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Abstract: Herein, we developed a paper-based smart sensing chip for the real-time, visual, and
non-destructive monitoring of food freshness using a ratiometric aggregation-induced emission (AIE)
luminogen (i.e., H+MQ, protonated 4-(triphenylamine)styryl)quinoxalin-2(1H)-one) as pH sensitive
indicators. Upon exposure to amine vapors, the deprotonation of H+MQ occurs and triggers its color
change from blue to yellow, with the fluorescence redshift from blue to amaranth. Consequently, we
successfully achieved the sensitive detection of ammonia vapors by recording the bimodal color and
fluorescence changes. Given the high sensitivity of H+MQ to ammonia vapor, a paper-based smart
sensor chip was prepared by depositing H+MQ on the commercial qualitative filter paper through a
physical deposition strategy. After being placed inside the sealed containers, the developed H+MQ-
loaded paper chip was applied to the real-time monitoring of biogenic amine contents according
to its color difference and ratio fluorescence change. The detection results were further compared
with those obtained by the high-performance liquid chromatography method, which verified the
feasibility of the designed paper chip for the food spoilage degree evaluation. Briefly, this work
indicates that the designed H+MQ-loaded paper chip could be a promising approach for improving
food freshness monitoring.

Keywords: aggregation-induced emission; fluorescent sensor; paper chip; biogenic amines; food spoilage

1. Introduction

Meat and seafood are widely loved by consumers as major sources of protein, minerals,
and vitamins [1–3]. Due to the restrictions of production and breeding areas, they often need
to be transported all over the world [4]. During the long-term transportation and storage,
inappropriate conditions, such as incorrect temperature, may cause their corruption and
deterioration [5,6], thus resulting in low quality products. Generally, the freshness of meat
and seafood can be judged by sensory score [7], color difference value, texture index [8,9],
total colony count [10], pH value [11], and biogenic amine content [12]. Among them,
biogenic amines (BAs) are widely regarded as direct indicators of food deterioration, owing
to their abnormal accumulation from the degradation of amino acids and the amination of
organic compounds during food spoilage [13]. Therefore, to reduce the adverse effects of
BAs on consumer health, the detection of the biogenic amine content in food products is of
great significance to their freshness monitoring and quality evaluation.
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Currently, the available methods for the detection of BAs mainly include high perfor-
mance liquid chromatography (HPLC) [14], gas chromatography mass spectrometry [15,16],
capillary electrophoresis [17], electrochemical systems [18,19], electronic nose [20–22], and
electronic tongue [23]. However, their widespread use in biogenic amine monitoring is
greatly limited by the requirement of expensive and sophisticated instruments, skilled
technicians, time-consuming operation, and the destructive nature of the samples [24,25].
In recent years, fluorescence sensing technology has attracted more and more attention
in biogenic amine monitoring and freshness evaluation due to its outstanding advan-
tages, such as a high sensitivity, simple operation, fast response speed, low cost, real-time
visualization, and non-destructive monitoring [26]. However, most of the fluorescence
sensors reported so far rely on traditional organic fluorophore as an indicator, and their
fluorescence signals significantly decrease in the solid or aggregated states owing to the
aggregation-caused quenching (ACQ) effect [27], thus causing poor sensing performances,
especially in solid-state sensor applications.

Unlike traditional ACQ fluorophores, fluorogens with aggregation-induced emission
properties (AIEgens) exhibit enhanced emission in solid or aggregated states, making them
suitable as high-performance solid-state fluorescent indicators [28–32]. Taking advantage of
this property, scholars have developed various types of biogenic amine-response AIEgens
and demonstrated their use in food freshness monitoring [33–36]. However, these reported
AIEgens rely mainly on changes in absolute fluorescence intensity and perform poorly
because the detection accuracy is susceptible to factors unrelated to the analyte, such as
fluorogen concentration, instrument parameters, background scattering light and auto-
fluorescence, and external environment variations (e.g., temperature and humidity) [37,38].
In this context, the emergence of ratiometric fluorescent system shows its great potential
as an ideal optical sensor, because ratiometric measurement functions in self-calibrating
signal correction and can enable more accurate detection [39–42].

Herein, we report on a paper-based ratiometric fluorescent sensing chip that uses
a single AIEgen (i.e., H+MQ, protonated 4-(triphenylamine)styryl)quinoxalin-2(1H)-one)
as a biogenic-amine-response indicator and demonstrate its great potential for real-time,
visual, non-destructive monitoring of meat and seafood freshness. When exposed to
amine vapor, the H+MQ molecule is prone to deprotonation and thus regulates its optical
behaviors by altering the donor (D)−acceptor (A) interaction through the intramolecular
charge transfer (ICT) effect. After the biogenic-amine reaction, the initial color of the
prepared paper chip changed from blue to yellow, with its fluorescence red shift from blue
to amaranth. The developed AIEgen-based paper chip can not only provide a fast and
reversible bimodal colorimetric and fluorescence response to ammonia vapor, but can also
realize real-time visualization of the ammonia volatilization process, indicating that the
paper chip can be used for real-time, visual, non-destructive biogenic amine monitoring
and freshness evaluation. By recording the color difference and ratio of fluorescence change,
the relationship between ∆E and FI570nm/FI410nm of paper chips and food freshness was
built by simultaneously analyzing the biogenic amine index (BAI) in chicken, fish, and
shrimp at different storage temperatures (25 ◦C, 4 ◦C, and −20 ◦C). The detection results
were further compared with those obtained by the HPLC method. Collectively, this work
provides a promising AIEgen-based ratiometric smart sensor chip for improving food
freshness monitoring.

