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Abstract: Chronic kidney disease (CKD) is associated with the development of mineral bone disorder
(MBD), osteoporosis, and fragility fractures. Among CKD patients, adynamic bone disease or low bone
turnover is the most common type of renal osteodystrophy. The consequences of CKD-MBD include
increased fracture risk, greater morbidity, and mortality. Thus, the goal is to prevent the occurrences of
fractures by means of alleviating CKD-induced MBD and treating subsequent osteoporosis. Changes
in mineral and humoral metabolism as well as bone structure develop early in the course of CKD.
CKD-MBD includes abnormalities of calcium, phosphorus, PTH, and/or vitamin D; abnormalities in
bone turnover, mineralization, volume, linear growth, or strength; and/or vascular or other soft tissue
calcification. In patients with CKD-MBD, using either DXA or FRAX to screen fracture risk should be
considered. Biomarkers such as bALP and iPTH may assist to assess bone turnover. Before initiating
an antiresorptive or anabolic agent to treat osteoporosis in CKD patients, lifestyle modifications,
such as exercise, calcium, and vitamin D supplementation, smoking cessation, and avoidance of
excessive alcohol intake are important. Managing hyperphosphatemia and SHPT are also crucial.
Understanding the complex pathogenesis of CKD-MBD is crucial in improving one’s short- and
long-term outcomes. Treatment strategies for CKD-associated osteoporosis should be patient-centered
to determine the type of renal osteodystrophy. This review focuses on the mechanism, evaluation
and management of patients with CKD-MBD. However, further studies are needed to explore more
details regarding the underlying pathophysiology and to assess the safety and efficacy of agents for
treating CKD-MBD.
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1. Overview

Chronic kidney disease (CKD) is associated with the development of mineral bone disorder
(MBD), osteoporosis, and fragility fractures. The grade or severity of CKD can be classified based
on glomerular filtration rate (GFR) category, ranging from stage G1 to G5 [1]. In stage G1 and G2,
the GFRs are normal (more than 90 mL/min/1.73 m2) and slightly decreased (60–89 mL/min/1.73 m2),
respectively. For patients with CKD stage G3a and G3b, the GFRs decrease from mild to moderate
(40–59 mL/min/1.73 m2) and moderate to severe (30–44 mL/min/1.73 m2). The renal function is severely
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impaired in patients with CKD stage 4 (15–29 mL/min/1.73 m2), and CKD stage 5 (add D if treated by
dialysis) referring to kidney failure (less than 15 mL/min/1.73 m2) [1]. By definition, CKD-MBD is a
systemic disorder of mineral and bone metabolism, which is manifested by either one or a combination
of the following: abnormalities of calcium, phosphorus, parathyroid hormone (PTH), or vitamin
D metabolism; abnormalities in bone turnover, mineralization, volume, linear growth, or strength;
vascular or other soft tissue calcification [2]. The consequences of CKD-MBD include increased fracture
risk, greater morbidity, and mortality [3].

Osteoporosis is a skeletal disorder characterized by compromised bone strength predisposing to
an increased risk of fracture [4]. The World Health Organization (WHO) defines osteoporosis as a T
score ≤ −2.5. CKD is an independent risk factor of osteoporosis [5]. The prevalence of osteoporosis
was 31.8% among CKD G3–5 patients in the Kashmir valley [5]. Among the National Health and
Nutrition Examination Survey (NHANES III) participants, osteoporosis was twice as common in those
with eGFR < 60 mL/min than those with eGFR > 60 mL/min [6]. As CKD makes progress, decreased
bone mineral density (BMD) mostly involves hip, but not spine [7].

CKD is a risk factor for fragility (low trauma) fractures [8,9]. The Longitudinal Aging Study
Amsterdam (LASA) survey found that early decreased renal function (eGFR< 60 mL/min/1.73 m2) was
related to increase incident fracture risk, but not with increased prevalence of vertebral fracture or
falls [10]. In a prospective cohort study in veterans with CKD G3–5, CKD is related to a moderately
greater fracture risk after adjusting age, race, and BMD [11]. In patients with CKD G5D and kidney
transplant (KT), the incidence of hip fracture in hemodialysis (HD) group was higher than that in
peritoneal dialysis (PD) or KT groups [3]. The consequence of fractures increased the mortality rate in
CKD patients with non-dialysis [9] and with dialysis [12]. Thus, the goal is to prevent the occurrence of
fractures by means of alleviating CKD-induced MBD and treating subsequent osteoporosis. This review
focuses on the evaluation and management of patients with CKD-MBD.

2. Materials and Methods

This review was modeled based on the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) statement. All of the articles were retrieved from the databases Medline and
PubMed using the search terms “chronic kidney disease”, “osteoporosis”, “dialysis” and “fracture” for
the topic. For further screening and selection, only full-text articles were considered to be included for
a further analysis. A literature search was conducted on Medline and PubMed databases up to 30
June 2020 to identify all potential articles in the data sources. In the screening process, duplication
articles and research before 1980 were excluded. After initial processing, two experts in the field
independently reviewed potentially eligible studies for exclusion and inclusion. Articles with poor
study design or not-matched outcomes were deemed not eligible for the study. During the period of
study selection, disagreements between the two reviewers were resolved by mutual discussion until a
consensus was reached.

