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Breast cancer (BC) is the most common type of cancer in women and, in most cases, it is
hormone-dependent (HD), thus relying on ovarian hormone activation of intracellular
receptors to stimulate tumor growth. Endocrine therapy (ET) aimed at preventing hormone
receptor activation is the primary treatment strategy, however, about half of the patients,
develop resistance in time. This involves the development of hormone independent
tumors that initially are ET-responsive (HI), which may subsequently become resistant
(HIR). The mechanisms that promote the conversion of HI to HIR tumors are varied and
not completely understood. The aim of this work was to characterize the metabolic
adaptations accompanying this conversion through the analysis of the polar metabolomes
of tumor tissue and non-compromised mammary gland from mice implanted
subcutaneously with HD, HI and HIR tumors from a medroxyprogesterone acetate
(MPA)-induced BC mouse model. This was carried out by nuclear magnetic resonance
(NMR) spectroscopy of tissue polar extracts and data mining through multivariate and
univariate statistical analysis. Initial results unveiled marked changes between global tumor
profiles and non-compromised mammary gland tissues, as expected. More importantly,
specific metabolic signatures were found to accompany progression from HD, through HI
and to HIR tumors, impacting on amino acids, nucleotides, membrane percursors and
metabolites related to oxidative stress protection mechanisms. For each transition, sets of
polar metabolites are advanced as potential markers of progression, including acquisition
of resistance to ET. Putative biochemical interpretation of such signatures are proposed
and discussed.

Keywords: endocrine-related breast cancer, murine model, metabolomics, metabonomics, therapy
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INTRODUCTION

Breast cancer (BC) accounts for nearly 25% of diagnosed cancer
cases in womenworldwide, causing the highest number of deaths by
cancer in this population. About 70% of all BC cases express
estrogen receptor a (ERa) and progesterone receptor (PR), being
referred to as hormone receptor (HR)-positive BC (1). Since HR-
positive breast tumors depend on activation of ERa to sustain
growth, most endocrine therapies target the ER signalling pathway
(2). Current therapeutic strategies include blocking ERa
transcriptional activity with tamoxifen or fulvestrant, and blocking
estrogen conversion in peripheral tissues with aromatase inhibitors
(3). PR can also sustain tumor growth and, thus, endocrine
therapies targeting PR are also beginning to be used in selected
cases (4–6). The most common progestins used for BC treatment in
advanced stages are megestrol acetate and medroxyprogesterone
acetate (MPA) (6), while antiprogestins, including RU486
(mifepristone) and onapristone, have been used to treat BC
patients for whom other treatments have failed (6, 7). Although
the vast majority of BC patients initially respond to endocrine
therapy (ET), about 30-50% eventually relapse (acquired resistance),
while ca. 20-30% never respond (de novo resistance) (8). Resistance
to ET results from a variety of cellular changes that converge in
metabolic adaptations, the overexpression of the MYC transcription
factor being one of the most studied (9, 10). Therefore, there is an
interest in characterizing metabolic changes associated with
endocrine resistance, which may be developed into predictive
markers to assist the patient at diagnosis and help the
implementation of personalized follow-up schemes.

Targeted and untargeted metabolomics have been successfully
applied to identify metabolite alterations in breast cancer, both in
tissue and biofluids, to improve understanding of tumor metabolic
pathways and unveil metabolic markers with diagnostic potential
(11). Studies focused on changes in metabolism that are associated
to acquired resistance to therapy have mainly considered cell line
models of ER-positive/PR-positive, HER2-enriched and basal-like
BC subtypes (12–16). Metabolic adaptations have been identified
in cells that developed resistance to ET. In particular, comparison
of the ET-resistant LCC9 cell line vs. the sensitive LCC1 cell line
using integrated transcriptomics (microarray analysis) and
metabolomics (GC-MS and UPLC-MS), identified increased
levels of lysine, pyroglutamate, prostaglandin, 3,14-dihydro-15-
keto prostaglandin F2-a (PGF2a), N-methyl-D-aspartate, L-2,3-
dihydrodipicolinate, lysophosphatidylethanolamine (lysoPtE),
lysophosphatidylcholine (lysoPtC), valine, a-(methylamino)
isobutyrate, betaine, glutamate, hydroxybutyrate, hypotaurine, in
tandem with decreased levels of specific unsaturated fatty acids
(FAs) in resistant LCC9 cells, compared to sensitive LCC1 (12).
NMR metabolomics of MCF-7 cells that acquired tamoxifen
resistance registered increased levels of lactate, glycine,
phosphocholine (PC) and glutamine, and decreased formate
(13). In addition, long-term estrogen-deprived (LTED) cells
(MM134 and SUM44 cell lines) were seen to activate FA/
cholesterol metabolisms, with specific cholesterol metabolites
(namely, 25-hydroxicholesterol and 27-hydroxicholesterol)
driving cell proliferation (14). In the same study, significant
upregulation of FA synthase (FASN) in LTED cells and
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variations in other key FA synthesis enzymes were detected.
These results illustrate an important dependence on key
enzymes in the FA/cholesterol pathways in endocrine-resistant
ER-positive cells (14). Furthermore, selected amino acids (namely
aspartate and glutamate) have been suggested to confer metabolic
plasticity to both endocrine-resistant ER-positive cells and tumors
(15). In addition, increased levels of a-ketoglutarate, citrate,
glutamine, malate, oxaloacetate, succinate, uridine-5’-
triphosphate (UTP) were found in LTDE cells compared with
parental MCF7 cells (15). In a more recent report, metabolomics
was combined with transcriptomics and metabolic flux
experiments to address therapy resistance (16). The authors
reported the metabolic adaptations of therapy resistant BC cells
(MCF7-ESR1Y537S, MCF7-ESR1D538G and BT474) and sensitive
cells (MCF7), disclosing that individual drugs impacted
importantly on cell metabolism (16).

