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Gliomas, a type of primary brain tumor, have emerged as a threat to global mortality due to
their high heterogeneity and mortality. A low-grade glioma (LGG), although less aggressive
compared with glioblastoma, still exhibits high recurrence and malignant progression.
Ubiquitination is one of the most important posttranslational modifications that contribute
to carcinogenesis and cancer recurrence. E3-related genes (E3RGs) play essential roles in
the process of ubiquitination. Yet, the biological function and clinical significance of E3RGs
in LGGs need further exploration. In this study, differentially expressed genes (DEGs) were
screened by three differential expression analyses of LGG samples from The Cancer
Genome Atlas (TCGA) database. DEGs with prognostic significance were selected by the
univariate Cox regression analysis and log-rank statistical test. The LASSO-COX method
was performed to identify an E3-related prognostic signature consisting of seven genes
AURKA, PCGF2, MAP3K1, TRIM34, PRKN, TLE3, and TRIM17. The Chinese Glioma
Genome Atlas (CGGA) dataset was used as the validation cohort. Kaplan–Meier survival
analysis showed that LGG patients in the low-risk group had significantly higher overall
survival time than those in the high-risk group in both TCGA and CGGA cohorts.
Furthermore, multivariate Cox regression analysis revealed that the E3RG signature
could be used as an independent prognostic factor. A nomogram based on the E3RG
signature was then established and provided the prediction of the 1-, 3-, and 5-year
survival probability of patients with LGGs. Moreover, DEGs were analyzed based on the
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risk signature, on which function analyses were performed. GO and KEGG analyses
uncovered gene enrichment in extracellular matrix–related functions and immune-related
biological processes in the high-risk group. GSEA revealed high enrichment in pathways
that promote tumorigenesis and progression in the high-risk group. Furthermore,
ESTIMATE algorithm analysis showed a significant difference in immune and stroma
activity between high- and low-risk groups. Positive correlations between the risk signature
and the tumor microenvironment immune cell infiltration and immune checkpoint
molecules were also observed, implying that patients with the high-risk score may
have better responses to immunotherapy. Overall, our findings might provide potential
diagnostic and prognostic markers for LGG patients and offer meaningful insight for
individualized treatment.

Keywords: E3-related genes, prognosis, tumor immune microenvironment, risk signature, low-grade gliomas

INTRODUCTION

Glioma is a primary type of tumor that occurs in the brain and
spinal cord. The World Health Organization (WHO)
classification system categorizes gliomas from grade I (lowest
grade) through grade IV (highest grade) according to the
malignant histological features (Wesseling and Capper, 2018).
Low-grade gliomas (LGGs), which are less aggressive than
glioblastoma multiforme (GBM), mainly originate from
astrocytes and oligodendrocytes. Patients with LGGs are
categorized as WHO grade II–III gliomas. The standard
management of patients with LGG primarily involves surgical
resection followed by adjuvant radiotherapy and chemotherapy
(Lombardi et al., 2020). Even after patients receive these standard
clinical interventions, the highly invasive nature and
heterogeneity of LGGs can still lead to high rates of tumor
recurrence and noteworthy malignant progression (Brat et al.,
2015; Xia et al., 2018; Gittleman et al., 2020). Furthermore, the
prognosis of LGGs varies diversely due to tumor heterogeneity.
LGG patients (mean age 41 years) are proposed to have survival
averaging approximately 7 years, which is a significant sign of
poor prognosis (Claus et al., 2015). Therefore, it is imperative to
gain a more comprehensive understanding of the pathogenesis of
LGG, identify effective and reliable biomarkers that could predict
clinical outcomes, and formulate optimum therapeutic strategies.

