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Abstract

Evidence on the link between starch intake and caries incidence is conflicting, therefore the

cariogenicity of starch compared with sucrose was explored using a dual Constant Depth

Film Fermenter (dCDFF) biotic model system. Bovine enamel discs were used as a sub-

strate and the dCDFF was inoculated using human saliva. CDFF units were supplemented

with artificial saliva growth media at a constant rate to mimic resting salivary flow rate over

14 days. The CDFF units were exposed to different conditions, 2% sucrose or 2% starch 8

times daily and either no additional fluoride or 1450 ppm F- twice daily. Bovine enamel discs

were removed at intervals (days 3, 7, 10 and 14) for bacterial enumeration and enamel anal-

ysis using Quantitative Light Induced Fluorescence (QLF) and Transverse Microradiogra-

phy (TMR). Results showed that in the absence of fluoride there was generally no difference

in mineral loss between enamel exposed to either sucrose or starch when analysed using

TMR and QLF (P > 0.05). In the presence of fluoride by day 14 there was significantly more

mineral loss under starch than sucrose when analysed with TMR (P < 0.05). It was con-

firmed that starch and sucrose are similarly cariogenic within the dCDFF in the absence of

fluoride. With the aid of salivary amylase, the bacteria utilise starch to produce an acidic

environment similar to that of bacteria exposed to sucrose only. In the presence of fluoride,

starch was more cariogenic which may be due to the bacteria producing a more hydrophobic

intercellular matrix lowering the penetration of fluoride through the biofilm. This is significant

as it indicates that the focus on sugars being the primary cause of caries may need re-evalu-

ating and an increase in focus on carbohydrates is needed as they may be similarly cario-

genic as sugars if not more so.

Introduction

A link between starch intake and caries incidence is a topic with conflicting opinion. The Sci-

entific Advisory Committee on Nutrition, UK reported that there is a lack of available evidence

on the relationship between starch or starch rich foods and colo-rectal, oral health outcomes
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or cardiovascular risk factors [1]. Recent reports suggest that there is only low-quality evidence

on an association between total starch intake and caries but a potential link between rapidly

digestible starch and an adverse effect on oral health [2] has been noted. Other studies, includ-

ing a systematic review into starch and caries, have identified a need for additional studies into

the topic as until a negative or positive link has been characterised, it is not possible to state to

the greater population that starch has no cariogenic affect [3] and further research is therefore

essential.

To the best of our knowledge, there have been no studies into the cariogenicity of starch

using the constant depth film fermenter (CDFF) model system rather than using sucrose

exclusively as a means of inducing an acid response by the oral bacteria [4–6]. By employing

two constant depth film fermenters in parallel as a dual setup (dCDFF) [5] it is possible to

directly compare sucrose with starch whilst ensuring all other factors are equal, including arti-

ficial saliva sources and inoculum.

For this study oral bacteria were sourced from a saliva pool collected from volunteers, this

was to best ensure a representative microcosm was present. The major microbes of interest for

this study were Streptococcus mutans, Streptococcus spp., Lactobacillus spp. and Veillonella spp.

These were chosen due to their role as primary caries pathogens [7, 8] and a link between their

presence and an acidic environment [9]. The dCDFF allows control of substrate, medium

composition, application of medium and depth of biofilm, which is generally set to 200 μm

[10, 11] or 300 μm [12]. Bovine enamel was used throughout this study as the substrate as it is

generally accepted as a suitable replacement for human enamel despite minor differences in

porosity and structure [13] and has been used in other CDFF experiments [4, 12].

The loss of mineral from the bovine enamel is caused by a decrease in pH below the so

called “critical pH” level [14] which results in a dissolution of minerals, including calcium and

phosphate, out of the enamel and into the plaque fluid. The loss of mineral was analysed using

transverse microradiography (TMR) and quantitative light induced fluorescence (QLF). TMR

was chosen as it has previously been demonstrated to accurately quantify mineral loss through-

out an enamel cross section showing how mineral loss changes according to depth from the

surface [15]. Complementing TMR was the use of QLF, a non-destructive method to quantify

mineral loss. QLF measures the loss of mineral by measuring and quantifying the changes in

natural fluorescence of the enamel [16].

