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Abstract

The causes of seasonal variability in pathogen transmission are not well understood, and

have not been comprehensively investigated. In an example for enteric pathogens, inci-

dence of Escherichia coli O157 (STEC) colonization in cattle is consistently higher during

warmer months compared to cooler months in various cattle production systems. However,

actual mechanisms for this seasonality remain elusive. In addition, the influence of host

(cattle) behavior on this pattern has not been thoroughly considered. To that end, we con-

structed a spatially explicit agent-based model that accounted for the effect of temperature

fluctuations on cattle behavior (direct contact among cattle and indirect between cattle and

environment), as well as its effect on pathogen survival in the environment. We then simu-

lated the model in a factorial approach to evaluate the hypothesis that temperature fluctua-

tions can lead to seasonal STEC transmission dynamics by influencing cattle aggregation,

grazing, and drinking behaviors. Simulation results showed that higher temperatures

increased the frequency at which cattle aggregated under shade in pasture, resulting in

increased direct contact and transmission of STEC between individual cattle, and hence

higher incidence over model simulations in the warm season. In contrast, increased drinking

behavior during warm season was not an important transmission pathway. Although sensi-

tivity analyses suggested that the relative importance of direct vs. indirect (environmental)

pathways depend to upon model parameterization, model simulations indicated that factors

influencing cattle aggregation, such as temperature, were likely strong drivers of transmis-

sion dynamics of enteric pathogens.
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Introduction

Recurrent seasonality in disease incidence is common in infectious diseases [1,2]. Gener-

ally, incidence of bacterial enteric pathogens is greater during warmer months in both

human and animal populations [3], but respiratory and viral enteric pathogens incidence

peaks during colder months [4]. Seasonality is caused by various mechanisms. For exam-

ple, environmental factors can influence pathogen abundance, survival and virulence or

influence host susceptibility [1,2], and changes in host behavior and aggregation in differ-

ent seasons can alter contact patterns, leading to different transmission dynamics [1,2].

Investigating mechanisms underlying disease seasonality is challenging because different

mechanisms often interact in multiple causal pathways [5]. In infectious disease transmis-

sion models, seasonality is often included phenomenologically (e.g. sinusoidal function)

[1] to evaluate its implications on disease dynamics, but not the causes leading to season-

ality fluctuations. Hence, mechanistic, system-based methods are necessary to identify

and quantify the contribution of different transmission drivers and causal pathways

involved in seasonality of disease incidence [6]. Despite the need for such approaches to

address environmental drivers of disease, the application of system-based methodologies

such as agent-based modeling (ABM) has been limited.

Shiga-toxigenic Escherichia coli (STEC) are human zoonotic enteric pathogens that can

cause severe illnesses including hemorrhagic colitis and hemolytic uremic syndrome [7].

Healthy cattle and their environment are the main reservoirs for STEC [8]. For humans, the

most common source of exposure and subsequent infection is food and water contaminated

by cattle feces containing STEC [8,9]. Understanding the biological and environmental factors

leading to the persistence and transmission of STEC among cattle populations is necessary to

design and improve control strategies. One of the most consistent patterns observed in STEC

epidemiology is the strong seasonal pattern of fecal STEC shedding and increased prevalence

during the warmer months in all cattle production systems, including grazing systems [10–

13]. Multiple potential mechanisms have been proposed, but their relevance in contributing to

the seasonal variations in STEC prevalence remain inconclusive (Alam and Zurek, 2004

[11,14]. Proposed mechanisms include enhanced transmission mediated by water and flies at

higher temperature [11], and increased susceptibility linked to hormonal fluctuations associ-

ated with changes in day length [15]. Overall, evidence is limited for these proposed mecha-

nisms [11].

One possible mechanism that has received less attention is behavior changes in cattle in

response to temperature fluctuations. There are several pathways of STEC transmission in cat-

tle, including both direct host-to-host transmission and indirect environment-to-host trans-

mission. Mutual grooming, aerosols, and contact with excretions (feces, urine) on the bodies

of other individuals are important sources of direct transmission [16,17]. Consumption of

contaminated water and food are potential sources of indirect transmission[18,19]. As temper-

ature increases, cattle spend less time grazing and more time resting under the shade as a

group to seek relief from heat stress [20–22]. In addition to escaping heat from solar radiation,

feeding is reduced to decrease the heat associated with feed fermentation [23], with thresholds

for reductions in feeding activity reported between 25 and 30˚C [23,24]. In addition, cattle

tend to consume more water as temperature increases [25]. For example, temperature increas-

ing from 10˚C to 32˚C leads to 2.5 times more water consumption by calves [26]. This tends to

occur via drinking larger volumes of water during each drinking, but not necessarily through

more frequent drinking (MS, personal observation). These behavior changes are highly inter-

related and can shape cattle exposure to pathogens and subsequent disease transmission

(Fig 1).
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Computational models are important tools to study complicated and dynamic systems.

Agent-based models (ABM) provides a flexible framework to investigate relationships between

observed patterns and hypothesized mechanisms underlying these patterns in complex eco-

logical and epidemiological systems [27,28]. Agent-based models are particularly useful in

linking transmission drivers and pathways with epidemiological patterns [29]. Furthermore,

spatially explicit ABMs allow for the explicit consideration of spatial and temporal heterogene-

ity in host behavior as well as pathogen distribution in the environment, thus unifying the epi-

demiological triad: host, pathogen, and environment [18,30–32]. Therefore, to investigate

mechanisms underlying seasonality in STEC incidence in grazing cattle, we developed a spa-

tially explicit ABM for the transmission of STEC that incorporates varying mechanisms link-

ing temperature and STEC transmission.

In this study, we aimed to evaluate how changes in animal behavior in response to tempera-

ture may influence the transmission patterns and the prevalence of the pathogen in the popula-

tion of cattle in a pasture. In particular, we used the model to investigate two mechanisms by

which temperature is hypothesized to influence transmission of STEC (Fig 1), including 1) by

affecting the relative amount of time spent engaged in different activities (i.e., grazing vs. rest-

ing), and 2) by influencing the volume of water consumed by cattle.

Materials and methods

Model overview

We constructed a stochastic, spatially explicit agent-based model (ABM) to simulate transmis-

sion of STEC among grazing cattle. The model was written and executed in NetLogo 5.3.1

[33], an open-source agent-based modeling software. The model scope was a group of grazing

beef cattle in an intensively managed pasture. A detailed model description in accordance with

standard ODD (Overview, Design concepts, Details) protocol for individual- and agent-based

models [34] is provided in S1 Text. We provide a brief overview below.

The purpose of this model was to quantify how temperature fluctuation caused changes in

STEC incidence among grazing cattle by influencing diurnal behavior patterns. The model

represented a 20-acre typical pasture consisting of patches (3.6 m2 (i.e., 1.9 x 1.9 m)), including

19 acres of a 80%/20% mixture of edible grass and inedible weeds, a 1-acre large pond with a

constant depth of 0.5 m, and 5 trees that each provided a 4–patch radius (R = 7.6 m) of shade.