The role of PR in BC growth and response to therapy has gained
much attention in the past years (5, 17). PR can modulate ERa
transactivation of target genes, with genes like MYC or CCND1
containing regions regulated by ERa and PR, where both receptors
physically interact to drive gene expression (18, 19). Thus, targeting
PR stands as an alternative to treat specific subtypes of antiestrogen-
resistant BC (5, 7). However, there is limited evidence (both in vitro
and in vivo) about how progestins or antiprogestins impact on cell
metabolism, and whether tumors that acquire resistance to ET, such
as that involving mifepristone, alter their metabolism. Recently, the
metabolomes of two HR-posit ive mouse mammary
adenocarcinomas that rely on PR activation to sustain growth
were compared, to show that different metabolic signatures
characterize the metastatic and non-metastatic phenotypes (20).
To our knowledge no metabolomic studies have analyzed
metabolism changes in acquired antiprogestin resistance.

In the present study, the MPA-induced BC model was used
for the characterization of polar metabolite changes, through
untargeted Nuclear Magnetic Resonance (NMR) metabolomics,
in neoplastic tissue vs. mammary tissue, and during the process
through which tumors i) become independent of MPA for
growth, and ii) subsequently become independent of HR
signalling and acquire ET resistance. The results presented
here are discussed under the light of putative biochemical
mechanisms that characterize each tumor state/transition and
potential metabolic biomarkers are advanced for each type of
endocrine response.
MATERIALS AND METHODS

Animal Model
The mouse mammary ductal adenocarcinomas C4-HD, C4-HI and
C4-HIR, all expressing ER and PR, from the MPA-induced model
were used (21–23). Briefly, the parental tumor line, C4-HD, was
induced by treatment of BALB/c female mouse with MPA depot
and always transplanted with MPA to sustain growth (hormone-
dependent; HD growth). Through successive passaging into mice
without MPA the hormone-independent (HI) variant was
established (C4-HI). Both C4-HD and C4-HI tumors regress if
PR activation is blocked (either by MPA withdrawal in the case of
March 2022 | Volume 12 | Article 786931
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Araújo et al. Metabolic Markers of Tumor Therapy Response
C4-HD, or PR inhibition with antiprogestins (C4-HD and C4-HI).
Through selective pressure, the C4-HIR (hormone-independent
and therapy resistant) tumor line was obtained, which grows in
the presence of the antiprogestins mifepristone and onapristone
(21). In this work, each tumor line was implanted subcutaneously in
the right and left inguinal flanks of 2-month-old BALB/C virgin
female mice (n=6 mice and, thus, n=12 tumors) and allowed to
grow until they reached a size of 30-40 mm2. During this time the
animals were fed ad libitum and were kept under a 12 h light/dark
cycle. Tumor samples and axial mammary gland (MG) tissue from
the same animal were excised and immediately frozen in liquid
nitrogen. In parallel, a group of mice (n=6) without tumors were
grown in identical conditions (+/- 20 mg MPA depot), to obtain
healthy MG tissue for comparison (Figures 1A, B). The mice were
maintained at the Animal Facility at the Instituto de Biologıá y
Medicina Experimental (IByME) of Buenos Aires, in Argentina. All
animal procedures were performed at the IByME Animal facility
and approved by the local Institutional Animal Care and Use
Committee (Approval no. 030/2016, dated 24 June 2016),
complying with regulatory standards of animal ethics.

Sample Preparation and NMR
Spectroscopy
Both tumor and MG tissue were ground using a pestle and
mortar, while kept in liquid nitrogen. All tissue samples (average
weight of 50 mg) were extracted using methanol: chloroform:
water (1:1:0.75) (24) and the polar phase was separated for
Frontiers in Oncology | www.frontiersin.org 3
analysis. In brief, ground tissue samples were transferred to an
eppendorf tube, followed by the addition of 500 µL of cold 80%
methanol, 400µL of cold chloroform and 200 µL of cold Mili-Q
water, and vortex homogenisation for 60 s. Samples were left to
rest on ice for 10 minutes and then centrifuged (8,000 rpm, 5
min, 23°C). Polar phases were separated, vacuum-dried and
stored at -80°C until analysis. At the time of NMR acquisition,
the dried aqueous extracts were suspended in 600 µL of 100 mM
sodium phosphate buffer (pH 7.4, in D2O containing 0.25% 3-
(trimethylsilyl)-propionic-2,2,3,3-d4 acid (TSP) for chemical
shift referencing), homogenized, and 550 µL were transferred
to 5mm NMR tubes.

All NMR spectra were acquired on a Bruker AVANCE III
spectrometer (Rheinstetten, Germany) operating at 500.13 MHz
for proton. Standard 1D 1H NMR spectra of aqueous extracts
were recorded at 298 K with water pressaturation, using the
“noesypr1d” pulse program (Bruker library), with 2.34 s
acquisition time, 2 s relaxation delay, 512 scans, 7002.801 Hz
spectral width, and 32 k data points. Each free-induction decay
was zero-filled to 64 k points and multiplied by a 0.3 Hz
exponential function prior to Fourier transformation. After
acquisition, spectra were manually phased, baseline-corrected,
and chemical-shift referenced to TSP. For selected samples, two-
dimensional NMR spectra, namely 1H-1H TOCSY (Total
Correlation Spectroscopy) and 1H-13C HSQC (Heteronuclear
Single Quantum Coherence) spectra were also recorded to
support spectral assignment. Peak assignment was also based
A

B

FIGURE 1 | Experimental design and nomenclature of tissues from each group. (A) Two-month-old healthy, virgin female mice were divided into two groups, one
implanted with 20 mg depot MPA and the other one left without depot (control). After 16 days, the mammary gland (MG) tissue was excised for analysis (MG+MPA
and MG); and (B) the syngeneic tumors C4-HD (hormone-dependent; HD), C4-HI (hormone-independent; HI) and C4-HIR (hormone-independent and endocrine
therapy-resistant; HIR) were implanted in the right and left inguinal flanks of 2-month-old virgin female mice. The mice bearing C4-HD tumors were also implanted
with 20 mg MPA depot. The tumors (HD, HI and HIR) and MG tissue from the same animal (MGHD+MPA, MGHI and MGHIR) were excised and analysed. *Indicates that
12 tumors were obtained from six mice that were implanted on both inguinal flanks.
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on comparison with data avai lable on the Bruker
BBIOREFCODE spectral database and the human metabolome
database (HMDB) (25), as well as on existing literature.