3. Search Results

A flowchart of article selection has been shown in Figure 1 to illustrate the processes of database
identification, article screening, consideration of eligibility and final inclusion according to the PRISMA
statement. Using the search terms and strategy mentioned above, there were 285 (Medline) and
242 (PubMed) articles in the topic. After the screening process to exclude duplication articles and
research before 1980, 206 articles were considered for further analysis. Each article was evaluated and
extracted independently by two reviewers to inspect the sources including year, authors, research
design and clinical outcomes. Differences in selection between the two reviewers were reassessed
and discussed until a consensus was reached. After excluding articles with poor study design or
not-matched outcomes, there were 178 eligible articles for the topic.
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Figure 1. A flowchart of article selection to illustrate the processes of database identification, article
screening, consideration of eligibility and final inclusion according to the PRISMA statement.

4. Characteristics of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD)

CKD-MBD describes abnormalities in mineral metabolism, skeletal health, and soft tissue
calcifications. Possible factors involved in CKD-associated osteoporosis are summarized in Table 1.
Kloth is a membrane protein expressed mainly in proximal and distal renal tubules and could be
detected in blood, urine, cerebrospinal fluid and osteocytes. In early stage of CKD, the decline of
Kloth expression can increase FGF-23 levels [13]. The effects of increase in FGF-23 levels lead to
increased urinary phosphate excretion by reducing renal phosphate reabsorption [14] and decreased
calcitriol synthesis by inhibiting the proximal tubular expression of 1-alpha-hydroxylase enzyme [14,15].
Furthermore, sclerostin (28 kD) and dickkopf1 (26 kD) and are small secreted glycoproteins. As CKD
progress, the consequences of increased serum sclerostin lead to deceased bone formation by inhibiting
Wnt-induced signaling through binding to LRP5/6 [14,16] and increased osteoclastogenesis by inducing
RANK-L synthesis [17]. The elevated dickkopf1 level could also inhibit bone formation by inhibiting
Wnt-induced signaling through binding to LRP5/6 [16,18]. In early CKD, a tendency to phosphate
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retention plays a central role in the development of SPTH [19] and inhibits calcitriol synthesis by
inhibiting the activity of 1-alpha-hydroxylase enzyme in kidney [20]. Moreover, the accumulation of
uremic toxins, such as indoxyl sulfate and p-cresyl sulfate, could reduce the expression of PTH receptor
in osteoblasts and is associated with skeletal resistance to PTH [21]. The fall of calcitriol concentrations
could cause the increase of PTH secretion [20,22] and the decrease of serum calcium level [23]. Decreased
free ionized calcium concentration could also accentuate SPTH [23]. Skeletal resistance to the calcemic
effect on PTH may be involved in the development of SPTH in CKD [24]. Finally, SPTH is the major
feature of CKD-MBD which causes abnormal bone remodeling and osteoporosis [23].

Table 1. Factors affecting bone strength in chronic kidney disease-mineral and bone disorder (CKD-MBD).

Factor Main Effect Category

↓ Kloth ↑ FGF-23 level [13] Humoral

↑ FGF-23 1 ↑ phosphate excretion [14]
↓ calcitriol synthesis [14,15] Humoral

↑ Sclerostin ↓ bone formation [14,16]
↑ osteoclastogenesis [17] Humoral

↑ dickkopf1 ↓ bone formation [16,18] Humoral

↑ phosphate ↑ SPTH 3 [19]
↓ calcitriol synthesis [20]

Mineral

↑ uremic toxins 2 ↓ PTH receptor [21]
↑ skeletal resistance to PTH [21] Uremia

↓ 1,25(OH)2 D ↑ PTH secretion [20,22]
↓ calcium [23] Humoral

↓ calcium ↑ SPTH [23]
↑ abnormal bone remodeling [23] Mineral

↑Skeletal resistance to PTH ↑ SPTH [24] Humoral
1 FGF-23: fibroblast growth factor-23; 2 Uremic toxins refer to indoxyl sulfate and p-cresyl sulfate; 3 SPTH: secondary
hyperparathyroidism; ↓: decrease, ↑: increase

4.1. Abnormalities of Calcium, Phosphorus, PTH, or Vitamin D Metabolism

4.1.1. Disorders of Calcium Balance

Hypocalcemia is common in CKD patients and contributes to increased PTH secretion and
abnormal bone remodeling. The total serum calcium concentration decreases following phosphate
retention, decreased 1,25(OH)2D (calcitriol) concentration, and resistance to the calcemic actions of
PTH on bone during the process of CKD [23]. Serum calcium typically remain normal until eGFR
decreased to 20 mL/min/1.73 m2 [25]. The decrease in serum calcium concentration is sensed by a
specific membrane calcium-sensing receptor (CaSR) on parathyroid glands and is a potent stimulus for
PTH release [26]. The decreased number and expression of CaSR in hypertrophied parathyroid glands
may be related to the proliferation of parathyroid tissue [27], resulting in inadequate suppression
of PTH by calcium and high PTH even in the setting of hypercalcemia. Thus, CaSR has a direct
therapeutic implication in regulating parathyroid gland function by calcimimetics.

In patients with CKD G5D, both hypocalcemia and hypercalcemia are associated with
mortality [28,29]. In patients after KT, hypercalcemia is common due to persistence of
preexistent hyperparathyroidism, hypophosphatemia, postintervention immobilization, or progressive
normalization of calcitriol level [30].

