mean weight

data were also plotted. All data were plotted and analyzed using

GraphPad Prism v.5.02 software.

2009 novel H1N1 predicted antibody binding site
sequence analysis

One thousand non-redundant 2009 novel H1N1 hemagglutinin

amino acid sequences deposited to the Influenza Sequence

Database [16] were aligned using MUSCLE v4 multiple sequence

alignment function accessible through the Influenza Sequence

Database website (http://www.ncbi.nlm.nih.gov/genomes/FLU/

FLU.html). Sequences were visually inspected for amino acid

changes within the predicted antibody binding site in the

hemagglutinin HA2 region described in [13,17]. Variants in both

the predicted contacting and non-contacting positions were noted

along with the frequency of occurrence.

Results

Pandemic H1N1 virus neutralization in vitro by antibody
A06

We previously reported the discovery of broadly neutralizing

antibodies from avian influenza survivor antibody libraries,

capable of mechanistically novel, heterosubtypic neutralization

against numerous H1N1 and H5N1 viruses [12]. Subsequent to

our publication, others have reported highly related and broadly

neutralizing human antibodies [13,14]. The novel unifying

mechanism these anti-hemagglutinin neutralizing antibodies

exhibit is that they do not inhibit virus-induced hemagglutination.

Structural analysis by both Sui et al. and Ekiert et al. have shown

the antibodies bind to the highly conserved stem of hemagglutinin

(HA) that prevents a conformational change required for viral host

cell fusion [13,17]. The reason these antibodies are broadly

neutralizing is attributed to the high sequence conservation of the

antibody epitope between H1, H5 and H9 type hemagglutinins,

which is coincidentally maintained in the newly emergent 2009

pandemic H1N1 strain (Table 1). From these collective observa-

tions, we predicted the 2009 pandemic H1N1 influenza would be

susceptible to neutralization by the previously described antibody

isolated from the Turkish avian influenza survivor libraries.

As a first step to test our prediction the A06 antibody (previously

referred to as mAb1 [12]) was tested in in vitro viral microneu-

tralization assays against a recombinogenic virus containing the

2009 H1N1 pandemic reference isolate A/California/04/2009

influenza virus (CA04) HA and neuraminidase (NA) proteins upon

a A/PR/8/34 based viral background, (hereafter referred to as A/

California/04/2009 6:2) [18]. In these assays the A06 antibody

demonstrated complete viral neutralization of the 2009 H1N1

virus at final concentrations as low as 10 mg/ml (Table 1), which is

in good agreement with neutralization results against other H5N1

and H1N1 strains that we have tested (Table 1).

Author Summary

Influenza viruses constantly challenge our ability to
prevent and treat their resulting infection. From a survivor
of the H5N1 influenza we have discovered an antibody
that is effective against both H5N1 and seasonal H1N1
influenza viruses. Here we show the antibody is effective
against 2009 pandemic influenza in a cell culture assay and
also in mouse models of disease when given before and
even after lethal influenza infection. The present work
demonstrates the viability of this particular antibody and
the general approach of using antibodies against viral
pathogens as opposed to traditional treatments that are
losing their efficacy for the prevention and treatment of
influenza infection. We conclude the efficacy of this
antibody warrants further experimental testing as an
alternative therapy for treatment in man.

Human mAb against Pandemic H1N1
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Antibody A06 in vivo prophylaxis against the 2009
pandemic virus

To assess whether the A06 antibody could prevent or decrease

the severity of influenza infection in vivo, we performed a dose-

escalating study in a murine prophylactic model of disease. Briefly,

Balb/C mice were given a single IP dose of A06, infected

intranasally 1 hour later with 25MLD50 of a mouse-adapted CA04

H1N1 virus (see methods), and then monitored for survival and

body weight over the following 14 days (Figure 1A). In this study,

vehicle treated mice either died or were euthanized 6 to 10 days

post-infection and displayed pronounced progressive weight loss

during the course of infection. In sharp contrast, mice treated with

either 25 mg/kg or 10 mg/kg of A06 survived the lethal challenge

and regained lost weight by day 7. Survival in the 2.5 mg/kg

treatment group was 83%, with the mice losing more weight than

the higher dosed groups in the first 3 days post-infection, but still

regaining their pre-study weights by day 14. Survival in the 1 mg/

kg group was observed, but was the least prominent of all

treatment groups (33%) with the surviving mice losing body weight

through 10 days post-infection. Logrank test analysis of the

survival curves demonstrated statistical significance (P,0.0001).