Statistical Analysis
Prior to multivariate analysis (MVA), the 1D 1HNMR spectra were
converted to data matrices (AMIX-viewer 3.9.14, BrukerBiospin,
Rheinstetten, Germany), excluding the suppressed water region
(4.63-5.02 ppm) and residual methanol signals (3.35-3.36 ppm).
The spectra were aligned by recursive segment-wise peak alignment
(RSPA) (Matlab 8.3.0, TheMathWorks Inc., Natick, Massachusetts,
USA) and normalized to spectral total area, to account for different
sample weights. 1D spectra data matrices were then scaled to unit
variance (UV) and MVA was carried out using principal
component analysis (PCA) and partial least-squares discriminant
analysis (PLS-DA) (SIMCA-P 11.5; Umetrics, Umeå, Sweden).
Results were visualized through factorial coordinates (‘scores
plots’) and factorial contributions (‘loadings plots’), the latter
colored according to variable importance to the projection (VIP).
PLS-DA models were considered statistically robust for predictive
power (Q2) values ≥ 0.5. For each relevant resonance, peak areas
were integrated in the raw spectra (Amix 3.9.5, Bruker BioSpin,
Rheinstetten, Germany), normalized to total spectral area and
associated effect size (ES) values and statistical significance were
calculated (p-value assessed by the student’s t test, R-statistical
software, R Foundation for Statistical Computing, Vienna, Austria).
Significant changes in metabolite levels (p < 0.05) were identified
and p-values underwent the False Discovery Rate (FDR) correction
for multiple comparisons based on the Benjamini and Hochberg
method (26).
RESULTS

Overall Metabolic Differences Between
Tumors and MG Tissue
The average 1H NMR spectra of aqueous extracts from MG
tissue and all murine MPA-induced mammary tumors are
shown in Figure 2A. A total of 44 polar metabolites were
identified overall, almost all detected in both MG and tumor
tissue (Table S1). Compared to previous NMR reports of
aqueous extracts from mouse and rat mammary tumors (20,
24, 27) and high-resolution magic angle spinning (HRMAS)
NMR of human breast tumor tissue (28–30), all metabolites
hereby identified in the MPA-induced tumors have been
observed previously in different types of BC tissue, with the
exception of adipate, ascorbate and hypoxanthine, which could
not be detected here. Visual inspection of the average spectra of
tumors and MG tissue (Figure 2A) suggests that tumors seem to
exhibit qualitatively higher levels of lactate (peaks 3), some
nucleotides (at ca. 6 ppm and higher), some amino acids [e.g.
branched chain amino acids, branched-chain amino acids
(BCAA) (peaks 1), alanine (peak 4), glutamate (peaks 7),
glycine (peak 18), phenylalanine (peaks 24), and tyrosine
(peaks 22)], glycerophosphocholine (GPC, peak 15), as well as
decreased levels of creatine (peaks 12), glucose (peak 20), taurine
Frontiers in Oncology | www.frontiersin.org 4
(peaks 16) and glutamine (peaks 9). With the aim of statistically
validating these (and possible other) variations, PCA was carried
out, revealing effective group separation between all tumors and
all MG tissue samples, and showing clear intra-group separation
between HD, HI and HIR tumors (Figure 2B). The PLS-DA
scores scatter plot of all tumors vs MG tissue (Figure 2B) was
significantly robust (high predictive power, expressed by Q2 =
0.98), maximizing separation between all MG samples and all
tumors (thus blurring the separation between tumor types,
clearly seen in PCA). The corresponding loadings plot
(Figure 2C) identified a large number of signals that were
increased or decreased in tumors, compared with MG tissue
(positive and negative signals, respectively). Indeed, a total of just
over 30 metabolites and 4 still unassigned resonances were found
to vary significantly between all mammary tumors (irrespective
of their endocrine response) and MG tissue (independently of
whether they were obtained from healthy or tumor-bearing
animals) (Table S2). Clear changes comprise increased
glutamate/glutamine ratio, increased alanine, BCAA, reduced
glutathione (GSH) and aromatic amino acids, along with
decreased taurine and creatine; decreased ATP and/or ADP
and increased uridine diphosphate N-acetylglucosamine (UDP-
GlcNAc) and uridine; increased total choline (GPC; in
particular); increased lactate and reduced glucose and
mannose; increased acetone and decreased inositol species.
Notably, all variations were found to remain statistically
significant upon FDR correction and exhibited low p-values,
which demonstrate their robustness. However, these strong
overall differences mask specific changes related to tumor
endocrine response, as will be addressed in the next section.

In addition, it could be argued that MPA treatment or the
origin of MG tissue (healthy or tumor-bearing mice) could
influence metabolic profile and, hence, work as a confounder in
this study. However, multivariate analysis results (Figures 2B, C)
suggested that no significant differences occur between the
metabolic profiles of i) MPA-treated and non-treated MG
tissues, and ii) MG tissue from healthy animals and from
tumor-bearing animals. Indeed, the absence of a significant
MPA impact on tissue metabolic profile was evidenced by both
PCA and PLS-DA (results not shown), the latter revealing that
MPA-treated MG may show only weak increasing tendencies in
GPC and GSH (effect sizes 1.36 ± 1.26, p-value 0.041; and 1.45 ±
1.27, p-value 0.015, respectively). In addition, MG from tumor-
bearing mice (compared to that of healthy animals) only showed
small variations in glutamine and mannose (effect sizes 1.09 ±
0.78, p-value 0.012; and -0.98 ± 0.77, p-value 0.025, respectively).
The above weak tendencies were found to be negligible compared
to the changes affecting the same metabolites for different tumor
groups, as will be described below.