The aim of this study therefore was to assess whether starch is as cariogenic as sucrose

within the controlled biological environment of the dCDFF, whether it affects bacterial growth

and induces a structural change within the bovine enamel used as a substrate. The study will

also investigate whether the efficacy of fluoride to prevent mineral loss of enamel is different

between a biofilm grown under starch and one grown under sucrose.

Materials and methods

Two separate dCDFF experiments were used in this study. The first experiment directly com-

pared 2% sucrose with 2% starch without any additional fluoride (F-) treatment. The second

experiment was setup identically to experiment 1 however 1450 ppm F- was pulsed in twice

daily.

Enamel substrate

Polished enamel discs, 5 mm in diameter, were produced from lower bovine incisors and used

as the substrate for this study. Bovine mature lower incisors were extracted at an abattoir (ABP

Food Group, Shrewsbury, UK) from cows under 36 months of age. They were polished using

three grades of sandpaper (1200, 4000 and 7000) and painted around the sides with acid
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resistant nail varnish (Max Factor Crystal Clear; Proctor & Gamble, Weybridge, UK). Each

disc was imaged using quantitative light induced fluorescence (QLF) to capture baseline read-

ings. The discs were then recessed to a depth of 200 μm within Polytetrafluoroethylene (PTFE)

pans, each holding five bovine enamel discs. The disc-containing pans were sterilised using

4000 Gy gamma radiation [17].

Media preparation

An 8 L volume of artificial saliva [18, 19] was prepared for both experiments, of the composi-

tion: 1 g.L-1 Lab Lemco Powder (Thermo Scientific, Leicestershire, UK), 2 g.L-1 Yeast Extract

(Sigma-Aldrich Ltd., Poole, UK), 5 g.L-1 Proteose Peptone (Sigma-Aldrich Ltd., Poole, UK),

2.5 g.L-1 Mucin from Porcine Stomach (Sigma-Aldrich Ltd., Poole, UK), 0.2 g.L-1 NaCl

(Sigma-Aldrich Ltd., Poole, UK), 0.2 g.L-1 KCl (Sigma-Aldrich Ltd., Poole, UK) and 0.05 ppm

fluoride, F- (as NaF, Sigma-Aldrich Ltd., Poole, UK). The 8 L volume was autoclaved at 121˚C

and 2200 mBar for 15 minutes. 90 u.mL-1 of α-amylase (from Aspergillus oryzae) was added

aseptically after autoclaving and fully cooled. A smaller 500 mL volume of artificial saliva

minus F- and α-amylase was also prepared and sterilised.

A sucrose concentration of 2% has previously been established due to its ability to induce a

cariogenic response within the CDFF model [19]. As the use of starch within the CDFF is

novel it was decided to use a concentration of 2% to match the sucrose source. Volumes of 2%

sucrose and 2% starch were prepared and autoclaved at a lower temperature of 116˚C and

1900 mBar to prevent any sugar degradation [4]. All other equipment including the CDFF

units and silicon pipes were autoclaved at 121˚C. For the second experiment only a solution of

1450 ppm F- (as NaF) was prepared and autoclaved at 121˚C.

dCDFF setup and inoculation

The disc-containing pans were introduced to the sterile CDFF units aseptically under laminar

flow. The CDFF units and media were then setup for the experiments as shown in the Fig 1 sche-

matic. The dCDFF was setup within an incubator set to 37˚C and was an aerobic environment.

Sterility of the dCDFF was maintained by filters on air exchange pipes. A pellicle was formed

atop the bovine enamel discs over a 3.5-hour period at a rate of 0.38 ml.min-1, controlled by peri-

staltic pumps (101U/R MK2; Watson Marlow, Falmouth, UK), using the 8 L artificial saliva

source. This was then switched off and inoculation of the dCDFF units was performed.