These studies demonstrate antibody A06 is able to protect mice

from the lethality and weight loss associated with influenza virus

infection in a dose dependent manner.

To further support the previous results, we wanted to show

efficacy on a non-mouse- adapted novel human H1N1 strain as

well as assess efficacy against two different levels of viral challenge.

In the subsequent prophylaxis study, we used a novel H1N1

influenza strain A/Netherlands/602/2009 (Netherlands602) in the

more sensitive and susceptible DBA/2 mouse strain at both

3.3MLD50 (Figure 1B) and 33MLD50 (Figure 1C). In the

3.3MLD50 challenged study, mice treated with vehicle died or

were euthanized between 7 and 9 days post infection and

displayed pronounced progressive weight loss during the course

of infection. Antibody A06 administration provided significant

survival (P,0.0001) and considerable body weight maintenance

benefits. Specifically, mice challenged with 3.3MLD50 Nether-

lands602 in both the 25 mg/kg and 10 mg/kg dose groups

survived and lost some weight through day 7 that was rapidly

regained to their pre-study levels by day 10. Survival in the

2.5 mg/kg treatment group was 80% with greater weight loss

observed compared to the higher dosed groups.

In the subsequent DBA/2 study where mice were challenged

with 10 times more virus (33MLD50) than the previous A06

antibody treated groups they also displayed significant survival

(P,0.0001)and substantial body weight maintenance benefits

compared to controls. Specifically, the mice manifested disease

and mortality more rapidly than those in the 3.3MLD50 challenge

study, as both groups treated with PBS or non-immune IgG died

or were euthanized between 6 and 7 days post infection. In

contrast, all mice treated with 25 mg/kg of antibody A06 survived,

whereas those treated with 10 mg/kg or 2.5 mg/kg of A06 had an

80% survival rate. The average body weight of all the treated

groups declined through the first 7 days post-infection, but was

restored to pre-study levels by day 10. In summary, prophylactic

administration of antibody A06 appeared beneficial in abrogating

influenza-mediated weight loss, allowing faster recovery of infected

animals.

Therapeutic activity of antibody A06 in 2009 pandemic
H1N1 infection

Passive immunity may provide both prophylactic and thera-

peutic benefits against influenza infection. To address whether the

A06 antibody is therapeutically effective following infection, we

treated groups of CA04-infected Balb/C mice (25MLD50

infectious titer) with a single 15 mg/kg dose of antibody A06 at

1, 2, 3, 4, 5, or 6 days post-infection. All mice dosed 1 day after

infection survived, 90% of mice dosed 2 days after infection

survived, and 50% of the mice dosed 3 days after infection

survived. All mice dosed 4 days post infection and later either died

or were euthanized between days 7 and 10. Weight loss in the

therapeutic study was more severe than seen in the mice treated

prophylactically and similar to the vehicle-treated mice in the

prophylaxis study. All mice in this study lost ,30% of their body

weight due to the established novel H1N1 infection (Figure 2B)

and earlier treatment appeared linked to higher study end weights

and survival (Figure 2A and B). These results demonstrate the

utility of a therapeutic passive immunity approach against an

emergent strain of influenza and extend previous findings that

Table 1. The A-helix epitope targeted by the A06 antibody is highly conserved across numerous types of influenza.

Subtype Strain 18 19 20 21 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 MIC

Novel H1N1 A/California/04/2009 6:2 V D G W S T Q N A I D E I T N K V N S V I ,10