Metabolite Differences Between Hormone-
Dependent (HD), Hormone-Independent
(HI) and Hormone-Resistant (HIR) Tumors
Unsupervised PCA analysis of the three tumor types showed a
discernible separation of the three sample groups in PC1, further
confirmed by PLS-DA (Figure S1), reflecting significantly distinct
March 2022 | Volume 12 | Article 786931
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metabolic profiles of the respective polar extracts. Pairwise
comparison of HD+MPA tumors and MG samples obtained
from the same animals (MGHD+MPA) (Figure 3) produced
robust group separations in both PCA and PLS-DA (Q2 = 0.96)
scatter plots, along with a loadings plot rich in high VIP signals
(Figure 3B), where positive and negative peaks reflect metabolites
that are increased and decreased in tumors, respectively.
Integration and subsequent univariate statistical analysis
Frontiers in Oncology | www.frontiersin.org 5
unveiled relevant changes in the levels of 14 amino acids and
derivatives: GSH, creatine and phosphocreatine (PCr), 8
nucleotide-related metabolites, 2 precursors of membrane lipids
(ethanolamine and GPC), 4 organic acids (acetate, formate, lactate
and 3-hydroxybutyrate, 3-HBA), 2 sugars (glucose and mannose),
3 other compounds (ketone body acetone, and m- and s-inositols)
(Table 1). Indeed, all metabolite variations identified (except for
one unassigned resonance) remained significant after FDR
A

B

C

FIGURE 2 | Average 1H NMR (500 MHz) spectra of aqueous extracts, PCA and PLS-DA scatter plots and corresponding loadings plots. (A) Average 1H NMR spectra of
aqueous extracts of all tumors (top) and mammary gland (MG) samples (bottom). Peak assignments: 1: isoleucine/leucine/valine, 2: 3-HBA (3-hydroxybutyrate), 3: lactate, 4:
alanine, 5: lysine, 6: acetate, 7: glutamate, 8: UDP-GlcNAc (UDP-N-acetylglucosamine), 9: glutamine, 10: succinate, 11: GSH (reduced glutathione), 12: creatine, 13: choline,
14: PC (phosphocholine), 15: GPC (glycerophosphocholine), 16: taurine, 17: m-inositol, 18: glycine, 19: IMP (inosine monophosphate), 20: a-glucose, 21: NAD+ (oxidized
nicotinamide adenine dinucleotide), 22: tyrosine, 23: histidine, 24: phenylalanine, 25: uracil, 26: AMP (adenosine monophosphate), 27: ADP (adenosine diphosphate), 28:
inosine, 29: ATP (adenosine triphosphate), 30: uridine 31: Un8.12: unassigned metabolite at d 8.12; (B) PCA and PLS-DA scatter plots of all tumor samples (n = 36) vs. all MG
samples (n = 30); and (C) corresponding PLS-DA loadings plots for the model in B) (right).
March 2022 | Volume 12 | Article 786931
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correction (* in Table 1). Figure 3C illustrates that the largest
changes, as viewed by effect size, comprise: i) increases in
glutamate, all three BCAA, UDP-GlcNAc, GPC and GSH; and
ii) decreases in taurine, creatine, ADP and/or ATP, glucose,
among others (notably, only a small decrease is noted for lactate
in HD tumors).

Regarding HI tumors, compared to HD+MPA tumors
(Figure 4A, top), once again multivariate analysis indicated
robust group separation (Q2 = 0.92 for PLS-DA). Regarding
amino acids, BCAA are hardly changed (note the absence of
changes in isoleucine and valine, with a weak increase in leucine,
Frontiers in Oncology | www.frontiersin.org 6
p-value 0.0145), whereas inversions of variation direction were
noted for aspartate (↓), glutamate (↓) (the latter now exhibiting
the largest decrease, Figure 4A, bottom) and glycine (↓). In
addition, other variation inversions affected ADP and/or ATP
(↑), inosine and uridine (↓), ethanolamine (↓), GPC (↓), acetate
(↓), formate (↓), and acetone (↓). Notably, UDP-GlcNAc
exhibited the largest increase, followed by lactate (Figure 4A,
bottom) and, while new weaker changes were noted for choline,
PC and succinate, other metabolite levels remained unaltered
between HI and HD+MPA tumors, namely, NAD+, uracil, 3-
HBA, sugars (mannose and glucose) and inositols.
A

B

C

FIGURE 3 | PCA and PLS-DA scatter plots, loadings plots and metabolic variations in the first step of tumor progression. (A) PCA and PLS-DA of HD+MPA tumors
(n = 12) vs. MGHD+MPA tissue (n = 6); (B) PLS-DA loadings plots; three-letter code used for amino acids and all other abbreviations defined as in Figure 2 caption;
and (C) metabolic variations reported in the transition from MGHD+MPA tissue to HD+MPA tumors expressed by effect-size (ES), with corresponding error.
March 2022 | Volume 12 | Article 786931
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TABLE 1 | Metabolite changes in aqueous extracts of pairwise group comparisons.

Compound HD+MPA vs. MGHD+MPA HI vs. HD+MPA HIR vs. HI

ES ± error p-value ES ± error p-value ES ± error p-value

Amino acids and derivatives
Alanine 3.08± 1.41 1.08E-04* 1.78 ± 0.94 2.74E-04* -1.72 ± 0.94 6.56E-04*

Aspartate 3.86 ± 1.60 1.08E-04* -1.09 ± 0.86 2.91E-03* -1.28 ± 0.88 1.03E-04*

Creatine -8.92 ± 4.56 1.08E-04* -2.07 ± 0.99 3.33E-05* — —

Glutamate 13.64 ± 3.95 1.08E-04* -6.84 ± 2.09 7.40E-07* -3.68 ± 1.31 7.40E-07*

Glutamine -2.90 ± 1.36 2.16E-04* -3.17 ± 1.20 7.40E-07* -3.56 ± 1.29 7.40E-07*

GSH 4.79 ± 1.85 1.08E-04* 1.53 ± 0.91 1.43E-03* -1.81 ± 0.95 4.96E-04*

Glycine 3.75 ± 1.57 1.08E-04* -2.02 ± 0.98 2.74E-04* -3.10 ± 1.19 7.40E-07*

Isoleucine 3.80 ± 1.58 1.08E-04* — — — —

Leucine 8.07 ± 2.81 1.08E-04* 1.25 ± 0.87 1.45E-02* -1.39 ± 0.89 3.64E-03*

Phenylalanine 5.79 ± 2.13 1.08E-04* 1.31 ± 0.88 5.56E-03* — —

Phosphocreatine -1.60 ± 1.11 2.45E-02* -1.44 ± 0.90 2.91E-03* -4.23 ± 1.44 7.40E-07*