2. Materials and Methods
2.1. Materials

Qualitative filter paper, HCl, NaOH, NaHCO3, NaCl, sucrose, glycerinum, ammo-
nia solution (25–28%), dimethyl sulfoxide, dimethylformamide, tetrahydrofuran, ethanol,
methanol, chloroform, dichloromethane, acetonitrile, diethyl ether, acetone, n-butanol, n-
hexane, propyl alcohol, acetic acid, ammonium acetate, sodium glutamate, and trichloroacetic
acid were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).
Dansyl chloride, histamine hydrochloride, β-phenethylamine hydrochloride, tyramine
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hydrochloride, putrescine hydrochloride, cadaverine hydrochloride, tryptamine hydrochlo-
ride, spermine hydrochloride, spermidine hydrochloride, octopamine hydrochloride, and
1,7-diaminoheptane were bought from Aladdin Reagent Inc. (Shanghai, China). Fresh chicken,
weeverfish, and shrimp were obtained from the local supermarket (Nanchang, China).

2.2. Preparation of H+MQ-Loaded Paper Chip

Scheme 1a depicts the preparation of H+MQ-loaded paper chips. Firstly, MQ was
dissolved in dichloromethane with a concentration of 0.5 mg/mL. Then, 3 µL of as-prepared
MQ solution was dropped onto the qualitative filter paper. After drying the filter paper for
2 h at 25 ◦C, 5 µL of HCl solution (3 M) was added dropwise onto the filter paper. After
being dried overnight at 25 ◦C, the H+MQ-loaded paper chip was cut into 1 × 1 cm pieces
and stored at 4 ◦C until further use.

Scheme 1. (a) Schematic illustration of the preparation process of a H+MQ-loaded paper chip. (b) The
protonation and deprotonation process of MQ in the presence of HCl and ammonia. (c) Real-time
and visual monitoring of BAs for food freshness evaluation using the proposed H+MQ -loaded
paper chip.

2.3. Ammonia Response of H+MQ-Loaded Paper Chip

The response behaviors of the H+MQ-loaded paper chip to ammonia were determined
through treatment with different concentrations of ammonia. The color difference (∆E) and
FI570nm/FI410nm of the H+MQ-loaded paper chip were recorded, where ∆E was estimated
from the combined color changes of the L (lightness), a (red/green), and b (yellow/blue)
values, and FI570nm/FI410nm was defined as the ratio of the maximum emission peaks of
MQ at 410 and 570 nm. ∆E was calculated according to the following equation [43]:

∆E = [(L − L0)2 + (a − a0)2 + (b − b0)2]1/2 (1)

where L0, a0, and b0 values are the color values of H+MQ-loaded paper chip before
treatment, while the L, a, and b values are the color values of the H+MQ-loaded paper
chip after treatment. The fluorescence intensity of H+MQ-loaded paper chip was measured
using a fluorescence spectrometer.
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2.4. Stability Analysis of H+MQ-Loaded Paper Chips

The stability of the H+MQ-loaded paper chip was evaluated by recording the changes
of ∆E and FI570nm/FI410nm under different storage conditions, wherein the paper chip was
stored at 25 ◦C, 4 ◦C, and −20 ◦C for 7, 14, and 35 days, respectively.

2.5. Reusability of H+MQ-Loaded Paper Chip

The reusability of the H+MQ-loaded paper chip was investigated by recording the
changes of ∆E and FI570nm/FI410nm after repeated fuming for 3 min with NH3 or HCl
vapors. The recycle treatment with NH3 and HCl was repeated 10 times.

2.6. Freshness Monitoring by Testing BAs with H+MQ-Loaded Paper Chip

The weeverfish, shrimp, and chicken were purchased from a local supermarket, and
were selected as real-world samples for freshness evaluation. As presented in Scheme 1c,
fresh weeverfish, shrimp, and chicken were placed in the inner bottom part of sealed Petri
dishes, while the as-prepared paper chips were placed in the inner top of the containers,
thus effectively avoiding direct contact between the sample and the chip. Subsequently, all
containers were sealed and maintained at different temperatures (−20 ◦C, 4 ◦C, and 25 ◦C)
for the corresponding times. During the period, the changes in the color and fluorescence of
the chips were recorded at regular intervals by using a phone and a fluorescence spectrom-
eter. In addition, all samples were collected for the measurement of each biogenic amine
(BAI) and total amines using the HPLC method according to the national standard method
of the People’s Republic of China (GB5009.208-2016). The procedure of HPLC detection is
described in the Supporting Information. All samples were determined in triplicate.

3. Results and Discussion
3.1. Characterization and Photophysical Properties of MQ

Scheme 1b shows the structural formula of MQ, in which triphenylamine and quinoxaline-
2(1H)one were selected as electron-donor (D) and electron-accepting (A) units, respectively,
thus creating a classical D–A structure. MQ was synthesized by Knoevenagel reactions of
methylquinoxalin-2(1H)-one and 4-formyltriphenylamine [44] and was confirmed with
nuclear magnetic resonance techniques in our previous publication [45]. The photophysical
properties of MQ were then studied. The solvent effect of MQ was first investigated in
different polar organic solvents at room temperature. Figure S1a shows that the fluorescent
spectra of MQ varied with the polarity of the solvent due to the ICT effect caused by its
D–A structure. The AIE effect of MQ was then investigated by collecting the UV−VIS
absorption and fluorescent spectra in a mixed solution of methanol/water with different
water fractions. Figure S1b,c shows that with increasing the water fraction from 0 to 80%,
the fluorescent intensity at 570 nm gradually increased, and the maximum emission peak
first blueshifted with the water fraction ranging from 0 to 40%, and then redshifted with
the continuous increase of water fraction. This phenomenon is due to the enhanced ICT
effect when increasing the solvent polarity. Notably, with further increasing the water
fraction to 90%, the fluorescence emission of MQ increased obviously, which is attributed
to the formation of aggregates in high water fractions, thus resulting in the restriction of
intramolecular motion to activate the AIE effect. These results indicate that MQ has typical
AIE and ICT characteristics.