Calcium balance is whole-body calcium retention or deficit total calcium inputs subtract total
body loses [31]. A positive balance may increase vascular calcification and cardiovascular events,
while a negative balance may increase the risk of osteoporosis and fracture [31]. Serum calcium alone
cannot serve as a proxy measurement of the whole-body calcium balance.
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4.1.2. Disorder of Phosphorus Metabolism

Phosphate retention begins early in CKD and plays a central role in the development of secondary
hyperparathyroidism (SPTH) by inducing hypocalcemia, decreasing calcitriol synthesis, and increasing
PTH gene expression [32,33]. However, serum phosphate levels are not usually elevated in the
early stages of CKD because of a reduction in renal proximal tubular phosphate resorption owing to
increased levels of PTH and fibroblast-growth-factor (FGF)-23 [15]. The effects of FGF-23 on increasing
phosphate secretion may be blunted by decreased Kloth in early CKD. Serum phosphate typically
remain normal until eGFR decreased to 20 mL/min/1.73 m2 [15,25]. In advanced CKD, the consequences
of hyperphosphatemia included the stimulating effects on PTH synthesis and secretion [19], FGF-23
secretion [34], and osteoblastic transformation of the vascular smooth muscle cell which directly
contributes to cardiovascular calcification [35]. In patients with CKD G5D, both low and high serum
phosphate are associated with mortality [29].

4.1.3. Disorder of Parathyroid Hormone Metabolism

Serum intact PTH (iPTH) typically remains normal until the eGFR decreases to approximately
45 mL/min/1.73 m2 [25,36]. The prevalence of SPTH increases as CKD progress [36]. The causes
of increase in initiating and maintaining PTH included phosphate retention, decreased free ionized
calcium level, decreased calcitriol level, increased FGF-23 level, and reduced expression of vitamin
D receptors (VDRs), calcium-sensing receptors (CaSRs), FGF receptors and kloth in the parathyroid
glands. Furthermore, uremic toxins such as indoxyl sulfate and p-presyl sulfate would reduce the
expression of PTH receptor and production of PTH-induced cyclic adenosine 3′,5′ monophosphate in
osteoblast, which lead to skeletal resistance to PTH and bone fragility [21]. In patients with CKD G5D,
both low and high iPTH [28] are associated with mortality [29].

4.1.4. Disorder of Vitamin D Metabolism

A serum 25(OH)D (calcidiol) level < 30 nmol/L indicates vitamin D deficiency [37,38], which is
common among patients with CKD. Vitamin D deficiency is associated with cardiovascular events in
CKD. One cross-sectional study reported that a high prevalence of calcidiol deficiency and insufficiency
in patients with CKD G3-4 not on dialysis therapy [39]. Calcitriol level started to fall until eGFR was
<40 mL/min/1.73 m2 [25]. In the course of eGFR decline, reductions in calcitriol levels occurred earlier
than elevations in iPTH levels [25]. The primary cause why calcitriol level declines is the increase in
FGF-23 concentration, rather than the loss of functioning renal tissue [15]. In patients with CKD-MBD
undergoing HD, low serum calcidiol level was associated with bone-biopsy-proven increase of bone
turnover [40].

4.2. Abnormalities in Bone Turnover, Mineralization, Volume, Volume Linear Growth, or Strength

4.2.1. TMV Characteristics of Renal Osteodystrophy

Bone biopsy is the gold standard for the diagnosis and classification of bone diseases in CKD,
or renal osteodystrophy. By definition, renal osteodystrophy is a noticeable transformation of bone
morphology in patients with CKD; it is one measure of the skeletal component of the systemic disorder
of CKD-MBD that is quantified by histomorphometry of bone biopsy [2]. Kidney Disease: Improving
Global Outcomes (KDIGO) group recommends three parameters (bone turnover, mineralization,
and volume; TMV system) to be used to assess bone pathology [1]. Bone turnover refers to the rate
of skeletal remodeling, or the ratio between bone formation, and bone resorption [2]. Mineralization
reflects how well bone collagen becomes calcified during the formation phase of skeletal remodeling [2].
Bone resorption is the main function of osteoclasts, which colonized fetal ossification centers coming
from embryonic erythron-myeloid progenitors [41]. Volume indicates the amount of bone per unit
volume of tissue [2]. Bone strengths is determined by bone quantity, and bone quality. Bone quality
refers to the structure and material parameters that enables bone to bear load and resist fracture [42].
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In TMV system used for evaluation of CKD-MBD, the bone turnover rates are high in patients with
osteitis fibrosa cystica and mixed uremic osteodystrophy but low in patients with adynamic bone
disease and osteomalacia [2]. The mineralization of bone is normal in patients with osteitis fibrosa
cystica and adynamic bone disease but abnormal in patients with osteomalacia and mixed uremic
osteodystrophy [2].

4.2.2. Bone Turnover in CKD

Prevalence of Low-Turnover Bone Disease in CKD

The majority of renal osteodystrophy among CKD G5 and CKD G5D patients is a low-turnover bone
disease (adynamic bone disease), particularly in diabetic patients [43–45]. Two large bone biopsy studies
showed a high prevalence (58% and 59%) of adynamic bone disease in HD patients [46,47]. Prevalence
of high-turnover bone disease (osteitis fibrosa cystica) among dialysis patients has markedly decreased.
The incidence of osteomalacia has also been decreased with abandonment of aluminum-based
phosphate binders and induction of efficient water treatment for preparing the dialysate [48]. Increased
prevalence of low-turnover bone disease may be due to older age, increased number of diabetes
patients, early use of vitamin D analogs and calcium-containing phosphate binders, and differences in
dialysis techniques [48].