To provide a microcosm of oral bacteria, saliva was previously collected from 23 volunteers

(ethical approval, University of Liverpool; Ref: RETH001026) who were dentate, had not taken

antibiotics within 2 months and were over 18 years old [5]. Participants were informed with

an information sheet outlying the purpose of the study and how their saliva was to be used.

Participants who wished to continue and provide a sample gave written permission for collec-

tion of their saliva. The saliva sources were pooled, mixed 50/50 with sterile skim milk (Sigma-

Aldrich Ltd., Poole, UK) to act as a cryoprotectant of the bacteria when frozen [20] and split

into 1 ml aliquots for storage at -80˚C. The aliquots produced may not necessarily be homoge-

nous as observed by occasional plaque debris differences between the aliquots. However to

break this down any additional processing may damage the bacteria so is generally avoided

[5]. Therefore, it is not possible to directly compare colony forming units (CFUs) figures

between two different experiments but is possible to discuss general trends. The two CDFF

units in one experiment can be directly compared as they are inoculated with the same aliquot.

A thawed 1 ml aliquot of the pooled saliva was added to the 500 ml artificial saliva and

pumped into the CDFF units at a rate of 0.3 ml.min-1 over a 16-hour period and fully depleted

to inoculate both CDFF units. Once complete the 8 L artificial saliva source was restarted and
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the timed sources of sucrose and starch began. The carbohydrate sources were pulsed into the

appropriate CDFF unit 8 times daily for 30-minute intervals at a rate of 0.38 ml.min-1. The 8

daily carbohydrate pulses was chosen as a previous study using 2% sucrose 8 times daily was

shown to induce an acidic environment resulting in a loss of mineral from a substrate in S.

mutans [21]. This was performed over 16-hours of a 24-hour cycle (Fig 2). In the second

Fig 1. dCDFF schematic. The dCDFF was setup as shown. Each peristaltic pump was set to 0.38 ml.min-1 for all media into the CDFF units. All inputs incorporated a

grow-back trap to prevent a cross contamination. The source of 1450 ppm F- was only used for experiment 2, all other components were the same for both experiments.

https://doi.org/10.1371/journal.pone.0258881.g001
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experiment F- was pulsed at 0.38 ml.min-1 for 2 minutes twice daily 30 minutes before the first

sucrose pulse and 30 minutes after the last sucrose pulse of the day.

Bacterial enumeration

For the enumeration of viable bacteria two PTFE pans were removed from each CDFF units

on days 3, 7, 10 and 14. Two discs were removed per pan and placed in individual bijou tubes

(Sterilin Ltd., Newport, UK) containing sterile 5ml PBS (Sigma-Aldrich, Poole, UK) and three

sterile glass beads (3.5–4.5 mm diameter; BDH-Merk Ltd., Poole, UK) to assist the dislodging

of the biofilm from the enamel surface. The bijou tubes were vortexed for 30-seconds remov-

ing the biofilm from the discs into the PBS. Serial 10-fold dilutions were performed and 10 μl

of each dilution spread onto selective agars in duplicate.

S. mutans counts were enumerated using Tryptone Yeast, Cysteine agar (TYC; LabM Ltd.,

Bury, UK) medium with additional 3.5 mg.L-1 bacitracin (Sigma-Aldrich, Poole, UK). Strepto-
coccus spp. enumeration was performed using Mitis Salivarius Agar (MSA; Sigma-Aldrich

Ltd., Poole, UK) containing 1% potassium tellurite (Sigma-Aldrich Ltd., Poole, UK). Lactoba-
cillus spp. viable counts were obtained using Rogosa agar (Sigma-Aldrich Ltd., Poole, UK).

Veillonella spp. were enumerated using BV agar [4] which contains 15 g.L-1 bacto agar (Oxoid,

Basingstoke, UK), 0.75 g.L-1 sodium thioglycollate (Sigma-Aldrich Ltd., Poole, UK), 2 mg.L-1

basic fuchsin (Sigma-Aldrich Ltd., Poole, UK) and 21 ml.L-1 of 60% Sodium Lactate (Sigma-

Aldrich Ltd., Poole, UK).The pH of the medium was adjusted to 7.5 using 1 M NaOH (Sigma-

Aldrich Ltd., Poole, UK) then autoclaved at 121˚C. Once cooled to 47˚C, 7.5 mg.L-1 of vanco-

mycin (Sigma-Aldrich Ltd., Poole, UK) was added using a 0.2 μm disposable syringe filter

(Sigma-Aldrich Ltd., Poole, UK).The colony forming units (CFUs) were counted to provide

viable bacterial counts.

