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Abstract: (1) Background: The clinical course of multiple sclerosis (MS) is critically influenced by
the expression of different pro-inflammatory and anti-inflammatory cytokines. Interleukin 6 (IL-6)
represents a major inflammatory molecule previously associated with exacerbated disease activity in
relapsing remitting MS (RR-MS); however, the role of single-nucleotide polymorphisms (SNPs) in the
IL-6 gene has not been fully elucidated in MS. (2) Methods: We explored in a cohort of 171 RR-MS
patients, at the time of diagnosis, the associations between four IL-6 SNPs (rs1818879, rs1554606,
rs1800797, and rs1474347), CSF inflammation, and clinical presentation. (3) Results: Using principal
component analysis and logistic regression analysis we identified an association between rs1818879,
radiological activity, and a set of cytokines, including the IL-1β, IL-9, IL-10, and IL-13. No significant
associations were found between other SNPs and clinical or inflammatory parameters. (4) Conclusions:
The association between the rs1818879 polymorphism and subclinical neuroinflammatory activity
suggests that interindividual differences in the IL-6 gene might influence the immune activation
profile in MS.

Keywords: multiple sclerosis; Interleukin 6; SNPs; CSF; neuroinflammation

1. Introduction

Multiple sclerosis (MS) is a central nervous system (CNS) disease caused by an au-
toimmune chronic inflammation [1]. Inflammatory mediators play a key role in the patho-
physiology of MS by promoting blood–brain barrier (BBB) damage, migration of innate
and adaptive immune cells, and activation of neuroinflammatory cascade in the CNS [2].
Cytokines are a heterogeneous group of polypeptides that includes chemokines, lym-
phokines, interferons (IFNs), and growth factors involved in both pro-inflammatory and
anti-inflammatory processes [2]. Cytokines, released by both peripheral and CNS resident
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immune cells, interact with a large number of receptors expressed by various cell types,
including infiltrating lymphocytes and monocytes, microglia, astrocytes, endothelial cells,
and neurons [2–4]. The complex functions played by these molecules under physiolog-
ical and pathological conditions are regulated by key organizing principles [5]. These
molecules constitute complex networks where the same cytokine can perform different
activities depending on the inflammatory milieu, and the same effect can be mediated by
several cooperating cytokines, according to a principle of redundancy [5]. For these reasons,
it is extremely difficult to elucidate the role of each specific cytokine even though some
molecules have been consistently associated with increased inflammation and a worse clin-
ical course in MS. More specifically, interleukin (IL)-6 represents one of the most important
pro-inflammatory cytokines in the pathophysiology of MS [2,6,7]. Preclinical studies in
animal models of MS (i.e., experimental autoimmune encephalomyelitis, EAE), have shown
that IL-6 deficient mice were fully resistant to the disease induction [8]. Similarly, blocking
the IL-6 receptor (IL6R) led to a significant reduction of EAE symptoms [9]. Clinical studies
in patients with relapsing remitting-MS (RR-MS) confirmed an association between higher
levels of IL-6 in the cerebrospinal fluid (CSF) and a worse disease course characterized by
an increased relapse rate and greater disability [6,7]. Notably, previous studies have shown
that single nucleotide polymorphisms (SNPs) of the IL-6 gene can affect MS susceptibil-
ity [10,11]. These data suggest that interindividual IL-6 gene variability may influence the
CSF inflammatory milieu and clinical presentation of MS. To explore this, we investigated
whether four SNPs of the IL-6 gene (rs1818879, rs1554606, rs1800797, and rs1474347) are
associated with different levels of CSF pro-inflammatory and anti-inflammatory molecules
and clinical presentation in a group of RR-MS patients at the time of diagnosis.