Evaluation of Bone Turnover

PTH levels are used as a surrogate to evaluate the status of bone turnover. Very high PTH levels
(≥585 pg/mL) are usually associated with osteitis fibrosa [49], while very low PTH levels (<100 pg/mL)
are associated with adynamic bone disease. A cross-sectional histomorphometric study of bone
turnover showed that a PTH of >323 pg/mL had the best discriminatory ability of high from non-high
bone turnover; a PTH < 103.8 pg/mL best discriminated low from non-low turnover [46]. However,
PTH levels are not predictive of underlying bone disease when they are modestly elevated [50]. KDIGO
suggests using PTH trends instead of absolute targets to guide treatment decision [1].

4.2.3. Evaluation of Bone Strength

Dual-energy X-ray absorptiometry (DXA) evaluates the bone quantity and not the bone
quality. Peripheral quantitative computed tomography (pQCT), high resolution pQCT (HRpQCT),
and micromagnetic resonance imaging (microMRI) are non-invasive 3D imaging techniques that can
detect microarchitecture and mineral density of both trabecular and cortical bones [51]. However,
there are few data in evaluating these techniques in patients with CKD.

4.3. Vascular or Other Soft Tissue Calcification

Vascular calcification, which significantly increases cardiovascular and all-causes of mortality,
is highly prevalent in hemodialysis patients. Extraskeletal calcification is common in patients with
CKD G5D [52]. All arteries and arterioles can calcify, whereas veins hardly calcify unless injured or
arterialized [53]. Among CKD patients, there are two types of vascular calcification: medial calcification
and intimal calcification. Medial calcification is the result of both a phenotype switch of vascular
smooth cells to osteoblast-like cells and local inflammation [54]. Intimal calcification is secondary to
establish atherosclerosis. There are limited clinical data concerning the results of intimal versus medial
lesions among CKD patients. One study of HD patients showed that patients with arterial media
calcification had a longer survival than those with arterial intima calcification [55].

4.3.1. Risk Factors

Risk factors for vascular calcification among CKD patients included increasing age [56–58], time on
dialysis [58], hyperphosphatemia [57], persistent hypercalcemia, increased oral calcium intake [56,58],
calcium-containing phosphate binders [58], secondary hyperparathyroidism [57], adynamic bone
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disease, untreated vitamin D deficiency [57], high dialysate calcium [59], hypomagnesemia [60],
diabetes [61], dyslipidemia [58], and warfarin [62].

4.3.2. Protectors

Protectors for vascular calcification among CKD patients included Lanthanum carbonate [63],
calcimimetic agent [64], kloth [13], pyrophosphate [65], osteoprotegerin [66], and RANK-L [66].

4.4. Evaluating Fracture Risk in CKD

Several longitudinal studies confirmed that low BMD could predict fractures in patients with
CKD [67–70]. In patients with CKD G3a–G5D with evidence of CKD-MBD and/or risk factors for
osteoporosis, KDIGO in 2017 suggest BMD testing to assess fracture risk if results will impact treatment
decisions [1]. Although DXA is commonly used technique for quantifying BMD in CKD patients, it has
some limitations. First, DXA measures areal BMD, not volumetric BMD. Second, it cannot discriminate
between cortical and cancellous bone. Third, it cannot assess bone microarchitecture or bone turnover.

Fracture Risk Assessment Tool (FRAX) developed by WHO can also be helpful for predicting
fracture risk in patients with non-dialysis CKD [71] and KT recipients [72]. However, the limitation of
FRAX is that it does not include any adjustment of risk according to GFR.

A summary of the mechanism underlying the effects of chronic kidney disease (CKD) on
osteoporosis and subsequent decrease in bone strength is displayed in Figure 2. The reduction of
GFR in patients with CKD initiates a cascade of metabolic disorder, abnormal bone remodeling and
turnover, resulting in osteoporosis and subsequent decrease in bone strength.
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osteoporosis and subsequent decrease in bone strength. (A) decrease clearance of FGF-23 [15,73,74];
(B) decrease phosphaturic effect of FGF-23 [75]; (C) inhibit 1α-hydroxylase in proximal tubule of
kidney [20]; (D) increase renal tubular resorption of phosphate [76]; (E) induce hypocalcemia, decrease
calcitriol, increase PTH gene expression and PTH secretion [20,33,77]; (F) decrease its inhibitory effect
of due to decreased FGFR1 and kloth protein [78,79]; (G) inhibit 1α-hydroxylase [15]; (H) decrease
intestinal absorption of Ca and decrease Ca release from bone [22,80]; (I) decrease number of VDRs
in parathyroid cells [81] and decrease its inhibitory effect on parathyroid gland [20,82]; (J) increase
PTH mRNA concentration [19,83] and decreased expression of the calcium-sensing receptor (CaSR)
on parathyroid gland [27,84,85]; (K) Indoxyl sulfate decreases the expression of PTH1 receptor [21];
(L) the physicochemical precipitation of inorganic phosphate and calcium can indirectly give rise to
skeletal resistance to PTH; (M) Indoxyl sulfate increases CpG hypermethylation of the Kloth gene [86];
(N) P-cresyl sulfate induces osteoblastic dysfunction [87].

5. Management of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD)

5.1. Lifestyle Modification

Non-pharmacologic interventions include modifying dietary calcium and nutritional vitamin
D, increased physical activity, smoking cessation, weight bearing exercise, fall prevention [88],
and avoidance of excessive alcohol intake [89,90].

5.2. Exercise and Physical Therapy

Exercise improves muscle impairment, physical function, and physical performance across the
spectrum of CKD [91]. In a study of partial nephrectomy induced CKD rat model, exercise improved
BMD and microstructure by inhibiting serum sclerostin level, therefore mitigating its effect of inhibiting
Wnt/ß-catenin signaling pathway [92]. Exercise training prescriptions should be individualized to
one’s physical function. According to FITT (frequency, intensity, time, and type) principle for exercise
prescription, patients should exercise 2 to 3 times per week at the beginning of the training, and then
increase frequency to 3 to 5 times per week. Intensity should be tailored based on patient tolerance to
exercise. The duration of exercise relies on the health and physical condition of the patient. Type of
exercise includes aerobic, resistance, and flexibility exercise [93].