Fig 2. Pulsing strategy used throughout the experiments. Artificial saliva was pumped continuously whereas 2% sucrose 2% starch were

pumped for 30 minutes 8 times daily. All solutions were pumped at a rate of 0.38 ml.min-1. Experiment 2 had additional 1450 ppm F- pulses

for 2 minutes at 0.38 ml.min-1 before and after the daily sucrose pulses.

https://doi.org/10.1371/journal.pone.0258881.g002
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QLF analysis

QLF measures the changes in fluorescence of the enamel. Enamel naturally fluoresces due to

fluorophores within the enamel reflecting light back to the source. As mineral is lost the paths

of light are disrupted resulting in less light reflected from the fluorophores [16].

Images were captured using the QLF Biluminator system (Biluminator; Inspektor Pro

Research Systems, Amsterdam, Netherlands) attached to an SLR camera (Canon 660D;

Canon, Tokyo, Japan) with an EF-S 60 mm f2.8 macro lens (Canon, Tokyo, Japan). Images

were captured in a dark room with standardised settings for the blue light images:

2592x1728px, 1/40s shutter speed, f8.0 aperture, daylight white balance, ISO 1600. The height

between sample and camera was kept consistent for all samples. Baseline images of the enamel

discs were taken using the proprietary software (QLF Capture Software C3 v1.26; Inspektor

Pro Research Systems, Amsterdam, Netherlands) before being placed in PTFE pans and steri-

lised. Once air dried after exposure to the CDFF the enamel discs were once again imaged to

provide post CDFF exposure images. The images were analysed using proprietary software

(QLF Analysis Software QA2 v 1.26; Inspektor Pro Research Systems, Amsterdam, Nether-

lands). The difference in fluorescence between the baseline image and post CDFF exposure

image was used to produce a fluorescence loss value, ΔF (%), which corresponded to mineral

changes in the enamel.

TMR analysis

TMR quantifies the loss of mineral from sections of enamel by comparing the mineral content

(vol%) at different depths from the surface, 0 to 100 μm in 5 μm steps, to the mineral content

in the sound enamel region between the surface and dentine. This gives a ΔZ value, mineral

content over depth (vol%.μm), as well as a depth of the lesion (μm) [15].

Enamel discs were mounted on ceramic discs polished side up, using Green-Stick impres-

sion compound (Kerr Corporation, California, USA) and cut into 4–5 sections of ~1.2 mm

thickness using a precision diamond wire saw (Model 3241; Well Diamantrahtsagen GmbH.,

Mannheim, Germany). The sections were then mounted atop 11mm custom made brass

anvils. Using a 50:50 slurry of nail varnish (Max factor Red Passion; Procter & Gamble, Wey-

bridge, UK) and acetone, the sections were attached ensuring no nail varnish was between sec-

tion and anvil. Once dried they were further painted around to hold the sections securely.

Once set, the enamel was then polished using a diamond encrusted grinding disc (Custom-

made containing 15μm sized particles; Buehler, Illinois, USA) to a 250 μm thickness. The sec-

tions were removed using acetone and remounted as previous, this time placing the recently

polished side down facing the anvil. Once set, the sections were polished down to 80 μm. The

sections were once again removed using acetone.