2. Materials and Methods
2.1. MS Patients

In this study, we enrolled a group of 171 consecutive RR-MS patients at the time
of diagnosis. We admitted patients to the neurological clinic of the Neuromed Research
Institute in Pozzilli, Italy, between 2017 and 2019. The diagnosis of MS was made on the
basis of clinical, laboratory, and MRI parameters. The Ethics Committee of the Neuromed
Research Institute in Pozzilli, Italy approved the study according to the Declaration of
Helsinki (cod. 06-17). All patients gave written informed consent to participate in the
study. At the time of diagnosis, patients underwent a clinical evaluation, a brain and spine
MRI, and a lumbar puncture. Clinical characteristics recorded were age, sex, an expanded
disability status score (EDSS), the presence of clinical/radiological disease activity, and
disease duration. Clinical activity was defined as the presence of a concomitant clinical
relapse. Disease duration was defined as the interval elapsing between the first clinical
episode compatible with MS and confirmed diagnosis.

2.2. IL-6 SNPs Analysis

Genotyping for IL-6 SNPs rs1818879, rs1554606, rs1800797, and rs1474347 was per-
formed in all enrolled patients. A blood sample (200 mL) was collected at the time of
diagnosis. Genomic DNA was isolated from peripheral blood leukocytes according to
standard procedures (QIAamp DNA Blood Mini Kit–QIAGEN, Hilden, Germany). IL-6
SNPs were analyzed with a TaqMan Validate SNP Genotyping Assay (Applied Biosystems,
Foster City, CA, USA) using the ABI-Prism 7900HT Sequence Detection System (Applied
Biosystems, Foster City, CA, USA) from 25 ng of genomic DNA in a final volume of 15 mL
according to the manufacturer’s instructions.

2.3. CSF Collection and Analysis

In all RR-MS patients, CSF concentrations of inflammatory cytokines were analyzed.
CSF was collected at the time of diagnosis, during hospitalization, and by lumbar puncture
(LP). No corticosteroids were administered before LP. Disease modifying therapies were
initiated after the confirmed diagnosis when indicated. CSF was stored at −80 ◦C and then
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analyzed using a Bio-Plex multiplex cytokine assay (Bio-Rad Laboratories, Hercules, CA,
USA). CSF cytokines levels were determined according to a standard curve generated for
the specific target and expressed as picograms/milliliter (pg/mL). Samples were analyzed
in triplicate. The CSF cytokines analyzed included IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-
8, IL-9, IL-10, IL-12, IL-13, IL-15, IL-17, the tumor necrosis factor α (TNF-α), IFN-γ, the
macrophage inflammatory protein 1α (MIP-1α), the macrophage inflammatory protein
1β (MIP-1β), the monocyte chemoattractant protein 1 (MCP-1), the granulocyte colony-
stimulating factor (G-CSF), the granulocyte–monocyte colony stimulating factor (GM-CSF),
the interleukin-1 receptor antagonist (IL-1ra), eotaxin, the fibroblast growing factor (FGF),
the IFN-γ induced protein 10 (IP-10), the platelet-derived growth factor (PDGF), when
regulated upon activation, normal T cells that are expressed and secreted (RANTES), and
the vascular endothelial growth factor (VEGF).

2.4. MRI

All the patients underwent a 1.5T MRI scan of brain and spinal cord, which included
the following sequences: dual-echo proton density, fluid-attenuated inversion recovery
(FLAIR), T1-weighted spin-echo (SE), T2-weighted fast SE, and a contrast-enhanced T1-
weighted SE before and after intravenous gadolinium (Gd) infusion (0.2 mL/kg). Radiolog-
ical disease activity at the time of diagnosis was defined as the presence of Gd-enhancing
(Gd+) lesions at the time of hospitalization in brain and spinal cord.