Previous research has demonstrated that the optical properties of the D–A structure
molecules are tunable by protonation on the donor/acceptor to alter the D–A interac-
tion [33,46], thus causing a blue/redshifted emission. Considering this, we investigated the
effect of the donor/acceptor protonation on the UV−VIS absorption and fluorescent spectra
of MQ. As shown in Scheme 1b, MQ first reacted with HCl to form the protonated MQ
(i.e., H+MQ). With the donor protonation of MQ, the maximum absorption and emission
peaks at 446 nm and 606 nm moved to 590 nm and 490 nm (Figure S1d,e), respectively.
The results are consistent with the fluorescent variations of MQ against the pH values
(Figure S1f), thus providing a basis for biogenic amine detection. The possible reason is
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that the protonation of the imine unit from the triphenylamine donor weakened the D–A
interaction, thus activating the ICT effect of MQ.

3.2. Preparation and Characterization of the H+MQ-Loaded Paper Chip

MQ is almost non-emissive in solution but shows high-efficiency luminescence in
aggregated or solid state, which makes it have a great application potential in solid-phase
support. Therefore, the H+MQ-loaded paper chip was prepared to investigate the capability
of the system for sensing amine vapors in the solid state. Qualitative filter papers were
chosen as solid phase carriers because of their porous structures and excellent loading
and adsorption capacity. The MQ-loaded paper chip was first prepared by depositing MQ
solution on the filter paper. The MQ-deposited paper chip was then treated with different
concentrations of HCl ranging from 0 to 6 M. The results in Figure 1a show that the MQ-
deposited paper chip has similar pH responses in color and fluorescence to those for the
MQ solution. The photoluminescence spectra of the MQ-loaded paper chip showed that
the fluorescence intensity at 410 nm (FI410nm) increased gradually with the increase of HCl
concentration from 0 to 6 M, while the fluorescence intensity at 570 nm (FI570nm) decreased.
These results indicate that the loading of MQ on the filter paper would not affect its pH-
response optical properties, and the prepared MQ-loaded paper chip could be used as a
ratiometric and colorimetric indicator to detect amine vapors. To achieve the obvious color
change and the best amine response, the concentrations of MQ and HCl for preparing the
H+MQ-loaded paper chip were optimized using a similar checkerboard titration method
under different MQ concentrations of 0.06–1 mg/mL with changing HCl concentrations
from 0.38 to 6 M. Figure 1b shows that the optimal concentration combinations for MQ
and HCl were 0.5 mg/mL and 3 M, respectively. Under the developed condition, the
storage stability of the H+MQ-loaded paper chip was investigated by treating this paper
chip with different concentrations of HCl, as it is essential for long-term food freshness
monitoring. Figure S2a revealed the color and fluorescence changes of the H+MQ-loaded
paper chip within 15 days of storage. The results showed the color of the H+MQ-loaded
paper chip changed to yellow with the fluorescence shifting to amaranth after 5 days of
storage under all HCl-treated concentrations, which was further verified by the variations
of ∆E and FI570nm/FI410nm ( Figure S2b,c). Several possible reasons are responsible for these
phenomena: (i) the protonation of MQ by HCl takes a certain time due to the diffusion and
penetration of acid on the paper chip; (ii) the qualitative filter paper has a limited loading
content of HCl; and (iii) the formed H+MQ suffers the risk of deprotonation during paper
chip storage because of the volatility of HCl, thus resulting in the invalidity of the paper
chip for the ammonia response.

To improve the long-term storage stability of the prepared H+MQ-loaded paper chip,
an HCl solution containing 5% glycerinum and 5% sucrose was suggested to treat the
MQ-loaded filter paper, as this could increase the acid loading content and reduce the
volatilization of HCl. As can be seen from Figure 1c, when the concentration of HCl
was greater than 3 M, the color and fluorescence changes of the obtained H+MQ-loaded
paper chip were negligible during the storage period of 15 days. Figure 1d,e shows that
the ∆E and FI570nm/FI410nm of the obtained paper chip decreased sharply first with HCl
treatment, and then reached a constant during the observation period. These results
indicated that the H+MQ-loaded paper chip has a good storage stability. Subsequently, we
further investigated the stability of the MQ-loaded paper chip stored at 25 ◦C, 4 ◦C, and
−20 ◦C, respectively. Figure S3 shows that no obvious changes were observed for the L,
a, and b values when the paper chips were stored at 25 ◦C for 7 days, 4 ◦C for 14 days,
and −20 ◦C for 35 days. The above results indicated the applicability of paper chips for
long-term real-time freshness monitoring at different temperatures.

Encouragingly, the ammonia response behavior of the H+MQ-loaded paper chip was
studied by exposing it to different concentrations of ammonia vapor, ranging from 0.00045
to 7.5 M. Figure 2a exhibits the changes of color and fluorescence of the H+MQ-loaded
paper chip with an ammonia concentration. With the increase of ammonia concentration
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from 0.00045 to 7.5 M, the color of the paper chip changed from blue to yellow, and the
fluorescence changed from blue to amaranth. For colorimetric detection, the change of
∆E to ammonia concentration is shown in Figure 2b. The ∆E of the paper chip increased
gradually with the increase of ammonia concentration, and there was a good linear relation-
ship between them in the ammonia concentration range of 0.00183–0.05859 M (R2 = 0.9886).
The detection limit (LOD) for colorimetric response was 0.00107 M according to the mean
plus three-fold standard deviations of 20 negative samples. For fluorescent detection,
Figure S4 shows the fluorescent spectra of the MQ-loaded paper chip after exposure to
different concentrations of ammonia vapor. With the increase in ammonia concentration,
the emission peak at 410 nm gradually decreased, and that at 570 nm gradually increased.
Consequently, the variation of FI570nm/FI410nm to ammonia concentration is displayed in
Figure 2c, wherein FI570nm/FI410nm increased with the increase of ammonia concentration,
and an excellent linearity was obtained between FI570nm/FI410nm and the logarithm of
ammonia concentration ranging from 0.00183 to 7.5 M (R2 = 0.9899). The LOD for the fluo-
rescence response was 0.00180 M. These results indicate that the prepared MQ-loaded paper
chip is suitable for sensitive freshness monitoring by measuring its color and fluorescence
response to ammonia.