Posttranslational modifications (PTMs) refer to covalent
processing events of proteins which occur after synthesis and
are normally mediated by diverse enzymes. Ubiquitination is a
crucial posttranslational modification of a protein. It is an ATP-
dependent reversible process mediated by the ubiquitin-
proteasome system (UPS), including E1 ubiquitin–activating
enzymes, E2 ubiquitin–conjugating enzymes, E3 ubiquitin-
protein ligases, and deubiquitinating enzymes (DUBs) (Reyes-
Turcu et al., 2009; Schulman and Harper, 2009; Buetow and
Huang, 2016; Stewart et al., 2016). The dysregulation of UPS is
largely involved in numerous biological functions, including cell
cycle progression, cell proliferation, apoptosis, gene transcription,
metastasis, transcriptional regulation, signaling, and inflammation
(Deng et al., 2020). Accordingly, abnormal ubiquitination may
contribute to various human pathologies such as

neurodegeneration (Stieren et al., 2011; Popovic et al., 2014),
autoimmune responses (Zangiabadi and Abdul-Sater, 2022), and
oncogenic processes (Rape, 2018). In the UPS, E3 ubiquitin ligase
serves as the essential part of the ubiquitination process owing to its
substrate specificity (Zheng and Shabek, 2017). UPS is stringently
regulated by E3 ligases that convey the specificity of ubiquitination.
In particular, ubiquitin molecules are transferred from ubiquitin-
conjugating enzymes to specific substrates by E3 ubiquitin–protein
ligases. The misregulation of UPS led by mutations in E3-related
genes (E3RGs) is highly correlated with poor prognosis of cancers
(Seeler and Dejean, 2017). Accumulating studies have
demonstrated the tremendous contribution of E3-related
proteins in glioma pathogenesis. For instance, MYH9-mediated
ubiquitination of GSK-3β promotes malignant progression and
chemoresistance in glioma (Que et al., 2022). The degradation of
TUSC2 induced by NEDD4 facilitates glioblastoma progression
(Rimkus et al., 2022). PARK2, frequently mutated in glioma, acts as
a tumor suppressor by boosting ubiquitination-dependent
degradation of β-catenin, which results in attenuation of Wnt
signaling (Veeriah et al., 2010; Lin et al., 2015). Tripartite motif-
containing protein 11 (TRIM11), overexpressed in glioma,
promotes proliferation, invasion, migration, and glial tumor
growth via the induction of EGFR (Di et al., 2013). In addition,
many E3 ligases have been reported to play vital roles in glioma
carcinogenesis via the regulating PI3K/Akt pathway, such as
SCFβ−TrCP (Warfel et al., 2011), TRAF6 (Feng et al., 2014), and
TRIM21 (Lee et al., 2017). Based on the significant function of E3
ligases in cancer pathogenesis, therapeutics targeting UPS have
shown promising effects in clinical trials against cancers, such as
PROTAC (proteolysis-targeting chimeric) (Qi et al., 2021). Two
PROTAC strategies targeting CDK4 and/or CDK6 have been
tested in glioma cells and are expected in clinical trials soon
(Zhao and Burgess, 2019). Given the crucial roles of E3-related
genes in glioma, the mechanism underlying the relationship
between E3-related genes and the prognosis of LGG needs to be
further addressed.

In the present study, a comprehensive analysis of E3RGs in
LGG was conducted. Transcriptome data and clinical data of
LGG samples were downloaded from The Cancer Genome Atlas
(TCGA) database. Differentially expressed genes (DEGs) with
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prognostic significance were screened and identified.
Subsequently, an E3-related prognostic signature was
constructed, and the nomogram based on the risk signature
was established to predict the prognosis of LGG. Meanwhile,
enrichment analyses of risk-related differentially expressed genes
and substrates of the risk signature genes were performed to
disclose the underlying mechanism of LGG progression. Finally,
the correlation between the risk signature and tumor immunity
was analyzed. Our work provided an effective clinical tool for
LGG prognosis prediction and preliminarily explored the
biological functions and immune processes involved in the
signature and the relative regulatory networks.