2.5. Statistical Analysis

A Shapiro–Wilk test was used to evaluate normality distribution of continuous vari-
ables. Data were shown as mean (standard deviation, SD) or median (interquartile range,
IQR). Categorical variables were presented as absolute (n) and relative frequency (%). A
chi-square, or when necessary, a Fisher’s exact test, were employed to explore the associa-
tions between categorical variables. The difference in continuous variables between the IL-6
SNP groups was evaluated using a nonparametric Mann–Whitney test. A p value < 0.05
was considered statistically significant. When exploring the impact of SNPs on the CSF
cytokine profile, we used a method based on dimensionality reduction (principal compo-
nent regression) to first select a subset of cytokines for the second level analysis. Principal
Component Analysis (PCA) was applied to the sample of the 27 CSF cytokines. Logistic
regression was used to explore the association between principal components (PCs), each
SNP, and to assess the association between SNPs and individual cytokines. All analyses
were performed using IBM SPSS Statistics for Windows (IBM Corp., Armonk, NY, USA)
and R (R Core Team).

3. Results
3.1. Clinical Characteristics in MS Patients

The clinical and demographic characteristics of RR-MS patients involved in the study
are shown in Table 1. The first clinical event was characterized by: pyramidal symp-
toms (29.8%), visual symptoms (19.9%), brainstem symptoms (19.9%), cerebellar symp-
toms (8.2%), sphincteric symptoms (2.9%), and cognitive symptoms (1.2%). Missing data:
7 patients.
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Table 1. Demographic and clinical characteristics of RR-MS patients.

MS Patients
n = 171

Sex, F N (%) 113 (66.10)

Age, years Mean, (SD) 35.78 (12.27)

Disease duration, months Median, (IQR) 5.10 (1.05–24.89)

EDSS at diagnosis Median, (IQR) 2 (1–2.5)

OCB presence, yes N (%) 132/166 (79.50)

Radiological activity at diagnosis N (%) 74/166 (44.60)

Clinical activity at diagnosis N (%) 68 (39.76)
Abbreviations: female (F), multiple sclerosis (MS), relapsing remitting (RR), expanded disability status scale
(EDSS), interquartile range (IQR). Missing data: OCB (5 patients, 2.9%), Radiological activity (5 patients, 2.9%).

3.2. Analysis of IL-6 SNP

We assessed the frequencies of the alleles and genotypes for all IL-6 SNPs. In our cohort,
the allele frequencies of the four SNPs were in the Hardy–Weinberg equilibrium considering
the general Caucasian population (Gnomad database) (Table 2). To obtain two comparable
groups, for each SNP, patients were divided into two groups, one homozygous for the
major allele, and one carrying the minor allele in homozygosity or heterozygosity (Table 2).

Table 2. SNP distribution and allele frequency for the Hardy–Weinberg equilibrium of RR-MS
patients calculated to single SNP and SNP groups for analysis.

SNP SNP Distribution Allele Frequency (%) Chi-Square Group Analysis (n)

rs1818879
GG (n = 88; 51.46%)
AG (n = 79; 46.19%)
AA (n = 4; 2.33%)

G = 75.44
A = 24.55 p = 0.917 GG (88)

AG/AA (83)

rs1554606
GG (n = 78; 70.38%)
TG (n = 46; 32.11%)
TT (n = 11; 6.58%)

G = 74.81
T = 25.18 p = 0.842 GG (78)

TG/TT (57)

rs1800797
GG (n = 86; 50.58%)
AG (n = 74; 41.17%)
AA (n = 10; 5.88%)

G = 72.35
A = 27.64 p = 0.886 GG (86)

AG/AA (84)

rs1474347
AA (n = 84; 49.70%)
CA (n = 75; 44.37%)
CC (n = 10; 5.91%)

A = 71.81
C = 28.19 p = 0.870 AA (84)

CA/CC (85)

Abbreviations: single nucleotide polymorphism (SNP). Missing data: rs1554606 (4 patients, 2.34%), rs1800797
(1 patient, 0.58%), rs1474347 (2 patients, 1.17%).

3.3. Association between CSF Inflammation and IL-6 SNPs

To explore whether individual genetic variability in the IL-6 gene could influence
central inflammation in MS, we analyzed the possible association between IL-6 SNPs
rs1818879, rs1554606, rs1800797, and rs1474347 and the CSF cytokine profile.