Figure 1. (a) Photoluminescence spectra of the H+MQ-loaded paper chip in response to different
HCl concentrations. (b) Optimization of HCl and MQ deposited on the paper chip. (c) Photographs,
(d) DE, and (e) FI570nm/FI410nm of the H+MQ-loaded paper chip when treated with 5% glycerinum
and 5% sucrose during storage.

The reversibility and reusability were further tested by alternately exposing the MQ-
loaded paper chip to ammonia and HCl for multiple cycles. As shown in Figure S5,
when paper chips were exposed to ammonia vapor, their color turned yellow, and their
fluorescence changed from blue to amaranth. On the contrary, when paper chips were
moved to the HCl atmosphere, the color and fluorescence of the paper chip returned to
the original state after being fumigated by HCl. More importantly, the constructed paper
chips exhibited negligible changes in the color and fluorescence, even after ten cycles. The
reason for its reversibility is that the protonation and deprotonation of MQ are essentially
reversible, thus providing an opportunity for reversible regulation of its optical properties.
The results implied that the H+MQ-loaded paper chip has a good stability, ammonia
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reactivity, reversibility, and reusability, and has a good application prospect in developing
a pH-response sensing system for food freshness monitoring.

Figure 2. The color and fluorescence changes of the H+MQ-loaded paper chip in response to varied
concentrations of ammonia. (a) Photographs, (b) ∆E, and (c) FI570nm/FI410nm of the reacted paper
chips under different ammonia concentrations.

3.3. Monitoring of Meat and Seafood Freshness

Encouraged by the above results, we further verified the feasibility of testing ammonia
vapors from spoiled meat and seafood. To obtain the best sensitivity of H+MQ-loaded
paper chips, the weights of meat and seafood for freshness monitoring were first optimized
through determining the ammonia vapors generated from different weights of chicken,
weeverfish, and shrimp (10, 20, 30, 40, and 50 g) at different time points using the prepared
H+MQ-loaded paper chip at room temperature. Figure S6a–c reveals that the color of paper
chips varied from blue to yellow over time at all given weights of chicken, weeverfish, and
shrimp. Notably, the color response time of the H+MQ -loaded paper chips was shorter
as the weight of meat and seafood increased, which is due to the production of more BAs.
The corresponding ∆E variations against weight and time are shown in Figure S6d–f. The
results show that the ∆E values of the paper chips were the highest when the weight of
the meat and seafood was 40 g, suggesting that 40 g was the optimal weight for meat and
seafood freshness monitoring.

Under the optimal condition, the prepared H+MQ-loaded paper chips were then
employed as an indicator to monitor food freshness. Fresh chicken, weeverfishs, and
shrimp (40 g) were put in sealed Petri dishes, and the paper chips were put in the inner
top to monitor the production of ammonia vapors under different storage temperatures.
The prototypes and corresponding fluorescence images of the paper chips under daylight
and ultraviolet light are summarized in Figure 3. The results indicate that with the increase
of storage temperature from −20 ◦C to 25 ◦C, the time for producing a distinct color and
fluorescence change of the paper chips was gradually shortened. Meat and seafood samples
were stored at 4 ◦C for 1 day, and obvious color and fluorescence responses were observed,
while when stored at 25 ◦C they only required 5–7 h. Notably, when stored at −20 ◦C, no
significant changes were observed. These findings suggest that a high storage temperature
is beneficial to the production of BAs from meat and seafood samples, thus triggering the
corresponding color and fluorescence changes of the H+MQ indicator due to its protonation.
Subsequently, we further collected ∆E and FI570nm/FI410nm variations and the results are
summarized in Tables S1–S9 for the succeeding analysis.
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Figure 3. Real-time and visual monitoring of BAs produced from chicken, weeverfish, and shrimp
at different storage temperatures of 25 ◦C, 4 ◦C, and −20 ◦C. The first two paper chips in each dish
indicate the experimental group and the last paper chip indicates the control group.