Taurine -9.65 ± 3.30 1.08E-04* -3.18 ± 1.20 8.88E-06* 1.81 ± 0.95 6.56E-04*

Tyrosine 6.13 ± 2.23 1.08E-04* — — -0.85 ± 0.84 4.49E-02

Valine 5.88 ± 2.16 1.08E-04* — — — –

Nucleotides and derivatives
AMP — — — — 1.10 ± 0.86 2.84E-02

ADP/ATP -6.76 ± 2.41 1.08E-04* 1.74 ± 0.94 2.74E-04* -1.11 ± 0.86 5.56E-03*

IMP -3.86 ± 1.60 8.31E-04* 1.01 ± 0.85 1.21E-02* 2.18 ± 1.01 2.22E-05*

Inosine 1.64 ± 1.12 8.31E-04* -1.65 ± 0.93 1.44E-04* -1.13 ± 0.86 1.21E-02*

NAD+ -1.98 ± 1.17 4.74E-03* — — — —

UDP-GlcNAc 5.46 ± 2.04 1.08E-04* 5.89 ± 1.85 7.40E-07* -2.70 ± 1.11 2.22E-05*

Uracil 1.45 ± 1.09 2.62E-02* — — 2.50 ± 1.07 7.17E-05*

Uridine 3.98 ± 1.63 1.08E-04* -1.21 ± 0.87 1.21E-02* — —

Choline compounds and other membrane lipids precursors
Choline — — -0.91 ± 0.84 2.05E-02* 1.00 ± 0.85 3.32E-02

Ethanolamine 1.29 ± 1.07 3.23E-03* -1.71 ± 0.94 2.22E-05* — —

GPC 6.41 ± 2.31 1.08E-04* -2.35 ± 1.04 5.18E-06* -4.70 ± 1.55 7.40E-07*

PC — — 1.02 ± 0.85 1.45E-02* -1.74 ± 0.94 7.17E-05*

Organic acids
Acetate 2.80 ± 1.34 2.16E-04* -1.53 ± 0.91 1.83E-03* 1.06 ± 0.85 2.42E-02*

Formate 2.15 ± 1.21 1.08E-04* -1.46 ± 0.90 3.64E-03* — —

Lactate -1.62 ± 1.11 4.74E-03* 5.55 ± 1.76 7.40E-07* 4.09 ± 1.41 7.40E-07*

Succinate — — -1.71 ± 0.94 3.71E-04* — —

3-HBA 1.40 ± 1.08 1.35E-02* — — 1.48 ± 0.90 1.83E-03*

Sugars
Mannose -5.38 ± 2.01 8.63E-04* — — — —

a-glucose -6.24 ± 2.26 1.08E-04* — — — —

Other compounds
Acetone 3.20 ± 1.43 1.08E-04* -1.40 ± 0.89 4.51E-03* 1.13 ± 0.86 2.05E-02*

m-Inositol -3.23 ± 1.44 1.08E-04* — — — —

s-Inositol -1.51 ± 1.10 3.23E-03* — — — —

Unassigned

Un 5.56 ppm 1.21 ± 1.06 3.80E-02* 3.61 ± 1.30 8.88E-06* -2.02 ± 0.98 1.44E-04*

Un 7.69 ppm — — 0.84 ± 0.83 3.87E-02 — —

Un 8.01 ppm 1.75 ± 1.13 2.16E-04* -1.66 ± 0.93 3.71E-04* — —

Un 8.12 ppm 1.31 ± 1.07 2.45E-02* 1.36 ± 0.89 4.51E-03* 2.62 ± 1.09 1.48E-06*
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3-HBA, 3-hydroxybutyrate; AMP, adenosine monophosphate; AXP, overlap of ADP/ATP; IMP, inosine monophosphate; GPC, glycerophosphocholine; GSH, reduced glutathione;
NAD+, nicotinamide adenine dinucleotide; PC, phosphocholine; UDP-GlcNAc, uridine diphosphate N-acetylglucosamine; Un, unsigned resonance; *Variations remaining significant
after FDR correction.
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Metabolic profile differences between HI and HIR tumors also
became clear in both PCA and PLS-DA scores scatter plots
(Figure 4B, top), although now defining a partially distinct
signature for the latter (Table 1), where BCAA remained
unchanged (except for a slight decrease in leucine), as were
creatine, phenylalanine and inositol species. Reversed changes in
HIR tumors, compared to HI tumors, affected alanine (↓), GSH
(↑), taurine (↑), ADP/ATP (↓), UDP-GlcNAc (↓), PC (↓), acetate
(↑), and acetone (↑). Importantly, lactate increase is seen to
correspond to the largest positive variation (thus expressing an
important continuing increase from HD to HI and to HIR
Frontiers in Oncology | www.frontiersin.org 8
tumors), while significant decreases affected GPC, PCr,
glutamate and glutamine (Figure 4B, bottom). The effect
size values listed in Table 1 are also illustrated in a heatmap
(Figure S2), where it becomes visually clear that HD tumors
exhibit changes, compared to MG tissue of the same animals, in a
relatively larger number of metabolites in most families (32
identified metabolites), with statistical relevance described by p-
values between 0.05 and 0.001. HD to HI, and HI to HIR
transitions are accompanied by changes in 25 and 23
metabolites, respectively, in some cases with relatively stronger
statistical relevance (p-value < 0.0001).
A