PCA, a dimension reduction technique which generates latent variables (PCs), was
applied to our set of 27 cytokines [12]. The first six PCs explained 70.364% of the variance
(Supplementary Table S1) and were retained for further analysis. In Figure 1 (Panel a and
b), we show the association of specific cytokines with the first 4 PCs. We used logistic
regression to assess the association between each SNP (rs1818879, rs1554606, rs1800797, and
rs1474347) and the first six PCs. We found a significant association between rs1818879 and
PC1 (β-coefficient = 0.27; SE = 0.11; p = 0.018) (see also Supplementary Table S2). Conversely,
we found no significant associations between the other SPNs explored.
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Figure 1. The association of specific cytokines with the first four PCs. Figure Legend: The biplot
shows the orientation of the different cytokines with respect to the first and the second component (a),
and the third and the fourth component (b), respectively. The biplots showing the orientation of the
cytokines concerning the first four PCs. Abbreviations: PC (principal component); IL (interleukin);
TNF (tumor necrosis factor); IFN (interferon); MIP (macrophage inflammatory protein); MCP (mono-
cyte chemoattractant protein); G-CSF (granulocyte colony-stimulating factor); IL-1ra (interleukin-1
receptor antagonist); FGF (fibroblast growing factor); IP-10 (interferon γ induced protein 10); PDGF
(platelet-derived growth factor); RANTES (regulated upon activation, normal T cell expressed and
secreted); VEGF (vascular endothelial growth factor).

As shown in Figure 1a, the following cytokines have high positive loading (cut-off
value > 3) on PC1: IL-1β, IL-4, IL-5, IL-7, IL-9, IL-10, IL-13, G-CSF, PDGF, and VEGF.
When analyzing the impact of rs1818879 on the CSF levels of these cytokines, we found
significantly higher levels of IL-1β (p = 0.0385); IL-9 (p = 0. 0231); IL-10 (p = 0. 0345); and
IL-13 (p = 0.0319) in the A carrier. Conversely, the association between other cytokines was
not significant (Table 3).
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Table 3. Median (IQR) of cytokine levels with high loading in PC1 according to the SNP
rs1818879 group.

GG AG/AA p Value β-Coefficient SE

IL-1β 0.01 (0.01–0.05) 0.025 (0.00–0.07) p = 0. 0385 * 7.00 3.38

IL-4 0.08 (0.01–0.15) 0.08 (0.00–0.22) p = 0.104 1.25 0.770

IL-5 0.34 (0.00–2.16) 1.15 (0.00–3.34) p = 0.0543 0.142 0.0740

IL-7 0.41 (0.00–0.92) 0.20 (0.00–1.41) p = 0.0991 0.180 0.109

IL-9 1.86 (1.11–2.77) 2.36 (1.45–5.44) p = 0.0231 * 0.105 0.0462

IL-10 1.78 (0.97–2.60) 2.11 (1.27–2.70) p = 0.0345 * 0.278 0.132

IL-13 1.63 (1.04–3.32) 2.06 (1.11–4.53) p = 0.0319 * 0.128 0.0597

G-CSF 15.29 (4.41–25.92) 16.51 (3.62–28.34) p = 0.198 0.0131 0.0102

PDGF 0.00 (0.00–0.37) 0.00 (0.00–0.52) p = 0.254 0.131 0.115

VEGF 4.03 (0.00–13.97) 5.79 (0.00–50.29) p = 0.0715 0.00988 0.00548

Table Legend: Subjects carrying the homozygous major allele of SNP (GG), subjects carrying A minor allele
(AG/AA) for SNP rs18188792. (*) denotes statistical significance (p < 0.05) using logistic regression analysis. Ab-
breviations: interquartile range (IQR); standard error (SE); IL (interleukin); G-CSF (granulocyte colony stimulating
factor); PDGF (platelet-derived growth factor); VEGF (vascular endothelial growth factor). CSF analysis missing
data: GG group (3 patients, 3.4%), AG/AA group (7 patients, 8.4%).