See supplemental information (S1 Text) for a graphical representation of the model environ-

ment. The model simulated a closed cattle population (N = 25) as it engaged in different

Fig 1. Seasonal temperature drives different behavioral mechanisms of STEC dynamics in cattle. Schematic of the

transmission-based mechanisms by which high temperatures influence disease prevalence. Signs at arrows indicate the

polarity of the relationship.

https://doi.org/10.1371/journal.pone.0205418.g001
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distinct activities throughout a model day (grazing, resting, drinking, sleeping). How cattle

participated in these activities was influenced by the social state of an individual (dominant or

subordinate), air temperature, and in the case of grazing, grass presence and length. In the first

case, a single dominant individual influenced the movements of subordinate individuals dur-

ing drinking and resting behaviors. In the second case, air temperature was included as an

input variable (supplied via an external data file), and explicitly influenced aspects of cattle

behaviors. In particular, the amount of time spent grazing versus resting was reduced, and the

volume of drinking was increased with increased temperature. A temperature threshold also

determined resting behavior, with temperatures above the threshold resulting in resting in

groups under trees, while temperatures below the threshold resulted in cattle resting in the

open field. Finally, grass grew at a constant rate over the course of the simulation to a maxi-

mum height, and was reduced in length by grazing to a minimum height, at which point it

could not be grazed until it regrew.

All major cattle activities recurred on an hourly schedule that repeated each model day.

Sub-models governed stochastic cattle movements and transmission dynamics occurring dur-

ing these activities on a 10-minute time-step. Simple rules governed daily animal activities and

movements to generate realistic patterns of animal aggregation and fecal-pat distribution in

the model environment. Some rules were derived from direct field observation of grazing cat-

tle at the East Tennessee Research and Education Center—Blount Unit in August 2013 while

others were based on existing literature on the topic. The schedule of the model, including the

sequence of actions and their corresponding sub-models, is shown in Fig 2 and described in

greater detail in S1 Text.

Superimposed on cattle activity was a Susceptible-Exposed-Infected-Recovered (SEIR)-type

transmission model that simulated the transmission dynamics of STEC between cattle, and

between cattle and the environment. Cattle could take one of 4 epidemiological states, includ-

ing susceptible, colonized and in a latent period (without shedding), colonized and shedding,

Fig 2. Schematic of time-step model operations and daily schedule of cattle activities. Model schedule and process

order. Each box represents a sub-model. Model processes were determined by time of day (hour) and temperature. On

a daily basis, cattle sleep, graze, drink, and rest. At each time step (10 minutes), cattle carry out the actions of the

activity, have the opportunity to shed and be exposed to STEC, and patches update to reflect concentrations of STEC

or grass height. At Hour 0 of each day, cattle are probabilistically colonized depending on the accumulated STEC from

the previous day. Following the execution of the colonization sub-model, all accumulated STEC are reset to 0 in un-

colonized cattle.

https://doi.org/10.1371/journal.pone.0205418.g002
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and partially susceptible (after becoming colonized once). Colonized cattle shed STEC in their

feces, and susceptible cattle could become colonized through the daily accumulation of colony

forming units (CFU’s) of STEC via direct contact with colonized individuals, through eating

contaminated graze, or through drinking contaminated water.

To gain STEC through direct contact, susceptible cattle needed to come within a proximity

threshold (ddt) of a colonized, shedding individual, at which point a quantity of colony form-

ing units (CFU) of STEC was randomly drawn from a Poisson-lognormal distribution (S1

Text). Shedding individuals were assumed to shed a constant amount of CFU’s per fecal pat

over the entire infectious period. To gain STEC through drinking, cattle had to drink from a

water patch contaminated with infectious feces. The CFU’s up-taken during a drinking session

was proportional to the concentration of STEC in the water patch (total CFU’s deposited/vol-

ume of patch, assuming homogenous distribution in patch), and the volume of water con-

sumed. The volume of water consumed was based on a non-linear, temperature-dependent

function derived from data presented by Parish and Rhinehart (2008):

Liters ¼ 33:51213 � 0:74978 � avg daily tempþ 0:05806 � avg daily temp2: ð1Þ

In this function, average daily temperature (calculated as the average of daily maximum and

minimum) determined the total expected liters consumed per day, which was distributed over

the total minutes cattle were expected to drink, adjusted for travel time to the lake.

To gain STEC though grazing, cattle had to graze from a patch contaminated with infec-

tious feces. The CFU’s up-taken during a grazing event was proportional to both the amount

of CFU’s in the patch, and the amount of grass eaten:

STECexposed ¼ Patch CFUs � ðgrass units consumedjpregraze units availableÞ � pGrazeInfect: ð2Þ

Populations of STEC shed in feces into water and onto grass were modeled as CFU’s per

patch. STEC dynamics in the environment can vary by both environmental factors like tem-

perature and environmental substrate [35–39], and these differences may contribute to envi-

ronmental transmission dynamics. STEC are known to decay in the environment as a factor of

increasing temperature[37,38]. Therefore, we modeled the CFU per patch to decay according

to temperature, but at a substrate-dependent rate. In particular, we assumed that STEC

decayed faster in water in an agricultural setting [37] than in fecal-pats [38] due to greater

competition from other microbial organisms in water in agricultural settings. Decay was mod-

eled in both substrates followed a common Q10 function [38,40]:

kT ¼ krQ10

T� Tr
10 ð3Þ

where kT was the bacterial decay rate at given temperature T (˚C), kr was the bacterial decay

rate at the reference temperature (Tr), and Q10 was the temperature coefficient that gave the

rate of change for each temperature increase of 10˚C. Although there is evidence that suggests

that a short period of growth can occur in STEC in various substrates following deposition, the

accumulated CFUs may be relative insensitive to this initial growth because of the prolonged

decay [37,38,41], and thus was ignored here.

The probability of colonization (pcol) was based on daily accumulated CFU’s and was calcu-

lated using a re-arranged form of the Hill-1 dose-response equation presented in [42]:

pcol ¼
1

1þ K=CFU
ð4Þ

in which K = median infectious dose of the population, and CFU was total CFU’s accumulated

over the day. Whether or not colonization occurred was determined by drawing a random
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value from a uniform distribution between 0–1, and assessing whether the value fell below

(colonized), or above (not-colonized) pcol. The source of colonization (direct, water, graze)

was assigned based on the category contributing the majority of CFU’s. In addition, the infec-

tious individual responsible for direct transmission or that excreted the cow pat resulting in an

indirect colonization was noted during the infectious period of the initially infected individual

in order to calculate the basic reproduction number (R0), which is the average secondary infec-

tions produced by a single infectious individual in an otherwise susceptible population.