B

FIGURE 4 | PCA and PLS-DA scatter plots and metabolic variations for acquisition of hormonal independence and acquisition of treatment resistance. (A) PCA and
PLS-DA of HI tumors (n = 12) vs. HD+MPA tumors (n = 12) and corresponding metabolic variations expressed by ES; (B) PCA and PLS-DA of HIR tumors (n = 12)
vs. HI tumors (n = 12) and corresponding metabolic variations expressed by ES. All abbreviations defined as in Figure 2 caption.
March 2022 | Volume 12 | Article 786931
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FIGURE 5 | Metabolite trajectories throughout tumor stage progression. Peak areas corresponding to each metabolite were normalized by total spectral area. MG,
mammary gland from healthy mice; HD+MPA, hormone-dependent tumor; HI, hormone-independent tumor; HIR, hormone-independent and therapy resistant tumor.
*p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; ****p-value < 0.0001. Three-letter code used for amino acids; Cr, creatine; Etn, ethanolamine; Glc, glucose;
Ino, inosine; Man, mannose; PCr, phosphocreatine. All other abbreviations are defined as in Figure 2 caption.
Frontiers in Oncology | www.frontiersin.org March 2022 | Volume 12 | Article 7869319
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The trajectories followed by each relevant metabolite are
shown in Figure 5 to illustrate firstly, that all tumors may be
distinguished from MG tissue mainly by significant increases in
BCAA, alanine, glutamate, GPC and GSH, and decreases in
Frontiers in Oncology | www.frontiersin.org 10
creatine, taurine, ATP and/or ADP, IMP, glucose, mannose and
m-inositol (while other significant changes characterize lower
abundance metabolites, such as glutamine, phenylalanine,
tyrosine, uridine and UDP-GlcNAc, Table S2), together with
FIGURE 6 | Graphical representation of selected metabolite ratios. All ratios were obtained from the average normalized peak areas. All abbreviations defined as in
Figure 2 caption. Asterisks represent the statistical relevance of a certain group compared to the previously represented one: *p-value < 0.05; **p-value < 0.01; ***p-
value < 0.001; ****p-value < 0.0001.
March 2022 | Volume 12 | Article 786931
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relatively higher GPC/Cr, PC/Cr, Cho/Cr and Glu/Gln ratios
(Figure 6) [illustrative ratios discussed in previous tissue studies
(31–35)]. Therefore, these changes constitute a differentiating
metabolite signature of these mammary carcinomas relatively to
MG, independently of their endocrine response.

In addition, tumor groups with different endocrine responses
may be clearly distinguished between each other in terms of
single metabolite levels (Figure 5), as follows: i) HD tumors, with
higher levels of glycine, glutamate, inosine and GPC, and lower
levels of lactate; ii) HI tumors, with higher levels of alanine,
UDP-GlcNAc, ATP and/or ADP, and lactate levels intermediate
between those of HD and HIR tumors, iii) HIR tumors, with
lower levels of GPC and glutamate (though remaining higher
than MG), intermediate levels of UDP-GlcNAc (between HD
and HI) and maximum levels of lactate. In particular, the relative
levels of glutamate, UDP-GlcNAc, GPC, lactate and ATP and/or
ADP seem to be capable of differentiating all three types of
tumors considered in this study. Further to single metabolite
levels, specific metabolite ratios also add to the specific signatures
of each tumor type (Figure 6), with i) HD tumors having higher
GPC/PC ratios than all other tumors and MG samples, ii) HI
tumors having higher PC/Cr ratios than all other samples, and
iii) HIR tumors having GPC/Cr ratios intermediate between
those in other tumors and MG samples, as well as particularly
high levels of Glu/Gln (mainly due to an order of magnitude
decrease in glutamine levels, and in spite of the noted decrease in
glutamate, Figure 5).
DISCUSSION

Cancer cells can reprogram their metabolism to support
proliferation, invasion, and resistance to anti-cancer therapy
(36, 37). This allows them to survive in stressful conditions
and reflects the acquisition of oncogenic mutations and
epigenetic modifications. Understanding the metabolite
changes during cancer progression is relevant for diagnosis,
follow-up and treatment, hence, this study addresses three
mammary invasive ductal adenocarcinoma tumour lines that
express similar levels of ER and PR but respond differently to ET
(21), with the aim of characterising the metabolic profiles of
neoplastic tissue compared to normal tissue (MG), and
disclosing metabolic signatures discriminative of HD, HI and
HIR tumors. As expected, metabolite profile differences were of
larger magnitude between HD tumours and MG, than during the
progression towards hormone-independence and therapy
resistance. Nevertheless, interesting characteristic metabolite
changes could be identified for each tumour line.