5.3. Correction of Biochemical Abnormalities of CKD-MBD

5.3.1. Phosphate

In patients with CKD G3a–G5D, the KDIGO group suggests lowering of hyperphosphatemia
levels towards normal range [1]. Phosphate load from phosphate-rich sources should be avoided.
Non-calcium-based phosphate binders, such as sevelamer, have advantages over calcium-based binder
in increasing the bone formation rate and improving trabecular architecture [43].

5.3.2. Calcium or Cinacalcet

Excessive exogenous calcium in adults may be harmful at all stages of CKD [31,94]. Updated 2017
KDIGO guidelines for CKD-MBD suggest limiting calcium-based phosphate binders for all patients
with CKD G3a–5D [1]. Daily dietary calcium intake with 1000 mg/day is recommended for achieving
neutral calcium balance [31]. Additional calcium supplements or calcium-containing medications
should be avoided for patients with adequate daily calcium intakes of 800–1000 mg per day [31].

Administration of a calcimimetic agent increases the sensitivity of CaSR and vitamin D receptor
(VDR) expression [95], decreases PTH gene expression [96] and PTH secretion of the parathyroid
gland [97]. In patients with CKD G5D, calcimimetics, such as cinacalcet, is suggested to increase
BMD, normalize bone histology and reduce risk of fractures when serum PTH remain elevated despite
sufficient calcidiol levels [89]. The Evaluation of Cinacalcet HCl Therapy to Lower Cardiovascular
Events (EVOLVE) trial demonstrated that using cinacalcet for ≤64 months reduces the rate of clinical
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fracture by 16–29% [98], decreases serum FGF-23 and its-associated cardiovascular death and major
cardiovascular events [99] in HD patients with SHPT. Treatment with cinacalcet for 1 year increases
the BMD of the femoral neck in patients with iPTH level >300 pg/mL and undergoing HD, especially
in those who had higher baseline serum bone-specific alkaline phosphatase (bALP) [100]. In the
multicenter Bone Biopsy Study for Dialysis Patients with the Secondary Hyperparathyroidism of End
Stage Renal Disease (BONAFIDE) study, long-term treatment with cinacalcet substantially reduced PTH,
diminished the elevated bone formation rate, lowered several biochemical markers of high-turnover
bone disease toward normal, and generally improved bone histology [101].

In a prospective trial of 41 patients with PD dialysis and biopsy-proven adynamic bone disease,
low-calcium dialysate reduced serum calcium levels and hypercalcemic episodes, resulting in increased
PTH levels and normalization of bone turnover [102]. Repeated bone biopsy after 16 months found that
low-calcium dialysate led to normalization of bone formation rates and a 300% increase in PTH levels.

In patients after KT, calcium levels usually decrease early and elevate at three to six months
post-transplantation [103]. Cinacalcet reduced hypercalcemia due to hyperparathyroidism [104].
However, a recent randomized study showed that subtotal parathyroidectomy was superior to
cinacalcet in controlling hypercalcemia in patients with KT and tertiary hyperparathyroidism [105].
Cinacalcet is currently not approved for use in KT recipients [103]. Calcium supplementation alone is
seldom required post-transplantation [103].

5.3.3. Vitamin D

Synthesis of vitamin D is mainly reduced in CKD-MBD. Both 25(OH)D (calcidiol) and 1,25(OH)2D
(calcitriol) play a crucial role on bone metabolism. Through vitamin D receptor (VDR) on bone cells,
vitamin D stimulates calcium resorption and osteoclast differentiation via induction of Receptor activator
of nuclear factor kappa B ligand (RANK-L) synthesis [17]. Nevertheless, the optimal circulating calcidiol
and calcitriol levels to be considered remain unknown and controversial [106]. For CKD patients not
on dialysis, the 2017 KDIGO guidelines recommend using 30 ng/mL cutoff value [40], which is the
same as that used for the general population. For patients at CKD G5D, applying the threshold resulted
in an estimated prevalence of vitamin D insufficiency (15–30 ng/mL) and/or deficiency (<15 ng/mL)
ranging from 50% to 98% in a total sample size of 3722 HD patients [107]. Vitamin D supplementation
is suggested to prescribe early in the process of CKD, but how to appropriately use it is still under
debate [90,108]. Experts from Kidney Disease Outcomes Quality Initiative (KDOQI) and KDIGO
have recognized that vitamin D insufficiency and deficiency should be avoided in CKD and dialysis
patients by using supplementation to prevent SHPT [108]. Cholecalciferol (Vitamin D3) 800 IU/day
is recommended for the treatment and prevention of vitamin D deficiency in CKD and dialysis
patients [109]. Vitamin D provided during dialysis is more effective than home prescriptions [110].
The effects of vitamin D supplementation on CKD and dialysis patients include decreased serum
PTH level, increased serum calcitriol level, reduced proteinuria, endothelial cardiovascular markers
improvement and decreased inflammation markers [108].