Sensitivity analyses and calibration

To characterize the parameter space of the model and to assess the relative influence of differ-

ent parameters on dsease dynamics, a two-stage sensitivity analysis was conducted. Both used

the count of incident cases at the end of each simulation as an output. First, a local sensitivity

analysis was carried out [34] for a subset of parameters (18; 12 deterministic, 6 probabilistic

(see Table 1) using either mean values from literature sources (when available) or assumed val-

ues as starting values. In this method, the effect of perturbations to each parameter was

assessed individually by holding all parameters at their starting values except for the test

parameter, which was set to be either greater than or less than its mean or assumed value, with

the range tested varying by parameter (see Table 1). In these analyses, the effect of variable

shedding rates between cattle was incorporated by randomly sampling a normal distribution

with mean equal to the mean C value and variable standard deviation. Based on data presented

in [43], the effect of variable shedding within cattle was accomplished by assuming that cattle

shed the most upon initially becoming infected (i.e., the selected C value) and applying an

exponential decay function with a variable daily decay rate. All model parameterizations were

run under 4 constant temperatures, including cool (20˚C) and warm (30˚C) temperatures, at

Tthr (24˚C), and marginally above Tthr (25˚C) to differentiate influences on model output due

to absolute temperature rather than differences in temperature threshold-dependent Rest

behavior. At each selected temperature, each parameter set (37; mean conditions + 36 sets with

1 permuted parameter) was run 100 times for a total of 3700 simulations per temperature. The

numbers of incident cases over the simulation period were evaluated for parameter sensitivity,

with increases in total cases by at least 100% or decreases by at least 50% indicating a poten-

tially sensitive parameter.

From this local analysis, 7 parameters identified as “sensitive” (shown later in results sec-

tion) were included in a global Latin Hypercube Sampling (LHS)-based sensitivity analysis.

Parameters were randomly sampled in each 0.1% of their parameter space, resulting in 1000

unique parameter sets. Model runs were completed for each parameter set under the same set

of 4 constant temperatures as previous (20˚C, 24˚C, 25˚C, and 30˚C). Then, partial rank corre-

lation coefficients (PRCC) and corresponding 95% confidence intervals (via 100 bootstrapped

samples) were computed for each parameter in each temperature set [53] using the package

sensitivity in R [54].

To calibrate the model, we used a method similar to the “best fit” method suggested by

Railsback and Grimm (2012) [34], in which model outputs were calibrated against aggregate

estimations of winter (95% CI: 1.50–9.49%) and summer (95% C: 7.98–16.25%) STEC preva-

lence reported for pastured beef cattle in the United States [55]. This proceeded by selecting

the subset of LHS model runs (at 20˚C) with a prevalence over the 60 day run that fell within

the range (1–2 new colonizations) of reported winter prevalence. Because the model popula-

tion was small (25), and all model runs resulted in at least 1 infection (the starting individual),

prevalence at the end of the run was assessed as: the number of incident cases / 24. The median

of these parameter values was then used as the parameter set of a series of simulations run at
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Table 1. All parameters used in individual-based simulation model.

Parameter Type Input/Parameter Description Value Reference LSA? LHC?

Basic Settings Lake position Location of lake in pasture Left side of pasture Assumed ��

Lake size Size of lake (hec) 0.41 ha Assumed ��

GWR Grass Weed Ratio 4:01 Assumed ��

NT Number of Trees 5 Assumed ��

R Shade Radius (m) 7.6 Assumed ��

N Cattle Group Size 25 Assumed ��

t Simulation period (day) 60 Assumed

α Grass growth rate (per hour) 1 X 10−3 Assumed �

dailydefavg Daily cow pats produced (per cow) Variable: 11, 15, 17, depending on

temperature

[44,45]

avg_mass Average mass of a cow-pie (g) 2000 [46]

Temperature Sub-

models

a Minimum water temperature (Celsius) 0 [47]

b Maximum water temperature (Celsius) 30.4 [47]

c Measure of the steepest slope of the function 0.14 [47]

d Air temperature at the inflection point (Celsius) 16.5 [47]

Bacterial Decay Sub-

model

k20w Bacterial decay rate in water at 20˚C 0.056 [37]

Q10w Coefficient for the change in rate of decay day per day for each

10˚C increase of water temperature

1.415 [37]

k20m Bacterial decay rate in manure at 20˚C 0.042 [38]

Q10m Coefficient for the change in rate of decay day per day for each 10˚C

increase of manure temperature

1.48 [38]

Animal activities Sub-

models

Tthr Threshold temperature (Celsius) 24 Assumed; similar

to [24]

pnearestpatch Probability of selecting the nearest water patch versus a random

water patch

0.9 (0.1,0.9) Assumed �

pmovenewpatch The probability of staying and grazing versus moving to a new patch 0.5 (0.1,0.9) Assumed �

pstayanddrink Probability of dominant cow staying in the current water patch to

drink

0.9 (0.1,0.9) Assumed �

pmovetodominant Probability subordinate cow moves towards dominant cow during

drinking

0.9 (0.1,0.9) Assumed �

pmovewhilerest_dom Probability of dominant cow moving while resting 0.1 (0.1,0.9) Assumed �

pmovewhilerest_sub Probability of subordinate cow moving while resting 0.1 (0.1,0.9) Assumed �

Epidemiological Sub-

models

C Concentration in feces (CFU/g) 10.36 (0.4, 4) [48] � �

ddt minimum distance (m) necessary to transfer CFU’s directly 0.45 (0.05, 0.5) Assumed � �

plnmean Mean of Poisson-lognormal distribution (direct bacterial transfer

parameter)

4.72 (2.5, 7.5) Assumed � �

plnsd Standard Deviation of Poisson- lognormal distribution 0.5 (0.25,1) Assumed �

pGrazenfect Probability of contact with CFU’s in a contaminated grass 0.025 (0, 0.1) Assumed � �

K Dose where 50% of primary susceptible individuals get infected 6.9 x 104 (103, 105) [16,49,50] � �

Simult 50% Infectious Dose Multiplier for Secondary Infections 4.722 (1,10) Assumed � �

latentphase Exposure period prior to the beginning of shedding (days) 2 (1,3) [16,17,49] �

γ Recovery time (days) 18.855 (11,30) [17,49–52] � �

VarShedwithin Coefficient of exponential decay of shedding rate per day (starting

with 4 CFU per gram of manure)

0 (0,2) Assumed �

VarShedbetween Standard Deviation of normal distribution of mean C of LSA

(assumed 4 CFU per gram of manure)

0 (0, 0.1) Assumed �

Parameters either used assumed values, literature sources or were derived from the calibration process. For parameters that were included in calibration and for which a

reference is listed, the literature source served as a starting value. If multiple sources are listed, either the value is an average (latentphase), or multiple values were used in

establishing the starting value and/or range for the calibration (K, γ). LSA = Local sensitivity analysis; LHC = Latin Hypercube Cube. For LHC

� = used to calibrate final model

�� = structural feature assessed using the calibrated model.

https://doi.org/10.1371/journal.pone.0205418.t001
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20˚C, but with incremental changes (0.01–0.04 in increments of 0.005, 100 simulations apiece)

to the value of PGrazeInfect. This parameter was shown by PRCC to have a relatively strong indi-

vidual influence on incidence at 20˚C, to have relatively low influence at 30˚C, and has consid-

erable uncertainty, making it a desirable candidate for calibration [34]. From these

simulations, a value of PGrazeInfect was selected that resulted in the average prevalence (of the

Pgrazeinfect level) at the end of the model run falling in the calibration range, and near to the

mean value presented in Ekong et al. (2015) [55].