3.4. rs1818879 Influences Radiological Activity in RRMS Patients

A significant association emerged between the SNP rs1818879 and radiological activity
at diagnosis (Table 4). In particular, the presence of the A allele was associated with a higher
prevalence of gadolinium-enhancing lesions at the time of diagnosis (GG patients = 32.60%;
GA/AA = 57.50; p = 0.001). We found no other significant differences between the two
groups in the demographic and clinical characteristics examined.

Table 4. Demographic and clinical characteristics of RR-MS patients according to the SNP
rs1818879 group.

GG
n = 88 (51.46%)

AG/AA
n = 83 (48.53%) p Value

Sex, F N (%) 57 (64.80) 56 (67.50) p = 0.710

Age, years Mean, (SD) 37.20 (12.38) 34.27 (12.04) p = 0.111

Disease duration, months Median (IQR) 6.66 (1.3–26.13) 3.1 (0.90–24.60) p = 0.227

EDSS Median (IQR) 2 (1–2.5) 2 (1–2.25) p = 0.647

OCB presence, yes N (%) 70/87 (80.50) 62/79 (78.50) p = 0.752

Radiological activity at diagnosis N (%) 28/86 (32.60) 46/80 (57.50) p = 0.001 *

Clinical activity at diagnosis N (%) 34 (38.63) 34 (40.96) p = 0.707

Table legend: Subjects carrying homozygous major allele of SNP (GG), subjects carrying A minor allele (AG/AA)
for SNP rs18188792. (*) denotes statistical significance (p < 0.05) using a nonparametric Mann–Whitney test
for continuous variables and a chi-square test for categorial variables. Abbreviations: multiple sclerosis (MS),
relapsing remitting (RR), expanded disability status scale (EDSS), interquartile range (IQR).

4. Discussion

In the present study we investigated in a group of newly diagnosed RR-MS patients
and the association between four SNPs of the IL-6 gene (rs1818879, rs1554606, rs1800797,
and rs1474347) and a large set of CSF inflammatory molecules. PCA was applied to our set
of 27 CSF cytokines to identify, in an unsupervised manner, specific components explaining
the synergistic effect of different molecules [12]. We found a significant association between
rs1818879 and the first component (PC1) which represents the greatest source of variation,
explaining 24.23% of the variance within our CSF cytokine set. PC1 reflects the combined
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effect of a large set of pro- and anti-inflammatory molecules including IL-1β, IL-4, IL-5,
IL-7, IL-9, IL-10, IL-13, G-CSF, PDGF, and VEGF. In particular, the CSF levels of IL-1β, IL-9,
IL-10, and IL-13 were significantly higher in A minor allele carriers of rs1818879. These data
suggest that individual variability of IL-6 rs1818879 may influence the CSF inflammatory
milieu in RR-MS. In particular, A minor allele carriers may present with higher levels of
central inflammation at the time of diagnosis.

When exploring the association between rs1818879 and clinical characteristics, we
found a higher prevalence of radiological disease activity among patients carrying the A
minor allele. Conversely, no significant associations emerged with other clinical features,
including EDSS and clinical activity. Altogether, these apparently contrasting findings may
possibly suggest an increased susceptibility to new inflammatory subclinical episodes in
these patients.