HPLC has a high sensitivity and reliability, which is widely regarded as a reference
method for the determination of BAs in the spoilage of food [47,48]. Therefore, for com-
parison, we selected HPLC to simultaneously monitor biogenic amine production. A key
indicator, BAI, which is the sum (mg/kg) of the concentrations of putrescine, cadaverine,
histamine, and tyramine, was used to evaluate the meat and seafood quality, wherein
BAI > 50 mg/kg indicates spoilage [49,50]. The species and content of BAs in chicken,
weeverfish, and shrimp at different storage temperatures (25 ◦C, 4 ◦C, and −20 ◦C) were
determined and quantified by the HPLC method (Figures S7 and S8), and the correspond-
ing results are shown in Figure 4 and Tables S1–S9. The real-time color and fluorescence
changes of the H+MQ-loaded paper chips were recorded (Figure 3), and the corresponding
∆E and FI570nm/FI410nm are summarized in Table S1–S9. As shown in Figure 3, the H+MQ-
loaded paper chips showed obvious color and fluorescence changes with the increase in
storage time, which can be clearly distinguished by the naked eye compared with the
initial color and fluorescence. The paper chips changed to yellow from the initial blue
with ∆E of 23.17 ± 2.10 and FI570nm/FI410nm of 0.078 ± 0.002 after 11 h (Table S1). At
this point, the BAI value of the chicken increased from 0 mg/kg to 51.23 ± 2.32 mg/kg,
indicating that the chicken had spoiled. With further extending the storage time, the BAI
value continued to increase, thus resulting in further increases of ∆E and FI570nm/FI410nm.
Similar results were observed for weeverfish and shrimp for storage at 25 ◦C; however, a
shorter storage time of 8 h for weeverfish (Table S2) and 7 h for shrimp (Table S3) could
result in a BAI value over 50 mg/kg, suggesting the spoilage of weeverfish and shrimp
samples. At this point, the ∆E and FI570nm/FI410nm of paper chips were 28.90 ± 1.24 and
0.085 ± 0.003 for weeverfish, and 25.36 ± 0.91 and 0.081 ± 0.004 for shrimp. When fresh
samples of chicken, weeverfish, and shrimp were stored at 4 ◦C for 5, 3 and 3 days, the
original blue of the paper chip changed to yellow with the fluorescence changing from
blue to amaranth (Figure 3). As can be seen from Tables S4–S6, the ∆E values for chicken,
weeverfish, and shrimp were 32.65 ± 0.64, 29.63 ± 2.15, and 30.66 ± 2.13, respectively, and
the FI570nm/FI410nm values were 0.114 ± 0.003, 0.091 ± 0.002, and 0.106 ± 0.004, respec-
tively. At these time points, the BAI values of the three samples were higher than 50 mg/kg,
indicating that the meat and seafood had spoiled. After being kept at −20 ◦C for 35 days,
the BAI values of the three food samples were less than 50 mg/kg (Tables S7–S9). The color
and fluorescence of the corresponding paper chips hardly changed (Figure 3), thus leading
to ∆E and FI570nm/FI410nm values less than 10.10 and 0.013, respectively. These results
indicate that the chicken, weeverfish, and shrimp were still fresh. Notably, the color and
fluorescence changes of the chicken were slower than those of the weeverfish and shrimp,
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indicating that the freshness of chicken was longer than those of weeverfish and shrimp
under the same storage conditions. In addition, the ∆E and FI570nm/FI410nm of paper chips
used for spoilage indication are different among the three samples (Tables S1–S9), which
may be attributed to differences in the species and amounts of BAs produced by different
foods [51] and microorganisms. Taken together, these results confirm that the fabricated
H+MQ-loaded paper chip can act as an effective indicator for real-time and nondestruc-
tive monitoring of packaged food freshness. Moreover, Table S10 provided an overview
about the performance of the proposed sensing system compared with previously reported
methods for BAs detection.

Figure 4. Real-time BAI monitoring of chicken, weeverfish, and shrimp at different storage tempera-
tures using the HPLC method: (a) 25 ◦C, (b) 4 ◦C, and (c) −20 ◦C. The red dashed line shows the BAI
concentration of 50 mg/kg, which indicates spoilage.

4. Conclusions

In conclusion, we successfully developed a paper-based smart sensor chip by de-
positing H+MQ on the qualitative filter paper using the physical deposition method. The
prepared paper chip showed an excellent bimodal colorimetric and fluorescence response
to amine vapors based on the deprotonation of H+MQ. Using this characteristic, H+MQ
was used as amine-response indicators for the sensitive detection of biogenic amine con-
tents in three different meat and seafood products at different storage temperatures. The
H+MQ-loaded paper chip can effectively distinguish the food freshness based on its color
difference and the ratio of fluorescence change. The relationship between the ∆E and
FI570nm/FI410nm of paper chips and food freshness was constructed by simultaneously
measuring the biogenic amine contents in packaged food using HPLC and the developed
method. The ∆E and FI570nm/FI410nm of paper chips increased with the increase in spoilage
degree, showing the feasibility of the designed H+MQ-loaded paper chip for evaluating the
food spoilage degree. Thus, this work provides a promising smart sensor chip using a pH
stimuli AIEgen as bimodal indicators, which can be easily applied to sensitive detection of
food spoilage for real-time, visual, and non-destructive monitoring of food freshness.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/foods11070932/s1. Figure S1: The photophysical properties of MQ. Figure S2: The sta-
bility of H+MQ-loaded paper chip treated with different concentration of HCl during the storage.
Figure S3: The stability of H+MQ-loaded paper chip at different storage temperatures. Figure S4:
Photoluminescence spectra of H+MQ-loaded paper chip in response to different concentrations
of ammonia. Figure S5: The reversibility evaluation of H+MQ-loaded paper chip by alternately
exposing it to ammonia (0.03 M) and HCl (3 M) for ten cycles. Figure S6: Optimization of the food
weights (10, 20, 30, 40 and 50 g) for biogenic amine monitoring. Figure S7: HPLC chromatograms
of mixed standard BAs of different concentration. Figure S8: Standard curves of nine standard BAs
with peak areas against the concentrations of standard BAs. Table S1: Changes of BAs in chicken
during storage and corresponding ∆E and FI570nm/FI410nm of H+MQ-loaded paper chip. Table S2:
Changes of BAs in weeverfish during storage and corresponding ∆E and FI570nm/FI410nm of H+MQ-
loaded paper chip. Table S3: Changes of BAs in shrimp during storage and corresponding ∆E and
FI570nm/FI410nm of H+MQ-loaded paper chip. Table S4: Changes of BAs in chicken during storage
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and corresponding ∆E and FI570nm/FI410nm of H+MQ-loaded paper chip. Table S5: Changes of BAs
in weeverfish during storage and corresponding ∆E and FI570nm/FI410nm of H+MQ-loaded paper
chip. Table S6: Changes of BAs in shrimp during storage and corresponding ∆E and FI570nm/FI410nm
of H+MQ-loaded paper chip. Table S7: Changes of BAs in chicken during storage and corresponding
∆E and FI570nm/FI410nm of H+MQ-loaded paper chip. Table S8: Changes of BAs in weeverfish during
storage and corresponding ∆E and FI570nm/FI410nm of H+MQ-loaded paper chip. Table S9: Changes
of BAs in shrimp during storage and corresponding ∆E and FI570nm/FI410nm of H+MQ-loaded paper
chip. Table S10: Comparison of the proposed sensing system with other reported methods for BAs
detection. References [46,52–57] are cited in the Table S10.
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16. Ščavničar, A.; Rogelj, I.; Kočar, D.; Köse, S.; Pompe, M. Determination of biogenic amines in cheese by ion chromatography with
tandem mass spectrometry detection. J. AOAC Int. 2018, 101, 1542–1547. [CrossRef] [PubMed]