Next, model simulations were run at 30˚C using the resulting parameter set, but in which

the value of the distance threshold at which direct transmission was possible (ddt) was incre-

mentally adjusted (0.2–0.5, in increments of 0.05, 100 simulations apiece). Similar to PGrazeIn-

fect, ddt was chosen as a variable to manually calibrate because PRCC analysis showed that it

was relatively influential at 30˚C, relatively non-influential at 20˚C, and to have high uncer-

tainty. As before, a value of ddt was selected from model runs that resulted in the average prev-

alence (of the ddt level) at the end of the model run falling in the calibration range, and similar

to the mean value presented in Ekong et al. (2015)[55] for summer STEC prevalence in the

United States. Lastly, 1000 simulations were run using the final calibrated set at both 20˚C and

30˚C to verify that simulation outputs fell into the expected ranges.

Lastly, to gauge the influence of several simplifying assumptions made in the calibrated

model, we conducted a second LHC-type sensitivity analysis in which aspects of the physical

environmental structure and cattle population were varied. These included the number of

trees, the radius of the shade patch, the size, arrangement, and location of the water source, the

proportion of weeds to grass, and the number of cattle per simulation. See S2 Text for a

description of this analysis and detailed results.

All parameter values used in model simulation, as well as ranges tested during sensitivity

analyses used for calibrated are shown in Table 1. All analyses were conducted using program

R with various packages [56]. Simulations were prepared using the RNetLogo package [57],

and run on either a desktop computer or the North Carolina State University High Perfor-

mance Computing (NCSU-HPC) cluster. The model can be found in S1 Model and its associ-

ated temperature files and an example R script to run it can be found in S1 Folder.

Factorial analysis

We evaluated our hypotheses regarding how temperature influences STEC dynamics using a

fully factorial design that compared simulation results from scenarios assuming three different

seasonal temperature conditions, including spring (beginning cool with a warmer end), sum-

mer (warm throughout), and fall (beginning warm with a cooler end) conditions. Within each

temperature condition, assumptions of temperature-dependent and temperature-independent

cattle behaviors, including daily resting behavior conditions (3 states) and drinking behaviors

conditions (2 states) were systematically varied for a total of 6 factorial combinations. Resting

behavior states included 1) always exhibiting� Tthr Rest/Graze behavior (“Rest Cool condi-

tion”), 2) always > Tthr behavior (“Rest Warm condition”), and 3) exhibiting temperature

dependent behavior (“Rest Dep condition”). Drinking behavior states included 1) tempera-

ture-dependent (“Temp Dep condition”) or 2) constant (“Temp Indep condition”), assuming

drinking rates at 20˚C. For each factorial combination, historic temperature (see S1 Folder) in

each of 10 years (2002–2011) were used to run 100 simulations for two spring months (April

and May), two summer months (June and July), and two fall months (October and November)

of that year, with a total of 18000 simulations, each of 60 days apiece. During this 10-year

period, summer temperatures were relatively stable, with an overall mean of 25.9 ± 1.2˚C, and

mean highs and lows during summer were 31.3 ± 1.5˚C and 20.4 ± 0.9˚C, respectively. Spring
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temperatures increased over the course of the 60-day model run, with a mean temperature of

17.9± 0.9˚C, an average high of 23.9± 1.01˚C, and an average low of 11.8 ± 0.9˚C. Fall tempera-

tures decreased over the course of the 60 day model run, with a mean temperature of 12.8±
1.1˚C, an average high of 18.8± 1.2˚C and an average low of 6.7± 1.3˚C.

Model outputs from each simulation included the count of incident cases over the duration

of the simulation (and prevalence over the period) and on a daily basis the relative proportion

of incident cases originating from each transmission pathway of colonization (i.e. direct, indi-

rect water, indirect graze), and R0. Because colonization pathways are generally unknown in

real-world systems, non-source specific incident cases over the duration of the simulation

were the primary output of interest for analysis. However, the explicit accounting of coloniza-

tion pathways in the model enabled us to relate general patterns of incident cases with the

pathways driving those patterns.

Initial exploration showed a high proportion of simulations resulted in zero new coloniza-

tions, depending on the model conditions. To understand drivers of both epidemics occurring

and their extent, we modeled incident cases in two stages using an approach similar to that of

a zero-altered generalized linear model (ZAGLM) (otherwise known as a hurdle model [58])

with the glmmADMB package in R [59,60]. In the first of this two-part approach, the probabil-

ity of 0 new colonizations was modeled with a binomial distribution. In the second part, inci-

dent cases > 0 were modeled with a zero-truncated negative binomial distribution. This

approach acknowledged that zero new colonizations could emerge as a result of both underly-

ing system stochasticity and model conditions (with particular probability), but unlike

observed systems in which false zeros occurred and in which zero-inflated approach would be

appropriate [61], all colonizations were captured by the model. For both the binomial and

count models, the β and U vectors were the same, with the linear predictor structure:

ZðYiÞ ¼ mþ Rþ Dþ ðR � TÞ þ ðD � TÞ þ ᴇ ð5Þ

In this equation, the link function η(Yi) is either the logit link ( 1

1þe� p) of the binomial distribu-

tion (giving the probability of 0 colonizations in year i), or the log link (ln π) of the negative

binomial distribution (giving the actual count of colonized individuals in year i); μ was the

mean of the binomial or zero-truncated negative binomial distribution; R, D, and T were the

fixed effects of rest behavior, drinking behavior and temperature, respectively; R�T and D�T

were interactive terms between drinking and rest terms and temperature, respectively, and E
represented independently distributed error. A comparison to a similar mixed model structure

that included year as a random intercept term found the two model structures did not signifi-

cantly differ in their fit (according to a Likelihood Ratio Test, data not shown), and that the

non-mixed models had a lower AIC value. Therefore, the non-mixed model was selected for

analysis here. Other model outputs, including incident cases from direct and indirect path-

ways, and R0 were summarized in relation to the incidence model. Lastly, an explicit compari-

son was made of model outputs across seasons using the temperature-dependent

parameterizations of both resting and drinking behavior.