In patients with CKD G3-4, both calcitriol and paricalcitol effectively decrease PTH and
alkaline phosphatase levels with minimal effect on calcium levels and phosphorus balance [111].
Another small randomized trial of bone biopsy-proved adynamic bone disease showed that calcitriol
decreased bone turnover [112], leading to the notion about decreasing active vitamin D therapy in
these patients. Studies for non-dialysis CKD had shown that cholecalciferol (vitamin D3) may be
superior to ergocalciferol (vitamin D2) in raising serum calcidiol for treating nutritional vitamin D
deficiency [113,114]. In addition, a meta-analysis of three randomized control studies in patients
with CKD G3-4 and hypovitaminosis D showed that supplementation of active/native vitamin D
(cholecalciferol) did not show improvement in cardiac function and structure as calcitriol [115].

In CKD G5D, supplementation of calcidiol improves bone mineralization but has limited effect on
reducing serum PTH level, while administration of calcitriol efficiently reduces serum PTH level but
has little effect on bone mineralization [70]. Currently, there is strong evidence supporting calcidiol
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supplementation, aiming to control SHPT in CKD patients [116]. Despite the emerging observational
data showing the association between lower levels of calcidiol and several deleterious outcomes (such as
low bone turnover, risk of falls and fractures, progression of CKD and mortality) [70], there is still a lack
of randomized control trials to support the potential beneficial effects of vitamin D supplementation.

In KT recipients with CKD-MBD, low serum calcidiol levels are common. Administration of
calcitriol could decrease PTH after transplantation and increase femoral neck and lumbar spine BMD.
However, there is no clear evidence in reducing fracture risk [117].

5.3.4. Parathyroidectomy

In a national cohort of long-term CKD G5D patients, parathyroidectomy reduced bone turnover
and improved BMD and risk of fractures [118].

5.4. Choices of Pharmacologic Treatment

There are a variety of anti-osteoporotic drugs which can be considered as pharmacologic treatment
for osteoporosis. The actions and mechanisms of current anti-osteoporotic agents in CKD patients are
showed in Figure 3.
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Figure 3. Bone remodeling and effects of bisphosphonate, raloxifene, teriparatide, denosumab,
and romosozumab on bone. Normally bone is continuously renewed through bone formation by
osteoblasts and bone resorption by osteoclasts. Osteoblasts secret receptor activator of NF-κB ligand
(RANK-L) and osteoprotegerin, which are main factors of bone remodeling. RANK-L stimulate the
differentiation of osteoclast precusors and pre-osteoclasts through RANK-L and M-CSF receptors.
Osteoprotegerin is a soluble combining inhibitor of RANK-L, which could reduce osteoclasts
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differentiation. Osteocytes secret sclerostin, which could reduce osteoblastogenesis and stimulate
osteoclastogenesis by inducing RANK-L synthesis. Bisphosphonates have high affinity to
hydroxyapatite and selectively inhibit farnesyl pyrophosphate synthase within osteoclasts and induce
osteoclast apoptosis. Raloxifene is a selective estrogen receptor modulator and could enhance osteoclast
apoptosis [119]. Intermittent administration of teriparatide could stimulate bone formation through
the PTH-1 receptor expressed only in osteoblasts. Denosumab targets RANK-L, leading to suppression
of osteoclasts differentiation. Romosozumab binds sclerostin, leading to both osteoblast activation and
reduced osteoclastogenesis.

5.4.1. Antiresorptive

Bisphosphonates

Bisphosphonates are chemically stable derivatives of inorganic pyrophosphate that have a high
affinity to hydroxyapatite crystals [120]. Nitrogen-containing bisphosphonates, such as zoledronic acid,
risedronate, ibandronate and alendronate, selectively inhibit farnesyl pyrophosphate synthase within
osteoclasts and induce osteoclast apoptosis [120,121], causing an overall reduction on bone absorption
by decreasing osteoclast activity. The bisphosphonates are cleared by the kidney and retained in bone.
Because of the unknown implications of greater bone retention of patients with CKD, the US FDA
contradicted bisphosphonates exposure in those who have a creatinine clearance <35 mL/min.

In patients with CKD G1–4, a retrospective analysis that pooled nine clinical trials showed
that risedronate increased BMD and prevented vertebral fractures regardless of degree of renal
impairment [122]. In patients with CKD G1–3, a post hoc analysis of three Japanese trials concluded
that risedronate could increase lumbar spine BMD without differences in CKD stage 1-3 [123]. In a
secondary analysis of the Fracture Intervention Trial (FIT), administration of alendronate was safe
and effective in increasing total hip and BMD and reducing spinal fractures in women with eGFR
<45 mL/min [124]. Although there was a small increase in creatinine during the three-year study,
the increase was similar to those without renal function impairment. In FIT trial, women with
serum creatinine >1.27 mg/dL, serum PTH >85 pg/mL in isolation, or serum PTH >65 pg/mL in
combination with abnormal serum calcium, alkaline phosphatase, or phosphate were excluded. In CKD
G3–4, administration of weekly alendronate did not decrease the progression of vascular calcification
compared with placebo, which was different from previous studies of HD patients [125]. There are
insufficient data concerning efficacy of oral bisphosphonates in fracture prevention of patients with
CKD-MBD and end-stage renal failure.

The zoledronic acid (Health Outcomes and Reduced Incidence with Zoledronic Acid Once Yearly,
HORIZON) trials excluded subjects with CKD G4–5 [126]. Thus, there are too few patients in the
zoledronic acid postmenopausal trials to generate data in CKD G4-5. In patients with CKD-MBD
undergoing HD, ibandronate significantly increased BMD and decreased bone turnover [127]. In KT
recipients, meta-analyses confirmed that bisphosphonates improved the femoral neck and lumbar
spine BMD [128–130], but their effects on fracture risk and safety among KT recipients are not
established [128].