17. Adımcılar, V.; Öztekin, N.; Erim, F.B. A direct and sensitive analysis method for biogenic amines in dairy products by capillary
electrophoresis coupled with contactless conductivity detection. Food Anal. Methods 2017, 11, 1374–1379. [CrossRef]

18. Bibi, F.; Guillaume, C.; Gontard, N.; Sorli, B. Wheat gluten, a bio-polymer to monitor carbon dioxide in food packaging: Electric
and dielectric characterization. Sens. Actuators B Chem. 2017, 250, 76–84. [CrossRef]

19. Saetia, K.; Schnorr, J.M.; Mannarino, M.M.; Kim, S.Y.; Rutledge, G.C.; Swager, T.M.; Hammond, P.T. Spray-layer-by-layer carbon
nanotube/electrospun fiber electrodes for flexible chemiresistive sensor applications. Adv. Funct. Mater. 2014, 24, 492–502.
[CrossRef]

20. Andre, R.S.; Facure, M.H.; Mercante, L.A.; Correa, D.S. Electronic nose based on hybrid free-standing nanofibrous mats for meat
spoilage monitoring. Sens. Actuators B Chem. 2022, 353, 131114. [CrossRef]

21. Kim, K.H.; Park, C.S.; Park, S.J.; Kim, J.; Seo, S.E.; An, J.E.; Ha, S.; Bae, J.; Phyo, S.; Lee, J.; et al. In-situ food spoilage monitoring
using a wireless chemical receptor-conjugated graphene electronic nose. Biosens. Bioelectron. 2022, 200, 113908. [CrossRef]
[PubMed]

22. Oh, J.; Yang, H.; Jeong, G.E.; Moon, D.; Kwon, O.S.; Phyo, S.; Lee, J.; Song, H.S.; Park, T.H.; Jang, J. Ultrasensitive, selective, and
highly stable bioelectronic nose that detects the liquid and gaseous cadaverine. Anal. Chem. 2019, 91, 12181–12190. [CrossRef]
[PubMed]

23. Gil, L.; Barat, J.M.; Escriche, I.; Garcia-Breijo, E.; Martínez-Máñez, R.; Soto, J. An electronic tongue for fish freshness analysis using
a thick-film array of electrodes. Mikrochim. Acta 2008, 163, 121–129. [CrossRef]

24. Sentellas, S.; Nuñez, O.; Saurina, J. Recent advances in the determination of biogenic amines in food samples by (U)HPLC. J. Agric.
Food Chem. 2016, 64, 7667–7678. [CrossRef]

25. Venkatesh, S.; Yeung, C.-C.; Li, T.; Lau, S.C.; Sun, Q.-J.; Li, L.-Y.; Li, J.H.; Lam, M.H.; Roy, V.A. Portable molecularly imprinted
polymer-based platform for detection of histamine in aqueous solutions. J. Hazard. Mater. 2021, 410, 124609. [CrossRef]

26. Umapathi, R.; Sonwal, S.; Lee, M.J.; Rani, G.M.; Lee, E.-S.; Jeon, T.-J.; Kang, S.-M.; Oh, M.-H.; Huh, Y.S. Colorimetric based on-site
sensing strategies for the rapid detection of pesticides in agricultural foods: New horizons, perspectives, and challenges. Coord.
Chem. Rev. 2021, 446, 214061. [CrossRef]

27. Hong, Y.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361–5388. [CrossRef]
28. Hu, R.; Leung, N.L.C.; Tang, B.Z. AIE macromolecules: Syntheses, structures and functionalities. Chem. Soc. Rev. 2014,

43, 4494–4562. [CrossRef]
29. Li, J.; Gao, H.; Liu, R.; Chen, C.; Zeng, S.; Liu, Q.; Ding, D. Endoplasmic reticulum targeted AIE bioprobe as a highly efficient

inducer of immunogenic cell death. Sci. China Chem. 2020, 63, 1428–1434. [CrossRef]
30. Song, Y.; Zong, L.; Zhang, L.; Li, Z. To form AIE product with the target analyte: A new strategy for excellent fluorescent probes,

and convenient detection of hydrazine in seconds with test strips. Sci. China Chem. 2017, 60, 1596–1601. [CrossRef]
31. Yuan, W.Z.; Lu, P.; Chen, S.; Lam, J.W.Y.; Wang, Z.; Liu, Y.; Kwok, H.S.; Ma, Y.; Tang, B.Z. Changing the behavior of chromophores

from aggregation-caused quenching to aggregation-induced emission: Development of highly efficient light emitters in the solid
state. Adv. Mater. 2010, 22, 2159–2163. [CrossRef] [PubMed]