Results

Sensitivity analysis

The LSA procedure identified 7 particularly sensitive variables for inclusion in the LHS,

including the distance threshold at which direct transmission was possible (ddt), the probabil-

ity of ingesting STEC via grazing a contaminated patch (pGrazeInfect), the recovery time follow-

ing colonization (γ), the mean of the Poisson-lognormal distribution sampled to determine

the quantity of STEC transferred during direct transmission events (plnmean), the
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concentration of STEC in a new fecal-pat (C), the concentration of STEC expected to infect

50% of exposed individuals (K), and the factor (SImult) by which K was multiplied to simulate

partial immunity for previously infected individuals to secondary colonizations. Boot-strapped

estimates of PRCC’s at each temperature set showed very low bias (<0.01) for each variable

(indicating high stability of estimates), and the 95% CI’s of all variables except SImult did not

include 0, indicating statistically significant correlations. PRCC estimates demonstrated that

the sensitivity of incident cases to changes in parameters generally depended on the tempera-

ture (Fig 3). At the cooler temperature sets (20˚C, 24˚C), C and pGrazeInfect were strongly posi-

tively correlated with counts of incident cases while only weakly correlated at warmer

temperatures (25˚C, 30˚C). Inversely, ddt and plnmean were strongly positively correlated with

counts of incident cases at warmer temperatures while only weakly correlated at cooler tem-

peratures. Lastly, sensitivity to some parameters was independent of temperature, including

the strongly negatively correlated K, and the weakly correlated parameters SImult and γ. Differ-

ences in PRCC between simulations at 20˚ and 24˚ C and between simulations at 25˚C and

30˚C simulations were minimal, indicating that sensitivity to parameters was more strongly

influenced by model behavior determined by the 24˚C temperature-threshold than continuous

changes in temperature.

The secondary LHS sensitivity analysis (S2 Text) found grass-to-weed ratio to have a signifi-

cant, but weak positive correlations (PRCC� |0.3|) with incident case counts at both 20˚ and

30˚C. Meanwhile, the total number of cattle in the simulation was moderately positively corre-

lated with incident case count (PRCC = 0.44) at 30˚C, and more weakly correlated

(PRCC = 0.34) at 20˚C. In addition, although the size of the lake did not have significant influ-

ence on incident cases, there were consistently more incident cases if the lake was positioned

at the corners of the rectangular pasture than if the lake was positioned at the sides or the

center.

Fig 3. Influence of parameters depends upon whether the temperature is� or> the Graze/Rest behavior

threshold (24˚C). 95% CIs of partial rank correlation coefficients (PRCC) of simulations parameterized with 1000

unique parameter sets of 7 variables derived from a Latin Hypercube-based approach. Simulations run at constant

20˚C, 24˚C, 25˚C, and 30˚C to differentiate temperature-threshold versus continuous temperature effects. PRCCs at

24˚C and 25˚C were found to be similar to PRCC’s at 20˚C and 30˚C respectively, and are not shown here. Please see

S2 Text for PRCC metrics at all temperatures. Parameters include: ddt = distance of direct contact; plnmean = mean of

the Poisson-lognormal distribution (sampled for direct transmissions), C = STEC concentration in cow pats; Pgrassinfect
= proportion of CFU’s up taken per contaminated grass unit, per grass patch when grazing; K = median population

dose of STEC expected to result in colonization; γ = recovery time (days); and SImult = amount K multiplied by in the

case of secondary colonizations.

https://doi.org/10.1371/journal.pone.0205418.g003
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Factorial simulations

The binomial model found that the probability of zero new transmissions relative to baseline

conditions (spring temperatures, Rest Cool, Drink Indep) was driven by significant interac-

tions between temperature and Rest behavior condition (Table 2). Together, the interactions

show that the probability of zero transmission is reduced (relative to spring temperatures)

when the Rest Warm or Rest Dep conditions occurred with summer temperatures. In contrast,

increasing temperature alone increased the probability of zero new colonizations, likely due to

higher bacterial degradation rates at higher temperatures. Drinking behavior had no clear

impact on the probability of zero new transmissions.

Results of the incident case model (using non-zero counts) were similar to the binomial

model, with significant interactions between rest behavior condition and temperature defining

Table 2. Temperature and Rest/Graze behavior interact to determine the likelihood and extent of epidemic.

Model Type Effect Type Variable Estimate Standard Error Z-score P-value

Binomial-Model Main Effects Intercept -0.27331 0.05244 -5.212 <0.001

Rest Warm -0.44444 0.06585 -6.749 <0.001

Rest Dep -0.06995 0.06415 -1.09 0.276

Drink Dep -0.05395 0.05329 -1.012 0.311

Summer Temperature 0.72139 0.07446 9.689 <0.001

Fall Temperature -0.06009 0.07429 -0.809 0.419

Interaction Effects Rest Warm � Summer Temp -0.40743 0.09234 -4.412 <0.001

Rest Dep � Summer Temp -0.77769 0.09113 -8.534 <0.001

Rest Warm � Fall Temp 0.06333 0.093 0.681 0.496

Rest Dep � Fall Temp -0.09902 0.09107 -1.087 0.277

Drink Dep � Summer Temp -0.0762 0.07511 -1.015 0.31

Drink Dep � Fall Temp 0.07109 0.07548 0.942 0.346

N = 18000

Null Deviance: 24308 on 17999 df

Residual Deviance: 23887 on 17988 df

Model Type Effect Type Variable Estimate Standard Error Z-score P-value

Count Model Main effects Intercept 0.7572 0.0308 24.55 <0.001

Rest Warm 0.8058 0.0329 24.51 <0.001

Rest Dep 0.2716 0.0371 7.32 <0.001

Drink Dep -0.0426 0.0245 -1.74 0.0815

Summer Temperature -0.3841 0.0541 -7.1 <0.001

Fall Temperature 0.0482 0.0428 1.13 0.2605

Interaction Effects Rest Warm � Summer Temp 0.1793 0.0568 3.16 0.002

Rest Dep � Summer Temp 0.6975 0.0594 11.74 <0.001

Rest Warm � Fall Temp -0.0261 0.0458 -0.57 0.5683

Rest Dep � Fall Temp -0.1363 0.0521 -2.61 0.009

Drink Dep � Summer Temp 0.0977 0.0354 2.76 0.006

Drink Dep � Fall Temp 0.0165 0.0345 0.48 0.633

N = 10699

Negative Binomial Dispersion Parameter: 1.58

Results of binomial model of zero-new colonizations occurring (all data, dichotomized) and negative binomial (count) model of incident cases (>0) produced by ABM

model simulations. All simulations used daily maximum and minimum temperatures data collected from 2002–2011 from weather station (S1 Text and S1 Folder).