Denosumab

Denosumab is a fully human monoclonal immunoglobulin (Ig)G2 antibody which targets and
binds to the DE loop region of RANK-L with high affinity and specificity [131]. RANK-L signaling
via RANK is the main factor for osteoclastogenesis and osteoclast activation [132]. RANK-L is also
expressed by T-helper cells and involved in dentritic cell maturation [17]. RANK-L knockout mice
had been demonstrated to develop severe osteoporosis as well as defective T and B lymphocytes
differentiation [133]. Denosumab inhibits osteoclast proliferation and development, making it a potent
anti-resorptive agent [8]. Evidence of safety and efficacy of using denosumab in preventing osteoporotic
vertebral, non-vertebral, and hip fractures is sufficient in general population [134–137]. It does not
increase the risk of aortic calcification progression or cardiovascular events in post-menopausal
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women [138]. A pharmacokinetic and pharmacodynamic study of single dose denosumab in patients
with CKD or dialysis showed that serum concentration of denosumab did not differ in different degrees
of renal insufficiency [139]. Furthermore, the effect of denosumab on increasing BMD and reducing
fracture did not differ depending on renal function [140]. Because it is cleared by the reticuloendothelial
system and not by the kidney, there is no restriction of its use in patients with eGFR <35 mL/min [89].

In a post hoc analysis of the FREEDOM (Fracture Reduction Evaluation of Denosumab in
Osteoporosis Every 6 Months) trial, denosumab for 36 months effectively reduced vertebral, hip,
and nonvertebral fracture risks without an increase in adverse events among postmenopausal women
with CKD G1–4 [140]. However, there are insufficient data about fracture prevention in advance
CKD because there were only 73 women with CKD G4 and no women with CKD G5. After previous
bisphosphonate therapy, denosumab could increase BMD and is comparable to zoledronate in CKD
patients [141]. In a small study in CKD G5D patients with SHPT and high-turnover bone disease,
administration of denosumab resulted in an increase in femoral neck and lumbar spine BMD at
6 months [142]. Another small retrospective study also demonstrated the safety and efficacy of
denosumab in the treatment of osteoporosis in CKD G5D patients [143]. Administration of denosumab
is associated with a significant risk of hypocalcemia in patients with CKD [139,144,145] and KT [146].
In kidney transplant recipients, denosumab could improve hypercalcemia and BMD loss [147]. A recent
systemic review and meta-analysis study showed that denosumab could effectively increase BMD and
T scores in the lumbar spine and femur neck among KT recipients with good allograft function [148].
Moreover, a retrospective head-to-head study showed that the effect of denosumab in improving
lumbar spine and femoral neck BMD was greater compared with that of bisphosphonate treatment [149].
Denosumab treatment should not be discontinued post KT because discontinuation of the treatment
would lead to an increased risk of vertebral fractures and rapid loss of BMD [150]. Close monitoring
and supplement of calcium and calcitriol preemptively before starting denosumab are needed to
avoid the side effect of hypocalcemia [151–153]. In addition, CKD G4–5 and male sex were found
to be associated with denosumab-induced hypocalcemia [154]. It is not rare that worsening SHPT
(intact PTH levels rise greater than 1000 pg/mL) under denosumab treatment, even with concomitant
administration of massive active vitamin D [155]. Further studies are needed for its safety in efficacy of
fracture prevention in patients with advanced CKD and post kidney transplantation bone loss [103].

Raloxifene

Raloxifene is a selective estrogen receptor modulator (SERM) approved by FDA for prevention
and treatment of osteoporosis in postmenopausal women [156]. It manifests estrogenic activity in
bone, and in cardiovascular systems while opposing estrogen action in the uterus and breast [157],
thus displaying less risk of invasive breast cancers compared with estrogens.

In a post hoc analysis of the Multiple Outcomes of Raloxifene Evaluation (MORE) trial, raloxifene
improved BMD and reduced vertebral fractures in patients with postmenopausal osteoporosis and
CKD G1–4, irrespective of kidney function [158]. In CKD G5, raloxifene has efficacy of improving
BMD without adverse effects and significant effect on controlling hyperparathyroidism [159]. In CKD
G5D postmenopausal women on HD, raloxifene significantly increases trabecular BMD, decreases
bone resorption markers and LDL-cholesterol values after 1-year of treatment [160]. Larger clinical
trials are needed to determine its efficacy and safety on bone in patients with CKD-MBD after KT.

5.4.2. Anabolic Agents

Teriparatide

Teriparatide is a recombinant peptide of the first 34 amino-N-terminal residues of PTH. It is an
effective FDA-approved osteoanabolic drug that increases BMD and reduces fracture risk in both
age-related and glucocorticoid-induced osteoporosis. Trabecular bone increases more than cortical
bone [161]. The anabolic effect of intermittent PTH on bone is likely to be mediated through the PTH-1
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receptor [162], which is selective for the N-terminal region of the molecule [163]. PTH-1 receptor
is expressed in osteoblast but not in osteoclast [17]. PTH1-receptor activation increases osteoblasts’
number and activity initially and leads to new osteoclasts recruitment later via increasing RANK-L
synthesis and decreasing osteoprotegerin (OPG) synthesis. Furthermore, PTH inhibits sclerostin
binding to osteoblasts, which results in promoting bone formation [164,165]. Its stimulation of bone
formation occurs earlier than bone resorption [17]. PTH effects are not persistent after discontinuation
of therapy, unless anti-resorptive agents are given [166].