Compared to MG, all tumors, irrespective of their endocrine
response, shared higher levels of BCAA, alanine, glutamate, GSH
and GPC, and lower levels of creatine, taurine, ATP and/or ADP,
IMP, glucose, mannose and m-inositol. Changes in lower
concentration metabolites e.g., glutamine, phenylalanine,
tyrosine, uridine and UDP-GlcNAc were also observed. It is
important to note that the average metabolite changes described
above may mask finer characteristics of each different tumor type;
Frontiers in Oncology | www.frontiersin.org 11
however, this group of metabolites may be useful in differentiating
healthy and tumoral tissues. Aerobic glycolysis is a hallmark of
many cancers (36) and, in this model, there is a high glucose and
mannose demand by proliferating cancer cells to sustain
glycolysis. Therefore, glutamate dehydrogenase activity would
then be responsible for the production of TCA cycle
intermediate a-ketoglutarate, consistently with the observed
high alanine levels and slightly high lactate levels. Note that
lactate levels are strongly tumor type dependent (see below) and
only a weak overall increase is noted when all tumors are grouped
together. BCAAs are essential amino acids and, thus, need to be
internalized from the tumor microenvironment or obtained
through protein degradation. Tumor cells express high levels of
specific amino acid transporters according to the specific tumor
type (38). SLC7A5 (BCAA, Phe and Tyr transporter) is a
prognostic factor for breast cancer (39) and is included in the
Mammostrat prognosis prediction test for ER-positive breast
cancer tumors (40); while, SLC6A14 (transporter of neutral and
cationic amino acids) is highly expressed in ER-positive breast
cancer tissue and cell lines, and its transcription is under Era and
MYC regulation (41). BCAA activate the mTORC1 pathway to
stimulate protein synthesis, tumor growth and survival, but can
also be metabolized into branched-chain a-keto acids in a process
involving conversion of a-ketoglutarate to glutamate (catalysed by
BCAT1 or BCAT2 BCAA transaminase activity), and/or further
catabolized to acetyl-CoA and succinyl-CoA that feed into the
TCA (42). Thus, we suggest that BCAA internalization in this
model is possibly enhanced to feed into the TCA cycle,
contributing to the higher levels of glutamate (through BCAA
transaminase activity of BCAT enzymes), in tandem with
glutaminolysis (through glutaminase, GLS). Indeed, BCAT1
levels have been shown to be elevated in various breast cancer
tissues (including invasive carcinoma and intraductal carcinoma)
as compared with normal breast tissue (43, 44). In addition,
elevated GLS expression has been associated with high grade
and metastatic breast cancer (38) and inhibition of GLS activity
or gene expression prevents oncogenic transformation (45) and
tumor growth (46). Interestingly, the MPA-induced tumors used
in this study rely on ER/PR induction of the oncogene MYC to
grow, with MYC inhibition resulting in cancer cell death and
tumor regression (47, 48). MYC activates transcription of the
SLC1A5a glutamine transporter to increase glutamine influx, also
activating SLC6A14 (49) and GLS overexpression (49, 50).
Glutamate may also help to sustain the high GSH levels in the
tumors, to support anti-oxidative stress mechanisms through
reactive oxygen species (ROS) detoxification, reducing oxidative
damage to protect cells from apoptosis (51). These protective
mechanisms may involve taurine (52, 53) and inositol species (54),
thus justifying the decrease of these metabolites. On the other
hand, the higher taurine and creatine levels in MG, compared to
the tumors, could also possibly reflect the higher thermogenic
capacity of adipocyte-rich MG tissue, since this tissue has been
shown to contain brown adipose tissue (55, 56). Furthermore, the
higher levels of creatine relatively to PCr in tumors may reflect the
need of the former for ATP synthesis (57), whereas increased
choline and choline-containing metabolites are characteristic of
March 2022 | Volume 12 | Article 786931
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cancer tissue. Elevated levels of phosphocholine and
glycerophosphocholine have been reported in most types of
cancer confirming the importance of choline metabolism in
cancer development (35). Choline compounds are usually
associated with cell proliferation (58), choline metabolism being
controlled by Era (59) and MYC (60). In this tumor model, GPC
increase is the main reason for the noted increased choline ratios
(Cho/Cr, GPC/Cr, PC/Cr) and main contribution for higher total
choline content. In relation to UDP-GlcNAc levels, we suggest
that cancer cells upregulate the hexosamine biosynthetic pathway
(HBP), with increased glucose and glutamine uptake as well as
oncogenic signals mediated by Ras oncogenes (61) and mTORC2
(62) leading to higher UDP-GlcNAc levels. N-linked andO-linked
glycosylation use UDP-GlcNAc as substrate to modify the activity
of metabolic enzymes, transcription factors, and several signalling
molecules (63). Furthermore, N-glycosylation has been proven to
be elevated in elevated in breast cancer primary tumors, as well as
in lymph node metastases and distant metastases compared to
healthy mammary tissue (64).

However, the main contribution of this work regards the
metabolic distinction between tumors characterized by different
endocrine responses, here designated by hormone-dependent,
hormone-independent/sensitive to therapy and hormone-
independent/resistant to therapy (HD, HI and HIR, respectively).
In an attempt to illustrate the interplay of relevant active metabolic
pathways determining the metabolic profile of each tumor type,
Figure 7 illustrates the main changes characterizing each
Frontiers in Oncology | www.frontiersin.org 12
comparison discussed above i.e., MG to HD tumors, HD to HI
tumors, and HI to HIR tumors. The reasons for these changes in
terms of enzyme activity adaptations remain to be established and
this will be the scope of follow-up work. Interestingly, HD tumors
show a non-glycolytic metabolic pattern, as glucose (and other
sugars) are broken down more extensively than in MG and in the
other tumor types but do not translate into higher lactate levels or
ADP and/or ATP levels. On the contrary, the decrease of lactate and
ADP and/or ATP suggests the absence of theWarburg effect and no
particular enhancement of TCA cycle activity in HD tumors. It is
possible, therefore, that glucose is preferentially used as precursor of
protein/lipid glycosylation processes, through the synthesis of UDP-
GlcNAc as explained above. In relation to glutamine metabolism, it
appears that HD tumors maintain glutamine levels. The glutamine
transporters SLC1A5 and SLC6A14 are highly expressed in ER-
positive breast cancer as they are under transcriptional control of ER
and MYC. Therefore, glutamine levels are maintained through
thehosphn of these transporters to activate glutamate synthesis
(glutamate reaches a maximum level in HD vs other tumors), as
well as to feed the TCA cycle and produce GSH. Relatively high
GPC levels (and high GPC/PC ratio) clearly distinguish HD tumors
from the remaining types, GPC levels remaining above those
characteristic of MG tissue. Indeed, the interplay of GPC and
other membrane lipid precursors is clearly dependent on tumor
type. As comparable degrees of cell proliferation are expected for all
tumors as they were all excised in the exponential growth phase, and
therefore hosphatidylcholine biosynthesis would be maintained
FIGURE 7 | Metabolic pathways putatively identified as the main metabolic adaptations found between polar extracts of MGHD+MPA, HD+MPA, HI and HIR tissues.
Metabolite names in bold identify compounds detected by NMR (irrespective of their variation). Colored arrows (↓↑) and dashes (-) indicated after a metabolite name
illustrate variations corresponding to each pairwise comparison, following the order: HD+MPA vs MGHD+MPA (left symbol), HI vs HD+MPA (middle symbol), and HIR
vs HI (right symbol). Three letter code were used for amino acids; CDP-Cho, cytidine diphosphate-choline; GAA, guanidoacetate; PE, phosphoethanolamine;
PtdCho, phosphatidylcholine, all other abbreviations defined as in Figure 2 caption.
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relatively unchanged, these differences between tumors may relate
to increasing capacity of organelles such as the endoplasmic
reticulum (see below).