Spring Temp = April-May; Summer Temp = July-August; Fall Temp = October-November. Rest Cool condition = cattle always rest in the field and spend more time

grazing; Rest Warm condition = cattle always rest under trees as a group and spend less time grazing; Rest Dep condition = cattle rest/graze depending on temperature.

https://doi.org/10.1371/journal.pone.0205418.t002
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the number of non-zero incident cases over the model run (Table 2). In general, interactions

with rest behavior condition had the largest impact, with the Rest Warm and Rest Dep condi-

tions resulting in higher average incident cases than the Rest Cool condition (Fig 4). Within

the Rest Cool and Rest Warm conditions, the count of incident cases were similar across sea-

sons, although higher bacterial degradation rates resulted in the lowest incidences with sum-

mer temperatures under both Rest Cool and Rest Warm conditions. With the Rest Dep

condition, a large positive interaction with temperature resulted in the highest average count

of incident cases during the summer. This was due to warmer temperatures leading to Rest

Warm behavior (i.e., resting under trees) occurring on most days in summer simulations.

Average counts of incident cases were also higher with spring temperatures than fall tempera-

tures under the Rest Dep condition, likely due to warmer overall temperatures during the

spring than the fall (particularly during the latter half of it), and therefore more days with Rest

Warm behavior than conditional Rest Cool behavior. In contrast to the binomial model, a sig-

nificant interaction also occurred in which the count of incident cases as higher with summer

temperatures under a temperature-dependent drinking condition.

Differential transmission pathways. Considering contributions to counts of incident

cases from different transmission pathways showed that the distribution of colonizations

between pathways depended largely on rest condition and seasonal temperature (Fig 5). When

considering the proportion of total transmission occurring within a simulation, transmission

under Rest Warm conditions largely occurred through direct transmission, and the grazing

pathway accounted for the majority of new colonizations for seasons under the Rest Cool con-

dition. In contrast, the majority pathway under the Rest Dep condition depended on season,

with the majority of new colonizations during the spring and fall temperatures transmitted

through grazing, and the majority of transmission during the summer occurring through

direct contact. Overall, transmission via water was generally minimal, and drink behavior con-

dition had little discernable impact on the distribution of colonizations between the transmis-

sion pathways. For all seasonal temperatures, secondary transmission did not appreciably

Fig 4. Grazing less and resting under trees increased the extent of epidemics. Counts of incident cases by Rest/

Graze condition; simulations resulting in zero colonizations excluded. Rest Cool condition = cattle always rest in the

field and spend more time grazing; Rest Warm condition = cattle always rest under trees as a group and spend less

time grazing; Rest Dep condition = cattle rest/graze depending on temperature.

https://doi.org/10.1371/journal.pone.0205418.g004
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contribute to the count of incident cases, accounting for an average low of 0.93% (Spring) to

an average high of 1.1% (Fall) of incident cases overall.

Basic reproduction number. The R0 varied significantly with temperature and Rest/

Graze conditions, largely mirroring the pattern found for incident cases (Fig 6). Under Rest

Cool conditions the distribution of R0 was similar cross seasons. Of note here was that the

average R0 under Rest Cool conditions across seasons (0.43) is<< 1, reflecting the high pro-

portion of zero new transmissions under this condition. In contrast, while average R0 with

summer temperatures was similar under both Rest Warm and Red Dep conditions (0.82 ± 0.1

SE), average R0 values were higher with cooler seasonal temperatures under Rest Warm condi-

tions (Fall: 0.86 ± 0.1 SE; Spring: 0.95 ± 0.1 SE), and lower with cooler seasonal temperature

under Rest Dep conditions (Fall: 0.55 ± 0.08 SE; Spring: 0.58 ± 0.08 SE). This reflected the

influence of bacterial degradation in the environment on transmission, with higher rates of

decay occurring during the warmer months.

Temperature-dependent conditions. Of the total set of factorial model runs, those oper-

ating under model conditions of Rest Dep and Drink Dependent reflected comparisons of

fully temperature-dependent parameterizations of the model during different seasons; that is,

models operating under conditions most representative of real-world conditions. When con-

sidered in terms of prevalence (considered here as the count of incident cases / 24), the 95% CI

for average prevalence using summer temperatures (0.09–0.15) fell within the empirical 95%

CI of summer STEC used as a validation range (7.98–16.25) [55]. Meanwhile, the 95% CI’s for

average prevalence during the spring (0.06–0.1) and fall (0.055–0.089) largely overlapped with

empirical 95% CI of winter STEC prevalence used as validation range (0.015–0.0949) [55].

That the means of the intervals of the spring (0.084) and fall (0.072) simulations were higher

than the validation range mean (0.048) is likely a result of temperatures > Tthr during the end

of the spring and beginning of the fall that drove colonizations higher than in the calibration

sets, all run at a constant 20˚ C.

Fig 5. Transmission pathways were dependent upon seasonal temperature and Rest/Graze behavior. Proportion of

total average counts of incident cases accounted for by each pathway for each factorial combination of Rest/Graze and

Drinking condition. Cool condition = cattle always rest in the field and spend more time grazing; Warm

condition = cattle always rest under trees as a group and spend less time grazing; Dep condition = cattle rest/graze

depending on temperature. Drink condition = Dep if drinking condition was dependent on temperature; Drink

condition = Indep if drinking rate was assumed static (at 20˚C rate).

https://doi.org/10.1371/journal.pone.0205418.g005
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Discussion

Higher STEC prevalence in environmental substrates, feces, and beef carcasses, as well as an

increase in shedding of STEC by cattle during warmer seasons of the year has been commonly

reported [8,11]. For example, Barkocy-Gallagher et al. (2003) [62] reported mean STEC preva-

lence of 12.9%, 6.8%, and 3.9% during Summer, Fall, and Spring seasons in samples taken beef

carcasses in a beef processing facility. Van Donkersgoed et al. (1999) [63] reported higher prev-

alence of STEC in fecal samples from cattle at slaughter during the summer months than

cooler months, and a large-scale review (used for calibration purposes here) reported mean

values of winter and summer prevalence in US pasture-range beef cattle of 4.84% and 11.82%,

respectively [55]. Various mechanisms have been postulated to explain this phenomenon (Fig

1), and two hypotheses were comparatively evaluated here, including increased drinking with

higher temperature (and thus more water-based transmission) and more frequent aggregation

under shade trees as temperatures increases, promoting more direct transmission.

The results of the factorial analysis of model simulation outputs found that temperature-

induced changes in rest behavior most strongly drove overall patterns of new colonizations.