There are no sufficient clinical data examining the efficacy of teriparatide in patients with
CKD-MBD because most clinical trials excluded patients with elevated baseline serum levels of PTH.
In a post hoc analysis of the Fracture Prevention Trial, teriparatide increases lumbar and femoral neck
BMD in female patients with post-menopausal osteoporosis and eGFR as low as 30 mL/min [167].
Another post hoc analysis of a post marketing surveillance study, including thirty patients with CKD
G4 and three patients with CKD G5, showed that daily teriparatide improved BMD and incidences of
new vertebral and nonvertebral fractures in patients with osteoporosis with high risk of fracture [168].
Some data of using teriparatide on patients with CKD-MBD is available from small observational
studies. In patients with CKD G5D and biopsy proven adynamic bone disease, daily administration
of teriparatide for 6 months resulted in lumbar spine and femoral neck BMD [169]. Increased bone
turnover after using teriparatide has also been found in some CKD G5D cases [170,171]. In patients
with CKD G5D with hypothyroidism and osteoporosis, administration of teriparatide once a week
increased lumbar spine BMD, bone formation, and resorption markers [172]. Conversely, 6-month
daily subcutaneous injections of 20 µg teriparatide did not improve BMD early after KT in a case
series [173]. Larger clinical trials are needed to determine the efficacy and safety of teriparatide in the
patients with CKD-MBD, undergoing dialysis and post KT.

Abaloparatide

Abaloparatide is a recombinant peptide of the first 20 amino-N-terminal residues of PTH. It was
designed to have relatively greater transient affinity of PTH/PTH1 receptor [174] and be more purely
anabolic. Although it has been proven for its efficacy in improving lumbar spine and total hip
BMD in postmenopausal women with osteoporosis [175,176], there are no available data concerning
abaloparatide in patients with CKD-MBD. The ability of abaloparatide to increase bone mass and
formation with less risk of hypercalcemia than teriparatide makes it become an ideal drug to treat
patients with CKD-MBD and low-to-normal bone turnover with high fracture risk [175].

Romosozumab

Romosozumab is a humanized monoclonal IgG2 anti-sclerostin antibody [17]. It targets and binds
sclerostin, a Wnt antagonist produced by osteocytes that reduces osteoblastogenesis and promotes
osteoclastogenesis [177]. This monoclonal antibody against sclerostin increases bone formation and
decreases bone resorption [17,178]. Although clinical studies with romosozumab have shown to increase
bone density and reduce vertebral and nonvertebral fractures in postmenopausal women [178–180],
the precise role and its action in CKD patients remain unknown [90].

Sclerostin may promote vascular calcification [177]. Extra-skeletal effects, such as vascular
calcification should be cautious when dealing with romosozumab. Because of the activity of Wnt
signaling influencing the integrity of the arterial wall [181], blocking sclerostin will impact the
vascular calcification processes. It has not been elucidated how anti-sclerostin antibody affect vascular
calcifications [8,17] and cardiovascular mortality in CKD patients [23].

6. Discussion

Changes in mineral and humoral metabolism as well as bone structure develop early in the
course of CKD. CKD-MBD included abnormalities of calcium, phosphorus, PTH, and/or vitamin D;
abnormalities in bone turnover, mineralization, volume, linear growth, or strength; and/or vascular or
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other soft tissue calcification [2]. In patients with CKD-MBD, using DXA or FRAX to screen fracture risk
should be considered. Biomarkers such as bALP and iPTH may assist to assess bone turnover, except for
bone biopsy [8]. Among CKD patients, adynamic bone disease or low bone turnover is the most common
type of renal osteodystrophy. Before initiating an antiresorptive or anabolic agent to treat osteoporosis
in CKD patients, lifestyle modifications, such as exercise, calcium, vitamin D supplementation, smoking
cessation, and avoidance of excessive alcohol intake are important. Managing hyperphosphatemia
and SHPT are also crucial. Non-calcium-based phosphate binders, such as sevelamer, are superior to
calcium-based binder in increasing the bone formation rate and improving trabecular architecture [43].
In patients with CKD G1–3, physicians should use bisphosphonates and other osteoporosis treatments
the same as for patients without CKD. Bisphosphonates are generally not recommended in patients
with eGFR <35 mL/min or evidence of adynamic bone disease due to avoiding over-suppression of
bone remodeling. In KT recipients, bisphosphonates have efficacy in improving femoral neck and
lumbar spine BMD [128–130]. Denosumab can be safely administered to CKD-associated osteoporosis,
but its side effect of hypocalcemia should be cautious. Data concerning using anabolic agents in
patients with CKD-MBD are limited. Larger studies are needed to assess the role of teriparatide
or abaloparatide in adynamic bone disease. Since mounting evidence points to a central role of a
disturbed Wnt–β-catenin signaling in the pathogenesis of CKD-MBD and its cross-talk between the
kidneys, the vasculature, and the bone [16], targeting Wnt inhibitors, such as sclerostin or dickkopf1,
by monoclonal antibodies would be a potential choice to treat osteoporosis in CKD-MBD. Studies
evaluating the optimal diagnostic and management strategy in patients with CKD G4–5D are needed.

7. Conclusions

Understanding the complex pathogenesis of CKD-MBD is crucial in helping us to improve one’s
short- and long-term outcomes. Treatment strategies for CKD-associated osteoporosis should be
patient-centered to determine the type of renal osteodystrophy. This review focuses on the mechanism,
evaluation and management of patients with CKD-MBD. However, further studies are needed to
explore more details regarding the underlying pathophysiology and to assess the safety and efficacy of
agents for treating CKD-MBD.
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