32. Zhang, R.; Huang, X.; Chen, C.; Kwok, R.T.; Lam, J.W.; Tang, B.Z. AIEgen for cancer discrimination. Mater. Sci. Eng. R Rep. 2021,
146, 100649. [CrossRef]

33. Alam, P.; Leung, N.L.C.; Su, H.; Qiu, Z.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. A highly sensitive bimodal detection of amine
vapours based on aggregation induced emission of 1,2-dihydroquinoxaline derivatives. Chem. Eur. J. 2017, 23, 14911–14917.
[CrossRef]

34. Gao, M.; Li, S.; Lin, Y.; Geng, Y.; Ling, X.; Wang, L.; Qin, A.; Tang, B.Z. Fluorescent light-up detection of amine vapors based on
aggregation-induced emission. ACS Sens. 2015, 1, 179–184. [CrossRef]

35. Hou, J.; Du, J.; Hou, Y.; Shi, P.; Liu, Y.; Duan, Y.; Han, T. Effect of substituent position on aggregation-induced emission, customized
self-assembly, and amine detection of donor-acceptor isomers: Implication for meat spoilage monitoring. Spectrochim. Acta Part A
Mol. Biomol. Spectrosc. 2018, 205, 1–11. [CrossRef] [PubMed]

36. Huang, X.; Guo, Q.; Zhang, R.; Zhao, Z.; Leng, Y.; Lam, J.W.Y.; Xiong, Y.; Tang, B.Z. AIEgens: An emerging fluorescent sensing
tool to aid food safety and quality control. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2297–2329. [CrossRef]

37. Huang, X.; He, Z.; Guo, D.; Liu, Y.; Song, J.; Yung, B.C.; Lin, L.; Yu, G.; Zhu, J.-J.; Xiong, Y.; et al. “Three-in-one” nanohybrids as
synergistic nanoquenchers to enhance no-wash fluorescence biosensors for ratiometric detection of cancer biomarkers. Theranostics
2018, 8, 3461–3473. [CrossRef]

38. Huang, X.; Song, J.; Yung, B.C.; Huang, X.; Xiong, Y.; Chen, X. Ratiometric optical nanoprobes enable accurate molecular detection
and imaging. Chem. Soc. Rev. 2018, 47, 2873–2920. [CrossRef]

39. Fu, Y.; Zhang, X.; Cao, F.; Wang, W.; Qian, G.; Zhang, J. Target-activated and ratiometric photochromic probe for “double-check”
detection of toxic thiols in live cells. Sci. China Chem. 2019, 62, 1204–1212. [CrossRef]

http://doi.org/10.1002/jssc.201600893
http://www.ncbi.nlm.nih.gov/pubmed/27753266
http://doi.org/10.5740/jaoacint.16-0006
http://www.ncbi.nlm.nih.gov/pubmed/29571305
http://doi.org/10.1007/s12161-017-1122-9
http://doi.org/10.1016/j.snb.2017.03.164
http://doi.org/10.1002/adfm.201302344
http://doi.org/10.1016/j.snb.2021.131114
http://doi.org/10.1016/j.bios.2021.113908
http://www.ncbi.nlm.nih.gov/pubmed/34972042
http://doi.org/10.1021/acs.analchem.9b01068
http://www.ncbi.nlm.nih.gov/pubmed/31478373
http://doi.org/10.1007/s00604-007-0934-5
http://doi.org/10.1021/acs.jafc.6b02789
http://doi.org/10.1016/j.jhazmat.2020.124609
http://doi.org/10.1016/j.ccr.2021.214061
http://doi.org/10.1039/c1cs15113d
http://doi.org/10.1039/C4CS00044G
http://doi.org/10.1007/s11426-020-9846-4
http://doi.org/10.1007/s11426-017-9116-2
http://doi.org/10.1002/adma.200904056
http://www.ncbi.nlm.nih.gov/pubmed/20564253
http://doi.org/10.1016/j.mser.2021.100649
http://doi.org/10.1002/chem.201703253
http://doi.org/10.1021/acssensors.5b00182
http://doi.org/10.1016/j.saa.2018.07.021
http://www.ncbi.nlm.nih.gov/pubmed/30007896
http://doi.org/10.1111/1541-4337.12591
http://doi.org/10.7150/thno.25179
http://doi.org/10.1039/C7CS00612H
http://doi.org/10.1007/s11426-019-9490-x


Foods 2022, 11, 932 12 of 12

40. Guo, J.; Yuan, H.; Chen, Y.; Chen, Z.; Zhao, M.; Zou, L.; Liu, Y.; Liu, Z.; Zhao, Q.; Guo, Z.; et al. A ratiometric fluorescent sensor
for tracking Cu(I) fluctuation in endoplasmic reticulum. Sci. China Ser. B Chem. 2019, 62, 465–474. [CrossRef]

41. Wu, S.; Min, H.; Shi, W.; Cheng, P. Multicenter metal–organic framework-based ratiometric fluorescent sensors. Adv. Mater. 2019,
32, 1805871. [CrossRef] [PubMed]

42. Zhang, W.; Wang, H.; Li, F.; Chen, Y.; Kwok, R.T.K.; Huang, Y.; Zhang, J.; Hou, J.; Tang, B.Z. A ratiometric fluorescent probe based
on AIEgen for detecting HClO in living cells. Chem. Commun. 2020, 56, 14613–14616. [CrossRef] [PubMed]

43. Ohta, N. Correspondence between CIELAB and CIELUV color differences. Color Res. Appl. 1977, 2, 178–182. [CrossRef]
44. Caicedo, M.; Echeverry, C.A.; Guimarães, R.R.; Ortiz, A.; Araki, K.; Insuasty, B. Microwave assisted synthesis of a series of

charge-transfer photosensitizers having quinoxaline-2(1H)-one as anchoring group onto TiO2 surface. J. Mol. Struct. 2017,
1133, 384–391. [CrossRef]