Counts of incident cases were significantly higher when either 1) cattle always rested under

shade trees versus resting in place and grazing an extra hour, or 2) when rest-behavior was

temperature dependent and temperatures were more frequently above the temperature thresh-

old (Tthr) causing cattle to rest under trees more often. The average temperature under sum-

mer conditions was above Tthr (25.6˚C) while the average temperatures during spring (17.9˚C)

and fall (12.8˚C) were below it, resulting in the highest average count of incident cases with

summer temperatures. Further, direct transmission was the dominant transmission pathway

during these higher incident case situations, where it accounted for>74% of new coloniza-

tions for all Rest Warm factorial combinations, and for > 79% of new colonizations for Rest

Dep conditions during the summer (Fig 5). Meanwhile, graze-based transmission was the pri-

mary pathway in all other situations. In addition, the probability of no new colonizations

occurring was significantly negatively impacted by the Rest Dep/Rest Warm conditions, par-

ticularly under summer conditions, meaning that temperature-driven spatial aggregation both

Fig 6. R0 was dependent on interaction of seasonal temperature and Rest/Graze condition. R0 by Rest/Graze

condition. Median is black line in each bar. Epidemic threshold (R0 = 1) is the dotted red line. Rest Cool

condition = cattle always rest in the field and spend more time grazing; Rest Warm condition = cattle always rest under

trees as a group and spend less time grazing; Rest Dep condition = cattle rest/graze depending on temperature.

https://doi.org/10.1371/journal.pone.0205418.g006
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significantly increased the probability of an epidemic occurring at all, as well as determining

its extent.

In contrast, higher drinking rates had a more limited effect on STEC incidence in which an

interaction with summer temperatures resulted in slightly higher counts of incident cases

through a drinking-pathway during this season (Fig 5). However, the proportion of incident

cases due to water was low small relative to other pathways, accounting for a maximum of 5%

of colonizations in any factorial combination (Fall, Rest Dep Conditions). This contrasts with

previous research showing that drinking water is a plausible transmission pathway for STEC

[11]. The water resource in the model system was a single 1-acre lake of uniform 0.5 m depth

instead of water troughs, as in previous work. Thus, the dilution of concentration and disper-

sion of fecal-pats due to volume within water patches likely contributed towards the reduced

contribution of water-based transmission. However, partially compensating for this was the

assumption that STEC concentration within a particular water patch was homogeneous

throughout the water column, and was directly proportional to the concentration in the depos-

ited fecal-pat. In real systems, the concentration of STEC cells would be partitioned between

aquatic and sediment phases due to adsorption [64], and therefore the availability of STEC for

ingestion may be limited. On the other hand, the relatively high daily decay rate at 20˚C

(0.388) compared to the low rate (0.042) used for decay in manure may have underestimated

the persistence of STEC in water. On the balance, however, STEC in water was likely more

available for uptake than in a real aquatic system, increasing the likelihood of transmission.

Thus, of the two hypotheses, temperature-driven spatial aggregation that promotes a greater

frequency of direct contact between individuals provides the more plausible mechanism to

explain seasonality in STEC prevalence in grazing systems, as least when water resources are

similarly structured.

Increased direct transmission through temperature-mediated spatial aggregation is a plau-

sible explanation for seasonal patterns in STEC transmission for several reasons. First, increas-

ing animal density is well understood to be positively associated with the transmission of

infectious disease [65], and there are previous reported instances in which higher STEC preva-

lence in cattle may have been due to increased aggregation in the absence of warmer tempera-

tures. In particular, cattle may have a higher risk of shedding STEC when housed than

pastured [66,67], even during cooler months [68]. Secondly, climate varies widely in space,

and the temperatures (collected near Knoxville, TN), schedule and spatial structure of the

model assumed here are not representative of conditions in many other locations. Therefore, it

is not unexpected that there are reported instances in which the pattern of STEC prevalence

did not vary strongly with season [69], or was not clearly associated with increasing tempera-

ture [70,71]. In one of these cases, however, the prevalence of STEC in feed lot cattle was

found to increase with time after cattle arrived in the yard [71]. Thus, changes in spatial aggre-

gation patterns with temperature, rather than changes in temperature alone, may be a reason-

able underlying mechanism to explain seasonal STEC prevalence where it occurs. Less clear,

however, is whether direct transmission would be the dominant pathway, as suggested by the

model.

Direct transmission is generally thought to occur via a fecal-oral route, either from social

interactions (e.g. grooming activities) which result in transfer of STEC via direct ingestion

[17], or from incidental contacts due to proximity that can result in the transfer of feces

between hides [17]. The transmission of STEC via aerosols between cattle in close proximity

has also been suggested [16]. In the model, these forms of contact are not differentiated, with a

quantity of CFU’s per contact drawn from a distribution whenever a contact occurred due to

the breach of the distance threshold. The Poisson-lognormal distribution sampled to simulate

the transference of STEC during a contact is integer-valued and over-dispersed [72], meaning
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that large numbers of STEC are rarely transferred when direct contacts occur. Because they are

directed and may last several minutes [73], social interactions such as allo-grooming may have

the potential to transfer enteric pathogens more efficiently than incidental contacts. However,

social interactions occur non-randomly and often occur hierarchically, with less dominant

individuals being groomed by more dominant ones [74]. The Poisson-lognormal distribution

used approximates the condition that most contacts between cattle are incidental (transferring

smaller quantities of STEC), while some are social (transferring larger quantities). Because the

nature and context of cattle contacts were not explicitly modeled here, there is uncertainty in

understanding how aggregation, beyond the simple proximity rules used in this model, may

influence direct transmission. Additional work explicitly incorporating more complex social

structure into direct contact behavior could be helpful in reducing this uncertainty.

Indirect transmission through the ingestion of contaminated grass emerged as the most

important pathway during spring and fall under the Rest Dep condition, and under the Rest

Cool condition. That the graze-based pathway was more important than the water pathway

may have partially been because even though STEC decayed with rising temperature in both

substrates, STEC decayed faster decay in agricultural water [37] than in fecal-pats [38] due to

greater competition from microbial organisms in the former (Table 1). It should be noted that

this may not be the case in more pristine water like lakes in non-agricultural settings [37].

When considering model simulations under temperature-dependent conditions, the grazing

pathway in all seasons tended to develop at a much slower, approximately linear rate compared

to the approximately logistic growth of the direct pathway in the summer (Fig 7). Thus, the

grazing pathway may contribute towards maintaining enteric pathogens within a population

in an endemic state, particularly at cool temperatures which promote a slower decay of STEC

populations in the environment [11]. The greater proportion of graze-based transmission

occurring during fall simulations than spring simulations under the Rest Dep condition (Fig

5) was a result of fall temperatures that were cooler on average than spring, resulting in more

days of additional grazing. In contrast, higher counts of incident cases during the spring than

the fall was the result of more frequent warm weather, resulting in more aggregation and

direct-transmission. Overall, these results suggest that higher exposure during grazing can

result in a greater proportion of graze-based colonizations even though the chances of ingest-

ing STEC via grazing are low, and that contributions from indirect pathways may maintain

low-levels of colonization during cooler weather.