The sections were mounted onto an acetate template using double-sided sticky tape

(Q-Connect, Derbystraat, Belgium) with the sound enamel sitting on the acetate and the lesion

over empty space. The sections were covered with a thin X-ray film membrane to protect

them. A window in the middle of the template allowed step wedge positioning for later calibra-

tion. The section-covered template was positioned atop a 12-step aluminium step wedge, with

the section side touching a high-resolution x-ray film plate (HTA Enterprises Microchrome

Tech Products, CA, USA) and the emulsion layer facing the x-ray source. This was exposed to

a CuKα X-ray source operating at 20 mA and 20 kV for a 12-minute exposure time. The plates

were then developed and fixed in solutions according to manufacturer instructions and dried

before reading (Developer; EMS replacement for Kodak Developer D-19, EMS, PA, USA.

Fixer; Ilford Rapid Fixer, Harman Technologies Ltd, UK)
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The radiographic slides were examined using an optical microscope (BX51, Olympus,

Tokyo, Japan) with a DSLR camera fitted (EOS 550D, Canon, Tokyo, Japan) through the TMR

2000 Software (version 4.0.0.23, Inspektor Research Systems BV., Amsterdam). Prior to cap-

turing images of the sections, the exposure of the slide was calibrated using an aluminium step

wedge of varying known thicknesses (25 μm steps). Following calibration, images were cap-

tured at a magnification of x20/0.4. The images were analysed using the TMR 2006 Software

(version 3.0.0.17, Inspektor Research Systems BV., Amsterdam), this produced values for inte-

grated mineral loss (ΔZ, vol%.μm) and lesion depth (μm).

Statistical analysis

T-test statistical analyses were performed using SPSS for Windows Version 25.0 (SPSS

UK Limited, Woking, UK). Calculations for mean and standard error were performed in

Excel (Office 365 Version 1901: Microsoft Corporation, Redmond, WA, USA). For the sta-

tistical tests, a 95% certainty was applied, therefore the threshold for significance was

P � 0.05.

Results

Bacterial enumeration

In the absence of additional fluoride, by day 14 for all bacterial selections (Fig 3) there was little

difference between those exposed to 2% starch and those exposed to 2% sucrose. For Lactoba-
cillus spp. and Veillonella spp. there was no statistically significant difference for all timepoints

(P> 0.05). S. mutans viable counts were higher under sucrose for the duration of the experi-

ment, however this was only significant at day 3 and (3.88 vs 2.57 log10.CFU.ml-1, P = 0.006)

and day 7 (6.3 vs 5.95 log10.CFU.ml-1, P� 0.001). Initially the viable counts of Streptococcus
spp. were higher under 2% sucrose exposure at day 3 (6.56 vs 6.52 log10.CFU.ml-1, P = 0.006)

but then inverted at day 7 with significantly higher counts under 2% starch (7.13 vs 7.29 log10.

CFU.ml-1, P�0 .001). By day 10, as with S. mutans, the counts were no longer significantly

different.

In the presence of twice daily pulses of 1450 ppm F-, there was generally more growth for

bacteria grown under 2% starch than under 2% sucrose. Significantly more growth under

starch was observed on day 3 only for Veillonella spp. (6.38 vs 6.73 log10.CFU.ml-1, P = 0.018).

Significantly more growth of Streptococcus spp. under 2% starch was observed from day 7

onwards with a peak at day 10 (7.81 vs 9.12 log10.CFU.ml-1, P = 0.036) and remaining signifi-

cant at day 14 (7.84 vs 8.2 log10.CFU.ml-1, P = 0.022). All 4 selections had a peak of growth

under 2% starch at day 10 followed by a drop at day 14. For both experiments, all timepoints

had a sample size of n = 4, 2 discs removed per pan.

Changes in fluorescence

The changes in fluorescence (ΔF, %) over 14 days for enamel discs exposed to either 2%

sucrose or 2% starch are shown in Fig 4. In the absence of additional fluoride, at day 3 both

conditions showed a similar fluorescence loss of 20.8±3.2% for sucrose and 23.6±2.9% for

starch (p = 0.534). The difference diverged at day 7 with significantly more loss under sucrose

exposure (57.4±2.1 vs 48.2±2.4%, p = 0.007). The difference reduced thereafter with no signifi-

cant difference observed for day 10 (p = 0.213) and day 14 (p = 0.86). For all timepoints the

sample size of discs was n = 10.