H1N1 A/South Carolina 1918 I - - - - - - - - - - G - - - - - - - - - ND

A/Puerto Rico/8/34 I - - - - - - - - - N G - - - - - - T - - 62-125

A/New Caledonia/20/99 - - - - - - - - - - N G - - - - - - - - - 9*

A/Solomon Islands/3/2006 - - - - - - - - - - N G - - - - - - - - - 83

A/Brisbane/59/2007 - - - - - - - - - - N G - - - - - - - - - 24

A/Texas/36/1991 I - - - - - - - - - N G - - - - - - - - - 250

H5N1 A/Indonesia/5/05 - - - - - - - K - - - G V - - - - - - I - 9*

A/Vietnam/1203/04 - - - - - - - K - - - G V - - - - - - I - 11*

A/Egypt/14725/06 - - - - - - - K - - - G V - - - - - - I - 2*

A/Turkey/65596/2006 - - - - - - - K - - - G V - - - - - - I - 9*

H9N2 A/Hong Kong/1073/99 - A - - - - - K - - - K - - S - - - N I V ND

A-helix epitope sequences from novel H1N1, current and past seasonal isolates of H1N1, H5N1 and avian H9N2 hemagglutinin proteins were aligned. Positions are
labeled according to HA2 numbering. Amino acids at positions 19-21, 41, 42, 45, 46, 49, 52, 53 and 56 are antibody contact points [13,17]. The column on the far right indicates
in vitro microneutralization minimal inhibitory concentrations (MIC) of antibody A06 in mg/ml for the isolates tested (ND = not done, * = previously reported data [8]).
doi:10.1371/journal.ppat.1000990.t001

Human mAb against Pandemic H1N1
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heterotypic neutralizing antibodies are beneficial in in vivo models

of influenza prophylaxis and therapy.

As a significant benefit in overcoming influenza infection was

seen in treatment groups administered A06 antibody at 1 or 2 days

post infection, our next study expanded the analysis at these times

through a dose escalation study. Specifically, we administered the

A06 antibody at 2.5, 10, and 25 mg/kg either 1 day (Figure 3A) or

2 days (Figure 3B) after infection with 3.3MLD50 of the

Netherlands602 strain of the 2009 pandemic H1N1 virus in

DBA/2 mice. As seen previously, PBS vehicle treated mice died or

were euthanized by 9 days post infection and displayed

pronounced progressive weight loss during the course of infection.

However, mice receiving 25 mg/kg or 10 mg/kg doses of

antibody A06, either at 1 day and 2 days post infection, survived

the Netherland602 virus infection, corroborating results found

with the CA04 viral challenge (Figure 3A and 3B, left panels).

Importantly, the lowest antibody dose (2.5 mg/kg) was sufficient to

overcome infection in all except one animal. As a benefit the

treated mice also gained weight after treatment with A06, arriving

at their pre-study weight by day 14 (Figure 3A and 3B, right

panels). In summary, our results demonstrate that antibody A06 is

a very effective treatment following novel H1N1 infection, even at

doses of 2.5 mg/kg in two different mouse models of influenza

infection and treatment.

Conservation of the predicted antibody epitope in novel
H1N1 isolates

Broadly active anti-influenza agents need to target essential sites

that are minimally prone to mutation. As a predictive assessment

of the potential efficacy of the A06 antibody against current H1N1

Figure 1. Antibody A06 prophylaxis protects mice from a lethal 2009 pandemic H1N1 influenza virus challenge. (A) Balb/C mice (n = 6
except where noted) were challenged with 25MLD50 of a mouse-adapted 2009 H1N1 pandemic influenza A/California/04/2009 reference isolate
1 hour after a single interperitoneal injection of the indicated dose of A06 antibody. Survival (left panel) and weight (right panel) were monitored
over a 14 day period. Open blue squares- 25 mg/kg antibody A06, open red circles- 10 mg/kg antibody A06 (n = 5), open green triangles- 2.5 mg/kg
antibody A06, open orange triangles- 1 mg/kg antibody A06, and black filled circles- PBS vehicle control. (B) and (C) DBA/2 mice (n = 5 except where
noted) were challenged with either 3.3MLD50 (B) or 33MLD50 (C) A/Netherlands/602/2009 H1N1 pandemic influenza reference isolate 24 hours after
a single interperitoneal injection of the indicated dose of antibody A06. Survival (left panel) and weight (right panel) were monitored over 13 days
post-infection. Open blue squares- 25 mg/kg antibody A06, open red circles- 10 mg/kg antibody A06, open green triangles- 2.5 mg/kg antibody A06,
black filled circles- PBS vehicle control, open orange diamonds- 25 mg/kg human IgG control (n = 3).
doi:10.1371/journal.ppat.1000990.g001

Human mAb against Pandemic H1N1
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pandemic isolates, we analyzed a large number of novel influenza

hemagglutinin protein sequences within the proposed A-helix

epitope [13,17] for genetic drift. From the analysis of 1000 full

length hemagglutinin protein sequences (NCBI Influenza Virus

Resource November 11, 2009) [16], we found only 5 isolates that

varied from CA04 reference strain at three positions in the

proposed A-helix antibody epitope on the HA2 subunit (Table 2).