45. Tu, Y.; Yu, Y.; Xiao, D.; Liu, J.; Zhao, Z.; Liu, Z.; Lam, J.W.Y.; Tang, B.Z. An intelligent AIEgen with nonmonotonic multiresponses
to multistimuli. Adv. Sci. 2020, 7, 2001845. [CrossRef]

46. Jiang, Y.; Zhong, Z.; Ou, W.; Shi, H.; Alam, P.; Tang, B.Z.; Qin, J.; Tang, Y. Semi-quantitative evaluation of seafood spoilage using
filter-paper strips loaded with an aggregation-induced emission luminogen. Food Chem. 2020, 327, 127056. [CrossRef]

47. He, S.; Chen, Y.; Yang, X.; Gao, J.; Su, D.; Deng, J.; Tian, B. Determination of biogenic amines in Chub Mackerel from different
storage methods. J. Food Sci. 2020, 85, 1699–1706. [CrossRef]

48. Lázaro, C.A.; Conte-Junior, C.; Cunha, F.L.; Marsico, E.T.; Mano, S.B.; Franco, R.M. Validation of an HPLC methodology for the
identification and quantification of biogenic amines in chicken meat. Food Anal. Methods 2013, 6, 1024–1032. [CrossRef]

49. Durlu-Özkaya, F.; Ayhan, K.; Vural, N. Biogenic amines produced by Enterobacteriaceae isolated from meat products. Meat Sci.
2001, 58, 163–166. [CrossRef]

50. Hernández-Jover, T.; Izquierdo-Pulido, M.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Biogenic amine sources in cooked cured
shoulder pork. J. Agric. Food Chem. 1996, 44, 3097–3101. [CrossRef]

51. Naila, A.; Flint, S.; Fletcher, G.; Bremer, P.; Meerdink, G. Control of biogenic amines in food-existing and emerging approaches.
J. Food Sci. 2010, 75, R139–R150. [CrossRef] [PubMed]

52. Lapenna, A.; Dell’Aglio, M.; Palazzo, G.; Mallardi, A. “Naked” gold nanoparticles as colorimetric reporters for biogenic amine
detection. Colloids Surf. A Physicochem. Eng. Asp. 2020, 600, 124903. [CrossRef]

53. Diaz, Y.J.; Page, Z.A.; Knight, A.S.; Treat, N.J.; Hemmer, J.R.; Hawker, C.J.; Read de Alaniz, J. A versatile and highly selective
colorimetric sensor for the detection of amines. Chem. Eur. J. 2017, 23, 3562–3566. [CrossRef]

54. Luo, Q.; Zhang, Y.; Zhou, Y.; Liu, S.G.; Gao, W.; Shi, X. Portable functional hydrogels based on silver metallization for visual
monitoring of fish freshness. Food Control 2021, 123, 107824. [CrossRef]

55. Meng, Y.; Yuan, C.; Du, C.; Jia, K.; Liu, C.; Wang, K.-P.; Chen, S.; Hu, Z.-Q. A coumarin-based portable fluorescent probe for rapid
turn-on detection of amine vapors. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 262, 120152. [CrossRef]

56. Jin, Y.-J.; Kwak, G. Detection of biogenic amines using a nitrated conjugated polymer. Sens. Actuators B Chem. 2018, 271, 183–188.
[CrossRef]

57. Kang, S.; Wang, H.; Guo, M.; Zhang, L.; Chen, M.; Jiang, S.; Li, X.; Jiang, S. Ethylene-vinyl Alcohol Copolymer–Montmorillonite
Multilayer Barrier Film Coated with Mulberry Anthocyanin for Freshness Monitoring. J. Agric. Food Chem. 2018, 66, 13268–13276.
[CrossRef]

http://doi.org/10.1007/s11426-018-9424-8
http://doi.org/10.1002/adma.201805871
http://www.ncbi.nlm.nih.gov/pubmed/30790371
http://doi.org/10.1039/D0CC06582J
http://www.ncbi.nlm.nih.gov/pubmed/33150877
http://doi.org/10.1002/col.5080020407
http://doi.org/10.1016/j.molstruc.2016.12.021
http://doi.org/10.1002/advs.202001845
http://doi.org/10.1016/j.foodchem.2020.127056
http://doi.org/10.1111/1750-3841.15146
http://doi.org/10.1007/s12161-013-9565-0
http://doi.org/10.1016/S0309-1740(00)00144-3
http://doi.org/10.1021/jf960250s
http://doi.org/10.1111/j.1750-3841.2010.01774.x
http://www.ncbi.nlm.nih.gov/pubmed/21535566
http://doi.org/10.1016/j.colsurfa.2020.124903
http://doi.org/10.1002/chem.201700368
http://doi.org/10.1016/j.foodcont.2020.107824
http://doi.org/10.1016/j.saa.2021.120152
http://doi.org/10.1016/j.snb.2018.05.091
http://doi.org/10.1021/acs.jafc.8b05189

	Introduction 
	Materials and Methods 
	Materials 
	Preparation of H+MQ-Loaded Paper Chip 
	Ammonia Response of H+MQ-Loaded Paper Chip 
	Stability Analysis of H+MQ-Loaded Paper Chips 
	Reusability of H+MQ-Loaded Paper Chip 
	Freshness Monitoring by Testing BAs with H+MQ-Loaded Paper Chip 

	Results and Discussion 
	Characterization and Photophysical Properties of MQ 
	Preparation and Characterization of the H+MQ-Loaded Paper Chip 
	Monitoring of Meat and Seafood Freshness 

	Conclusions 
	References