When 1450 ppm fluoride was introduced twice daily there was less fluorescence loss for

sucrose and starch than in the absence of fluoride. Throughout the 14 days there was no
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significant difference between the two conditions despite the discs exposed to sucrose having a

higher fluorescence loss throughout (P> 0.05). For all time points the sample size of enamel

discs was n = 10 except for a loss of a sucrose exposed disc on day 7 (n = 9).

Fig 3. Bacterial enumeration. Viable counts of bacteria exposed to either 2% sucrose or 2% starch eight times daily. Error bars represent standard deviation of the sample

set. � Denotes significance.

https://doi.org/10.1371/journal.pone.0258881.g003
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Mineral loss

The mineral loss (ΔZ, Vol%.μm) from the bovine enamel was quantified using TMR (Fig 5).

Similar to the QLF analysis, in the absence of fluoride there was generally little difference

between the two conditions over the 14-day duration. At day 3 there was no overall difference

between discs exposed to sucrose or starch (99.6±14.7 vs 129.8±24.78 Vol%.μm, p = 0.213).

The mineral loss diverged at day 7, however the mineral loss was significantly greater for discs

exposed to starch (540.3±52.1 vs 410.2±29.4 Vol%.μm, p = 0.05). Beyond day 7 there was no

overall difference between the two conditions at both day 10 (p = 0.069) and day 14

(p = 0.552). For all time points the sample size of enamel discs was n = 10 except for a loss of a

sucrose exposed disc on day 7 (n = 9).

However, when fluoride was introduced twice daily a difference was observed from day 7

onwards. At day 7 the mineral loss data showed significantly greater mineral loss for 2%

sucrose (200.95±20 vs 146.33±11 vol%.μm, p = 0.023) which then reversed for day 10 with

greater mineral loss under 2% starch (278.26±15.7 vs 341.1±23.7 vol%.μm, p = 0.032) and also

for day 14 (265±18.5 vs 360±25.9 vol%.μm, p = 0.001). For all time points the sample size of

enamel discs was n = 10 except for a loss of a sucrose exposed disc on day 7 (n = 9).

Fig 4. Changes in fluorescence. Change in ΔF (%) over 14-days of exposure to 2% sucrose or 2% starch eight times daily. Two CDFF units were exposed to

1450 ppm F- and two units had no additional F-. Error bars represent standard error of the sample set. � Denotes significance.

https://doi.org/10.1371/journal.pone.0258881.g004
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The lesion depth profiles show the beginnings of subsurface lesions for both sucrose and

starch (Fig 6A and 6B) in the absence of fluoride with similar loss under both conditions.

When fluoride was introduced in the second experiment (Fig 6C and 6D) the mineral profile

graphs show a similar profile for both conditions with most mineral loss at the surface and no

noticeable subsurface lesions, contrasting the previous experiment where F- was absent.

Discussion

This study using the dCDFF biological model has demonstrated that under certain conditions

starch can be considered a cariogenic agent which results in a level of demineralisation compa-

rable to sucrose. A previous study [22] investigated the growth of a microcosm supplemented

by artificial saliva containing both starch and sucrose, making it difficult to ascertain whether

the growth was induced by both factors or not. A study using hydroxyapatite discs in batch

cultures explored the response of S. mutans to starch and sucrose during the biofilm develop-

ment, showing a degree of interaction but the cariogenicity of starch alone against enamel was

not investigated [23]. The dCDFF in vitro model employed for this study was able to investi-

gate the cariogenicity of starch by comparing it directly with sucrose whilst closely

Fig 5. Changes in mineral loss. Mineral loss (ΔZ, Vol%.μm) over 14-days of exposure to 2% sucrose or 2% starch eight times daily. Two CDFF units were exposed

to 1450 ppm F- and two units had no additional F-. Error bars represent standard error of the sample set. � Denotes significance.

https://doi.org/10.1371/journal.pone.0258881.g005
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representing of the oral environment. The previously established dCDFF model [5] was modi-

fied by using amylase at 90 u.mL-1 within the artificial saliva to represent the levels present

within human saliva [24, 25].