Model limitations and considerations

While factorial simulations from our model suggest that higher prevalence of STEC in cattle

during the warmer months may be due to more aggregation that drives direct transmission,

the global sensitivity analyses suggested that the parameter space exists in which environmen-

tal transmission may drive counts of incident cases to be similar to or higher during cooler

months. The PRCC’s calculated as part of the global sensitivity analysis at each static tempera-

ture (20, 24, 25, 30˚C) showed clear temperature-driven patterns in sensitivity reflecting differ-

ences in the importance of transmission pathways between cool (20 and 24˚C) and warm (25

and 30˚C) model conditions due to rest behavior below and above the Tthr (Fig 3). When tem-

peratures were < Tthr, the parameters with the strongest correlations were those influencing

transmission via a graze-based pathway (the grass infection factor (pgrassinfect) and the starting

concentration of STEC in a fecal-pat (C)). When temperatures were > Tthr, the strongest posi-

tive correlations were those involved in direct transmission, including the direct distance

threshold (ddt) and the mean of the Poisson-lognormal distribution used to determine the

CFU’s of STEC transferred between cattle during direct transmission events (plnmean). So,
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factors increasing the probability of transmission from a grazing-route could potentially result

in higher counts of incident cases during cooler weather than warmer weather. Of the two var-

iables, increasing concentrations of STEC in fecal-pats (C) is more likely to occur in natural

Fig 7. Seasonal temperatures drove distribution of transmission pathways due to Rest/Graze behavior.

Cumulative counts of incident cases for direct, graze-based, and water-based transmission pathways over the duration

of simulations (60 days) assuming full temperature dependent conditions. Primary transmission is indicated by solid

lines while dashed lines indicate secondary transmission, clearly showing that secondary transmission uncommonly

occurred over the relatively short time period of the simulation.

https://doi.org/10.1371/journal.pone.0205418.g007
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grazing systems, as cattle are known to avoid eating grass contaminated with feces. Although

the quantity of STEC resulting from the calibration process (10.36 g/CFU), was well within the

range of values reported (most probable number) of STEC gram-1 of cow manure in a study by

Fegan et al. (2004) [48], it was far below the maximum value reported in that study (4.3 x 102).

It also below the 103 CFU gram-1 suggested as the threshold for an individual to be classified as

a “super-shedder” [75]. Indeed, an examination of our LHC simulation outputs in which val-

ues of C> = 10.36 CFU’s gram-1 showed mean incident cases to be 20 ± 0.62 SE and

18.66 ± 0.45 for simulations with temperatures of 20˚C and 30˚C, respectively. In this “high C”

subset, grazing-based transmission made up 83% of new colonizations at 20˚C and 61% of

new colonizations at 30˚C, respectively. Many animals colonized with enteric pathogens shed

heterogeneously over the course of their infectious periods, and evidence suggests that super-

shedders may largely be animals sampled near the high-shedding points of their infectious

periods [76]. Although variable shedding between or within individuals was not found to have

a large effect in on incident case count in our local sensitivity analysis, we did not directly

include the presence of “super-shedding” individuals as a parameter or as a hypothesis to be

explored. This effect may be further heightened if potential growth of STEC after deposition is

considered [37,38,41]. Therefore, the current model may not adequately capture the role of C
in STEC transmission dynamics.

More frequent graze-based transmission may also occur due to the structure of the model

environment and cattle density. Although mostly weak correlations were found between

counts of incident cases with environmental structures of the model (S2 Text), positioning the

lake into the corners of the property versus the sides or center resulted in more graze-based

cases. This appears to occur because when the water source is in a corner of the rectangular

model area, cattle tended to concentrate at one end of the property while grazing and were

exposed more often to contaminated graze. Although an artifact of model structure here,

increasing distance between water and grazing forage has been shown to reduce the use of

available forage in grazing cattle [77], and to increase the unequal distribution of manure in

pasture systems [78].

Although the model predicts that there are potential pathways for high graze-based trans-

mission, there is currently limited evidence of food-based infections/colonizations [11]. There

is also limited evidence that super-shedders contribute highly to increased risk from environ-

mental pathways [75]. In addition, since cattle are known to avoid contaminated graze

(accounted for implicitly here by making the CFU of STEC taken up by grazing very low com-

pared to the amount in the plot), it is possible that the model overestimates the potential of

graze-based colonization. If so, it would help explain why the 95% CI of prevalence values

under temperature dependent conditions during Spring and Fall temperatures fell on the

higher end of the calibration range. However, the influence of water location versus graze

availability on graze-based exposure worth may be worth exploring in future work, particularly

in situations where graze quality widely varies [77].

Lastly, the model assumed that cattle behaved according to simple rules, and that all indi-

viduals were of indeterminate adult age. Although sensitivity analyses suggested that increas-

ing cattle density could increase direct transmission at high temperatures due to denser

clustering around shade-trees during rest, this assumes that all cattle would always rest under

the same tree, and that inter-cattle distances between individuals would not be maintained as

cattle density increases. However, maintenance of a minimum personal space is an important

aspect of cattle social behavior [74], and cattle may maintain larger distances as herd size

increases to reduce aggression [74,79]. So, it is likely that cattle that do not fit under the shade

of a tree due to lack of space would find another tree, and that some minimum inter-cattle dis-

tance may be maintained during resting. Thus, the influence of increasing density on direct
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transmission may be overestimated. In contrast, the more moderate effect of increasing cattle

density on graze-based transmission may be more mechanistically plausible (i.e., more cattle

produce more manure), but because actual stocking rates are determined by pasture yields

[80], and transmission was found to decrease as the grass to weed ratio decreased, this relation-

ship may not be practically relevant to lower producing pastures. Finally, the model was cali-

brated using a meta-analysis of adult beef cattle prevalence data that listed relatively low

average values for summer (11.83) and winter (4.84) prevalence in the United States [55].

However, the prevalence of cattle may be significantly influenced by individual factors such as

age [81], with the highest expected STEC prevalence during the first year of life [82], and parity

status influencing STEC colonization thereafter [81]. Thus, the current model structure and

calibration may not adequately capture the temporal dynamics of shedding patterns for juve-

niles, or different age and parity classes of adult female cattle.

Despite its limitations, the current model structure is quite flexible, and additional ecologi-

cal, behavioral or biological aspects of agents or the environment can be readily incorporated

in order investigate additional hypotheses, or to more closely model particular conditions.

Additionally, distinguishing between direct and indirect transmission pathways using empiri-

cal data is difficult, particularly if the time-scales of epidemiological dynamics and pathogen

dynamics in the environment are convergent [83]. In simulation model-based approaches like

the one used here, uncertainty associated with transmission sources within simulations can be

eliminated or greatly reduced, making it a useful tool for inferring the role of different path-

ways in epidemiological dynamics.

Conclusions

Model simulations suggest that seasonal patterns of higher STEC prevalence during warmer

months in some grazing systems may be driven by temperature-mediated aggregation that

promotes direct-transmission of STEC between individuals. In the model, this hypothesis is

contingent on the presence of shade-providing structures, such as trees, under which cattle

aggregate for temperature relief, a centrally located water source, and on the assumptions that

cattle follow a rigid social structure in which individuals in the herd follow a dominant individ-

ual to resting locations. Therefore, determining ways to reduce rates of close contact between

cattle under shade or while being housed could be beneficial to reducing rates of STEC

transmission.
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