The development of HI tumors seems to involve the
production of higher levels of lactate and alanine levels. These
tumors are, thus, more glycolytic (increase in lactate) than HD
tumors and MG. Aerobic glycolysis has been shown to be
associated with the resistance to chemotherapy and ET
resistance. In particular, tamoxifen resistance is associated with
enhanced glycolysis in ER-positive breast cancer cells through
activation of EGFR/MAPK pathway (65, 66), a pathway also
responsible for ligand-independent Era activation (37) In the
MPA-induced tumor model, the FGF-2/FGFR-2 axis drives HI
growth (67). This is mediated by ligand-independent Era and PR
activation, followed by their induction of MYC expression and
was also verified in human breast cancer cells (48). FGFR
signalling leading to MYC activation has been shown to induce
glycolytic enzymes necessary for vascular development (68),
while MYC itself also induces the expression of many
glycolytic enzymes. Thus, increased glycolysis resulting from
MYC-dependency is somewhat expected in this model.
Additionally, the low glucose levels may be indicative, not only
of enhanced glycolysis activity, but also of enhanced conversion
(together with acetyl-CoA) into UDP-GlcNAc, which shows its
highest level in HI tumors; consistently, uridine and uracil levels
(needed for UTP biosynthesis later used for UDP-GlcNAc) are
kept low in HI tumors, possibly to support the more significant
glycosylation processes apparently characterizing such tumors.
In agreement with our findings, a previous microarray
comparing C4-HD and C4-HI tumours found upregulation of
glutamine-fructose-6-phosphate aminotransferase 2 (GFPT2,
which controls the flux of glucose into the hexosamine
pathway) (22). The fact that UDP-GlcNAc is upregulated in
HI tumors is very interesting as this is the precursor of O-
glycosylation that has been shown to occur in ER and PR to
promote hormone-independent activation (69, 70). HI tumors
exhibit intermediate glutamate levels, which may indicate an
enhanced uptake of this amino acid into the TCA cycle but also
higher glutathione synthase (GSS) activity as these tumors also
have higher GSH than the other tumor types. A statistically
relevant increase in PC (and specifically high PC/Cr ratios) again
reflects the distinct membrane metabolism characteristics of each
tumor type. It is possible that at least some of the above
distinguishing features between HD and HI tumors, e.g. altered
amino acid metabolism (20, 71, 72), may be relatable to the
higher metastatic behavior of the latter tumors (21), although
such possibility requires further investigation.

Finally, the hormone-independent tumors which have become
resistant to therapy, HIR, are the most glycolytic tumors, reaching
the highest lactate levels, while maintaining glucose levels low.
This strong glycolytic nature is consistent with the specifically high
Glu/Gln ratio, due to a marked decrease in glutamine, identifying
active glutaminolysis as an additional feature of HIR tumors.
Therefore, and as mentioned previously, the metabolic
dependency on glucose and glutamine that was clear for HI
tumors and associated with resistance to ET and FGFR driven
Frontiers in Oncology | www.frontiersin.org 13
MYC expression, becomes enhanced in HIR tumors. Moreover,
HIR tumors exhibit similar levels of GSH, taurine and m-inositol
to other tumors, indicating similar extension of active anti-
oxidative mechanisms also associated with ET resistance (73),
however they are distinguished by the lowest glutamate levels (and
low alanine) within the tumors, which possibly are consumed to
produce GSH. UDP-GlcNAc is also upregulated in HIR but to a
lesser extent than in HI tumors maintaining a relevant protein
glycosylation activity; still, it is worth mentioning that endocrine
resistant breast cancer cells increase their endoplasmic reticulum
capacity (through the activation of unfolded protein response),
which is one of the major cellular organelles where protein
glycosylation occurs (74, 75). In HIR tumors, the lowest GPC
levels (within the tumors) again seems to reflect a distinct status of
membrane metabolism where lower GPC may be the result of
higher phospholipid (phosphatidylcholine, main membrane
constituent) synthesis. Again, potentially different metastatic
status may relate to the signature differences described above,
although such feature could not be evaluated for HIR tumors, due
to their rapid growth and subsequent early sacrifice of the animals
(before metastasis could occur or be detected) (76). This possible
relationship between metabolite signatures and tumor metastatic
status is of large interest in BC research and requires
further investigation.
CONCLUSIONS

Our results show, for the first time to our knowledge, that
different endocrine response of MPA-induced breast tumors
clearly relate to distinct metabolic signatures. Several pathways
are observed to adapt to each of HD, HI and HIR status, mainly
with the involvement of selected amino acids, nucleotides,
choline compounds and sugars. In particular, the relative levels
of glutamate, UDP-GlcNAc, GPC and lactate seem to be capable
of differentiating all three types of tumors, with HIR tumors
showing a relatively stronger glycolytic profile, specific
membrane metabolism pattern and an extent of O-
glycosylation processes which is intermediate to HD and HI
tumors. While our results unveil the importance of metabolic
adaptations and potential metabolic markers to distinguish
different endocrine responses and, in particular, therapy
resistance in breast tumors, the present study has some
limitations, which should be addressed in future follow-up
work, namely the use of relative metabolite levels instead of
absolute concentrations (which are difficult to assess efficiently
by NMR of complex mixtures but feasible by other more targeted
analytical methods), and the awareness that the metabolic
profiles identified here reflect the tumors as a whole, thus
globally representing the heterogeneous population of cell
types in the tumor microenvironment. The relationship
between metabolic profile and cell distribution in both
environments would be an interesting follow-up step in
understanding the hereby presented metabolic adaptations and
relationship to resistance. Furthermore, given the recognized
relevance of the MPA-model to the human disease, the
March 2022 | Volume 12 | Article 786931
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translation of these results to human subjects is a necessary step
and a subject of ongoing work in our group.
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Sequeira G, et al. FGF2 Induces Breast Cancer Growth Through Ligand-
Independent Activation and Recruitment of Era And PrbD4 Isoform to MYC
Regulatory Sequences. Int J Cancer (2019) 145:7. doi: 10.1002/ijc.32252

49. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, et al. C-Myc
Suppression of Mir-23a/B Enhances Mitochondrial Glutaminase Expression and
Glutamine Metabolism. Nature (2009) 458:7239. doi: 10.1038/nature07823

50. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, et al.
Myc Regulates a Transcriptional Program That Stimulates Mitochondrial
Glutaminolysis and Leads to Glutamine Addiction. Proc Natl Acad Sci USA
(2008) 105:487. doi: 10.1073/pnas.0810199105
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