Effect of sucrose and starch on bacterial growth

This study shows that within the dCDFF model starch induces a cariogenic response by the

oral bacteria that is similar to sucrose, as shown by similar levels of viable growth and mineral

loss from the bovine enamel used as a substrate. The role of sucrose in oral biofilm formation

is well understood and the direct relationship between sucrose intake and caries formation is

well established [26]. The rapid and easy fermentation of sucrose by oral bacteria as a substrate

for the synthesis of extracellular (EPS) and intracellular (IPS) polysaccharides entitles its con-

sideration as the most cariogenic dietary carbohydrate [27]. The fermentation of sucrose leads

Fig 6. Enamel lesion profiles. Lesion profiles of bovine enamel discs exposed to either 2% sucrose or 2% starch over 14 days. (A) 2% Sucrose, No Fluoride. (B) 2% Starch,

No Fluoride. (C) 2% Sucrose, 1450 ppm F-. (D) 2% Starch, 1450 ppm F-. The Lesion profiles show the change in mineral volume (Vol%) as distance from the enamel

surface increases (μm).

https://doi.org/10.1371/journal.pone.0258881.g006
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to a pH shift of the biofilm to be more acidic resulting in caries formation [28]. Bacterial adher-

ence to enamel is enabled by the use and production of EPS molecules that are described as

having mucoid characteristics due to their sticky-like nature [29]. The EPS molecules promote

structural integrity of the biofilms whilst also increasing porosity, allowing the diffusion of

sucrose deeper into the biofilm which further decreases the overall pH [30]. This means the

availability of glucose is integral to the establishment of the biofilm colonies and a lack thereof

will reduce the overall population. The viable bacterial counts presented here in the first exper-

iment show that there was no difference between the bacteria grown under sucrose and those

under starch by day 10, implying that the bacteria were able to use starch for the formation of

EPS molecules required for biofilm creation. By providing an external source of amylase in the

artificial saliva, at levels comparable to human saliva (90 u.ml-1), glucose was made available

for the formation of EPS molecules by the oral bacteria, which could not have been released in

the absence of amylase [24, 25].

Twice daily pulses of 1450 ppm F- (as NaF) were introduced into the dCDFF system in the

second experiment and all other conditions remained the same as the first experiment. It has

been shown that F- directly inhibits enzymes within the bacteria such as enolase and F-ATPase

or by increasing the permeability of the cell wall, therefore acting as an anti-microbial agent

[31]. As the same concentration of F- was applied to both CDFF units equally it would be

expected that the effect on bacteria growth would be equal, however this was not the case. As

all bacteria isolations had higher viable counts under 2% starch, this suggests that the bacteria

exposed to starch had a reduced susceptibility to F- than those grown under sucrose, therefore

it may be possible that the composition of the biofilm produced from both substrates may

affect the efficacy of F-.

The substrate available to the bacteria affects the composition and thickness of the biofilm,

this was noted in a study which found that in the presence of starch the biofilm contained

more highly branched insoluble glucans than in its absence. It also found that the combination

of sucrose and starch resulted in a biofilm with greater thickness and biovolume than sucrose

alone and sucrose plus glucose [32]. Distinct differences have been noted between glucans

made with starch hydrolysates and those without, as well as increased adhesion by S. mutans
and Actinomyces viscosus in the presence of starch and amylase. Therefore a change in glucans

influenced by starch may affect formation of plaque and influence caries formation [33]. The

presence of the additional highly branched insoluble glucans therefore may affect the overall

integrity of the biofilm [34], changing the diffusion properties of the biofilm, i.e. how easily

substrates and ions can move throughout the biofilm [30], resulting in an increase in protec-

tion to antimicrobial agents such as F- [8].

The differences in viable bacterial growth in experiment 2, between 2% sucrose and 2%

starch exposure with additional 1450 ppm F-, may be due to highly branched glucans reducing

its efficacy of F- by reducing the penetration through the biofilm. It has been shown that

increased thickness of a biofilm required longer durations of F- exposure as a too short dura-

tion resulted in bacteria inhibition only at the outermost layers [35].