Only one of the five isolates (Canada-NS/RV1535/2009)

contained a mutation to a proposed contact point, which was a

conservative substitution of valine for isoleucine at residue 56. It is

significant to point out that isoleucine is found at an analogous

position in the H9N2 Hong Kong/1073/99 which is recognized

by the A06 antibody (Table 1 and unpublished data), suggesting

the isolate would still be susceptible to the A06 antibody. Three of

the remaining four mutations occurred at the non-contacting

residue 43, where lysine, serine, or aspartic acid was found instead

of asparagine. The final mutation was a proline replacement for

alanine non-contacting position 44. In summary, the analysis

suggests the isolates display limited allowances for genetic drift

within this region that may maintain susceptibility to A06.

Figure 2. Antibody A06 therapy protects Balb/C mice from death by 2009 pandemic H1N1 influenza infection. Balb/C (n = 10, except
groups 4dpi and PBS where n = 9) were infected with 25MLD50 A/California/04/2009. A single administration of 15 mg/kg per group was given 1–6
days post-infection. Open blue squares- 1 day post infection, open red circles- 2 days post- infection, open green triangles- 3 days post-infection,
filled triangles- 4 days post- infection, filled diamonds- 5 days post-infection, open black circles- 6 days post- infection, and open black squares- PBS
vehicle 1 day post-infection. Survival (left panel) and weight (right panel) were monitored for 17 days after infection.
doi:10.1371/journal.ppat.1000990.g002

Figure 3. Antibody A06 therapy protects DBA/2 mice from death by 2009 pandemic H1N1 influenza infection. DBA/2 mice were
infected with 3.3MLD50 of A/Netherlands/602/2009 and treated with a single administration of antibody A06 1 day (A) or 2 days (B) post-infection.
Three different A06 concentrations were tested along with vehicle (PBS) and non-specific IgG controls. Animals were monitored for survival (left
panels) and weight (right panels) over a 14 day period. Treatment groups (n = 5) are labeled as in Figure1B and 2C. Open blue squares- 25 mg/kg
antibody A06, open red circles- 10 mg/kg antibody A06, open green triangles- 2.5 mg/kg antibody A06, black filled circles- PBS vehicle control, open
orange diamonds- 25 mg/kg human IgG control.
doi:10.1371/journal.ppat.1000990.g003

Human mAb against Pandemic H1N1

PLoS Pathogens | www.plospathogens.org 5 July 2010 | Volume 6 | Issue 7 | e1000990



Discussion

We previously demonstrated, in vitro, that the A06 antibody

neutralizes a broad range of seasonal H1N1 and avian H5N1

influenza viruses causing human disease. In this study, we extend

these results and demonstrate that the A06 antibody is able to

protect from and treat the antigenically distinct 2009 pandemic

H1N1 virus infection in mouse models and also neutralize the

current seasonal H1N1 Brisbane/59/2007 strain in vitro. These

results provide further evidence for the use of passive immunity as

a weapon against influenza infection.

Passive immunity offers several benefits in comparison to

current chemotherapeutic anti-viral treatment options. First,

passive immunity provides the opportunity to protect at-risk

individuals from infection. At-risk segments of the population

include those who do not mount an immune response to vaccine,

the immunocompromised, those in poor health, pregnant women,

and those in critical care. The potential for long-lasting protection

arising from a single injection of antibodies such as A06 is

appealing. In addition, while orally available drugs are desirable to

reach a larger patient population and increase patient compliance

in courses of treatment, their use in critical care settings involving

the later stages of disease is limited by the route of administration.

Quite simply, injectable therapies are needed for patients that are

unable to receive orally administered anti-influenza treatment.