In rs1818879, A minor allele carriers significantly increasing CSF levels of both pro-
inflammatory and anti-inflammatory cytokines have been observed. Notably, IL-1β is a
prototypical pro-inflammatory molecule involved in the migration of activated inflamma-
tory cells into the CNS by altering BBB permeability [13]. This cytokine is produced by
several immune cells including monocytes, macrophages, dendritic cells, neutrophils, T
lymphocytes, and glial cells, in response to inflammatory signals [13]. Previous studies
have clearly demonstrated the role of IL-1β in the pathogenesis of EAE and MS [14]. In
particular, IL-1β detectability in the CSF of stable RR-MS patients has been associated with
increased prospective disability and higher neurodegeneration [15]. The other cytokines
associated with rs1818879, particularly IL-9, IL-10 and IL-13, have been classically linked to
anti-inflammatory functions in MS [16–19]. In particular, IL-9 is secreted by T helper cells
and regulates the balance between Th17 and T regulator (Treg) cells favoring the latter [20].
Similarly, IL-10 and IL-13 are pleiotropic, and immunoregulatory cytokines associated with
T helper 2 and Treg cell responses and functions, promote immune homeostasis and anti-
inflammatory responses [18,19]. A concurrent elevation of both pro- and anti-inflammatory
cytokines may therefore suggest heterogeneous activation of the immune response in
these patients.

Previous studies have investigated the role of SNPs in the IL-6 gene in MS [10,11,21–26]
and other autoimmune diseases (e.g., rheumatoid arthritis and erythematous systemic
lupus [27,28]). Particularly for MS, the SNP rs1800795, located in the promoter region of
the IL-6 gene, has been associated with MS risk and severity [11,21]. rs1800795 has also
been implicated in the development of optic neuritis risk [22,23], and in the modulation of
flu-like symptoms in patients treated with interferon β1a [22]; however, the role of most
IL-6 gene SNPs in MS is still unknown.

To the best of our knowledge, this is the first study demonstrating a direct effect of a
SNP of the IL-6 gene on CSF cytokine milieu in RR-MS, and the first study investigating the
role of rs1818879 in MS. Previous studies have shown a possible a role of this polymorphism
in different inflammatory conditions. In rs1818879, A minor allele carriers have a greater
risk of developing inflammatory diseases such as chronic obstructive bronco pneumopathy
(COPD) has been reported, which is associated with smoking [29]. In addition, a study
showed a higher risk of developing major depressive disorder in patients with childhood
maltreatment carrying the A minor allele of rs1818879 [30].

Although our results indicate that rs1818879 may significantly influence an immune
response in MS, and may represent a possible marker associated with higher risk of neu-
roinflammation and disease activity, the lack of correlation between this SNP and IL-6 CSF
concentrations represents an unexpected result. rs1818879 is localized in the 3′ untranslated
region (3′UTR) near the promotor of the IL-6 gene and the CCCTC-Binding factor (CTCF)
binding site that can be involved in the modulation of gene expression [31]. As reported
by the Genotype-Tissue Expression (GTEx) project, this SNP is localized in another gene
placed in the opposite strand of IL-6 gene encoding for AC073072, a novel antisense long
non-coding RNA, about which, little is known [31,32]. Although the mechanism remains
unclear, localization in sites involved in the direct or indirect regulation of gene expres-
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sion, suggests that rs1818879 may be a functional polymorphism [31]. In this regard, one
hypothesis could be that rs1818879 is not involved directly in the synthesis of IL-6 but it
could be able to indirectly influence the levels of other CSF cytokines; however, the idea
that the lack of association with IL-6 levels could be due to statistical/technical limitations
cannot be overlooked. Therefore, it is necessary to study a larger cohort of MS patients with
homogeneous clinical characteristics, such as disease duration and activity, which have
been previously associated with increased IL-6 expression [6,33]. Equally important, are
studies with longer follow-ups, which are needed to clarify possible associations between
A minor allele presence and clinical activity, as the effects of chronic increased levels of
IL-1β, IL-9, IL-10, and IL-13, mediated by rs1818879, may influence the disease course in
the long run. Other important limitations are represented by the lack of detailed MRI data,
such as quantification of the T2 lesions’ load and volume.

In conclusion, the association between IL-6 rs1818879 SNP and central inflammation
suggests a role for this polymorphism in regulating disease activity in MS.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13050897/s1, Table S1. Variance of the first six principal
components in PCA. Table S2. Logistic regression analysis between PCs and SNP rs1818879 group.
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