Effect of sucrose and starch on mineral loss

A previous study investigating the cariogenic effect of starch vs sucrose found that in rats

superinfected with S. mutans and A. viscosus starch alone was indeed cariogenic but was less so

than sucrose [36]. In contrast to this, in the first experiment comparing sucrose and starch

with no additional fluoride, both TMR and QLF showed similar mineral changes to the enamel

under both sucrose and starch exposure. The difference between this study and the study by

Firestone et al., may be due to the difference in microbiome composition. High levels of S.
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mutans has been shown to compete with other oral bacteria such as Streptococcus sanguinis
and reduce their numbers [37]. This would reduce the amount of starch broken down as S.

mutans is reliant on free α-amylase to break down starch whereas other bacteria including S.

sanguinis have bound α-amylase which may aid starch breakdown [38]. Therefore by using an

unaltered and representative microbiome in this study more starch was broken down for

anaerobic respiration resulting in a more similar acidic environment to the sucrose exposed

bacteria. In this experiment the viable counts were not significantly different for Lactobacillus
spp. and Veillonella spp. exposed to either starch or sucrose. The presence of the lactic acid

consumer Veillonella spp. and the insignificant ΔZ difference, indicate similar levels of lactic

acid and both biofilms were similarly acidic.

F- is commonly used as an anti-cariogenic agent due to its ability to incorporate into the

hydroxyapatite structure, increasing the acid resistance of the enamel [39], F- was used for

experiment 2 at 1450 ppm to mimic the concentration in toothpastes [40]. In the presence of

fluoride, the fluorescence loss of the enamel is less than in the absence of fluoride (Fig 4) for

both starch and sucrose exposure. In experiment 2 when directly comparing sucrose and

starch when exposed to fluoride there was no overall difference in fluorescence over the 14

days.

TMR analysis however, showed F- was acting differently against the enamel exposed to

sucrose and enamel exposed to starch. This discrepancy between the TMR results and the QLF

results for experiment 2 may be due to the differences in sensitivities between the two meth-

ods. It has been noted that QLF has greater sensitivity towards surface changes whereas TMR

has a greater sensitivity for subsurface mineral changes [41]. As these are early subsurface

lesions, TMR is therefore more suited for the measurement thereof. At day 7 there was signifi-

cantly more mineral loss under sucrose, then by day 10 and into day 14 the reverse was seen

with significantly greater mineral loss under starch. These results indicated that F- was less

effective when in the presence of starch as the biofilm matured. The greater mineral loss for

starch coincided with the greater numbers of all the bacteria selected at day 10, in particular

viable Streptococcus spp., viable S. mutans and viable Lactobacillus spp., the acid producers

of the biofilm. As described previously, using starch as a substrate enables the bacteria to pro-

duce more complex glucans, including soluble highly branched glucans, which may increase

the structural integrity of the biofilm [34]. The increased levels of free insoluble glucans

and more integral biofilm therefore may have reduced the ability of F- to diffuse through

and reach the enamel [42]. If this is the case, then reduced ability to pass through the biofilm

to the enamel would lower its efficacy and its ability to reduce and prevent mineral loss. The

deeper lesions seen under starch exposure further indicates either a reduced ability of F- to

reach the enamel as easily as when sucrose is used as a substrate or starch induces an overall

more acidic environment than sucrose. This study suggests that F- at 1450 ppm may be less

effective at preventing mineral loss when starch is available to the bacteria than when sucrose

is available.

Conclusion

This study has demonstrated for the first time that under dCDFF biotic model conditions,

starch can be considered a cariogenic agent which results in a level of demineralisation compa-

rable to sucrose. The dCDFF model used was able to investigate the cariogenicity of starch by

comparing it directly with sucrose whilst closely representing the oral environment, therefore

allowing a reliable conclusion to be drawn from the results. This conclusion will have signifi-

cant implications in the field of cariology research as it indicates that the focus on sugars as the

primary cause of caries may not be sufficient. Further in vivo research is therefore essential.
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