Current anti-viral treatments provide ease of use and therapeu-

tic benefit early in the course of infection. However, they suffer

from several limitations, namely high rates of resistance, as

exhibited recently in the seasonal H1N1 virus [19]. The

unexpected speed at which the H274Y mutation conferring

oseltamivir resistance took over as the dominant strain in the

2007–2008 influenza season demonstrates the challenges facing

widespread use of anti-viral agents targeting the neuraminidase

protein [3,19,20]. Antibodies such as A06 that attack a highly

conserved region of the hemagglutinin protein and not the

mutagenic hot spots near the receptor binding domain or the

neuraminidase protein may face fewer challenges arising from

mutation. Using the method of Caton, et al [21], we have not been

able to generate escape mutants after multiple attempts using the

A06 antibody on both H1N1 and H5N1 influenza strains,

suggesting that A06 is attacking a conserved, susceptible portion

of the virus (JS, unpublished results). Furthermore, conservation of

the predicted antibody binding site in the 2009 pandemic strain

isolates demonstrates the epitope has not changed significantly

from the time of its emergence in March 2009. It is likely the

ability to tolerate change in the hemagglutinin A-helix/fusion

peptide region may be highly restricted due to functional

constraints, as evidenced by the maintenance of this epitope

across numerous influenza sub-types.

However, an alternative interpretation to this observation is that

the region has not been sufficiently pressured to change and may

mutate when subjected to greater selective pressure, even though

we have not seen it yet in escape mutant analysis. Nevertheless,

even if escape were possible, passive immunization would likely be

highly effective when used in conjunction with other established

therapies to reduce the prospect of viral escape or resistance.

Here we have presented A06 antibody in vitro neutralization

results with numerous H1N1 and H5N1 strains from each sub-

type. Though recent H1N1 strains were neutralized with similar

antibody concentrations, two older strains, A/PR/8/34 and A/

Texas/1991, required substantially higher amounts of antibody to

be effective. Upon further sequence examination of these two

recent strains we have observed potential N-linked glycosylation

sites proximal to the predicted epitope in A/PR/8/34 (amino

acids 285–287) and A/Texas/1991 (amino acids 286–288). It is

possible that glycosylation at theses sites sterically hinders the

antibody and reduces its efficacy in this in vitro system. Further

testing will need to be performed both in vitro and in vivo to evaluate

the relevance of such a potential glycosylation site. Still, all H5N1

strains tested, representing all major clades of highly pathogenic

avian influenza, were effectively neutralized by antibody A06.

Considering the ability of the antibody to neutralize the novel

H1N1 virus, multiple seasonal H1N1 isolates, isolates from all

clades of human H5N1, and that the proposed epitope is highly

conserved amongst the initial sampling of one thousand reported

novel H1N1 hemagglutinin isolates, we predict that A06 will be

active against influenza strains bearing this epitope.

Additional testing is required to determine the efficacy and

utility of passive immunity in man. However, the profile of the A06

antibody and other broadly protective antibodies warrants their

testing in man. Success of such antibodies would justify their use in

cases of local, national, and global crisis. In addition, injectable

administration of antibodies such as A06 could protect critical care

patients unable to receive orally- administered anti-viral therapy.

Use of passive immune therapy in an integrative approach with

anti-viral chemotherapeutics could even decrease the frequency

and speed at which resistance to either agent is generated.

Furthermore, as these types of antibodies were found in large

survivor, vaccinee, and naı̈ve donor combinatorial antibody

libraries, it suggests the mode of activity is immunologically

relevant. As a result, these broadly reactive anti-fusion antibodies

and their protective mechanisms should also be used as an

additional guide in the production and assessment of all future

influenza vaccines.

Table 2. Sequence analysis of novel H1N1 HA isolates shows limited variation in the predicted neutralization epitope.

Accession Strain 18 19 20 21 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 Frequency

ACS45035 A/California/04/2009 V D G W S T Q N A I D E I T N K V N S V I 98.70%

ACS34967 A/Sakai/2/2009 - - - - - - - K - - - - - - - - - - - - - 0.30%

ACY46863 A/Singapore/GP2687/2009 - - - - - - - S - - - - - - - - - - - - - 0.20%

ACY26192 A/Malaysia/820/2009 - - - - - - - D - - - - - - - - - - - - - 0.10%

ACV67229 A/Utah/06/2009 - - - - - - - - P - - - - - - - - - - - - 0.10%

ACQ73385 A/Canada-NS/RV1535/2009 - - - - - - - - - - - - - - - - - - - - V 0.60%

Alignment of hemagglutinin protein from novel H1N1 isolates deposited in the NCBI Influenza Virus Resource was performed using the multiple sequence alignment
application within the database. 1000 full length HA sequences contained in the database on November 11, 2009 were analyzed for variation in HA2 residues previously
shown to be contacted by neutralizing antibodies binding to the stem region [13,17].
doi:10.1371/journal.ppat.1000990.t002
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