MATERIALS AND METHODS

Datasets and E3-Related Gene Acquisition
The transcriptome sequencing data and corresponding clinical data
of primary LGG were obtained from the TCGA database (https://
portal.gdc.cancer.gov/) and the Chinese Glioma Genome Atlas
(CGGA) database, respectively, (http://www.cgga.org.cn/). The
TCGA LGG cohort was selected as the training set, which
included 451 tumor samples and five normal brain samples. The
CGGA cohort (DataSet ID: mRNAseq_693) was chosen as the
validation set, containing 240 primary LGG patients. The samples
with incomplete clinical information and overall survival < 30 days
had been excluded. Count data from TCGA and FPKM data from
CGGA were applied for further analysis. The GSE68848 and
GSE4290 datasets procured from the Gene Expression Omnibus
database (GEO; https://www.ncbi.nlm.nih.gov/geo/) were utilized to
validate the expression of the signature genes. The 630 E3RGs
utilized in this study were collected from the ESBL database
(https://esbl.nhlbi.nih.gov/Databases/KSBP2/Targets/Lists/E3-
ligases/) and iUUCD2.0 database (http://iuucd.biocuckoo.org/)
(Supplementary Table S1).

Identification of Differentially Expressed
E3-Related Genes
E3-related DEGs between LGG tissues and normal brain tissues
were analyzed using the “limma,” “edgeR,” and “DESeq2” R
packages with the cut-off criteria of |log2FC|≥ 1 and p < 0.05
(Robinson et al., 2010; Love et al., 2014; Ritchie et al., 2015). The
raw count data of the TCGA LGG cohort were used as the input
for limma, edgeR, and DESeq. Volcano plots were generated to
display DEG distribution from three algorithms mentioned
earlier with the “tinyarray” R package. Venn diagrams were
intersected to obtain the overlapping enriched terms also with
the “tinyarray” R package.

Identification of E3-Related Differentially
Expressed GenesWith the Prognostic Value
The CPM of genes and clinical information were used for the
subsequent analyses. The univariate Cox regression analysis and
log-rank statistical test with the cut-off criteria of p < 0.05 for E3-
related DEGs were applied to select the genes with prognostic

significance, using “survival” and “survminer” packages in R
software. Venn diagrams were used to present the intersection of
the enriched genes fromCox regression analysis and log-rank analysis.

Construction and Validation of the
Prognostic Signature
Tominimize the overfitting high-dimensional prognostic E3-related
DEGs, least absolute shrinkage and selection operator (LASSO)
regression analysis was performed with the “glmnet” R package
(Friedman et al., 2010). Multivariate Cox regression analysis was
conducted to construct prognostic models with the R package
“My.stepwise”. Hazard ratios (HRs) and 95% confidence intervals
(CIs) were reported where applicable. The median risk score was
calculated to categorize the LGG patients into high-risk and low-risk
groups, based on the following formula:

Risk score � ∑n
i�1Coef i × Expri,

(where Coefi is the coefficient and Expri is the expression
level of each intersected gene).

A Kaplan–Meier survival curve was used to determine the
differences in overall survival using the R package “survival”.
Time-dependent receiver operating characteristic (ROC) analysis
was executed to evaluate the prognostic accuracy of the seven-
E3RG risk signature using R package “timeROC” (Blanche et al.,
2013). The survival analysis result was presented by the R package
“tinyarray” and “patchwork.”

Development and Evaluation of the
Nomogram
To assess whether the seven-E3RG prognostic risk signature can
be utilized as an independent prognostic factor, univariate and
multivariate Cox regression analyses were performed using R
package “survival” and “My.stepwise.” The nomogram was
constructed with independent prognostic parameters using the
“rms” R package, and the calibration curves were utilized to
reflect the accuracy of the nomogram.

Risk-Related Differentially Expressed Gene
Analysis
LGG patients were divided into high-risk and low-risk groups
according to the median risk score. The raw count data of the
TCGA LGG cohort were used as the input data for limma, edgeR,
and DESeq. “limma,” “edgeR,” and “DESeq2” R packages with the
cut-off criteria of |log2FC|≥ 1 and p < 0.05 were applied to two
groups for DEG screening. Volcano plots were generated to
display DEG distribution from three algorithms. Venn
diagrams were intersected to obtain the overlapping
enriched terms.

Functional Enrichment and GSEA
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses were performed utilizing the
“clusterProfiler” package to predict the biological function and
related pathways (Yu et al., 2012). The top five enriched terms in
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the biological process (BP), cellular component (CC), and
molecular function (MF) were visualized using “ggplot2” and
“enrichplot” R packages. KEGG pathways with P. adjust<0.01
were chosen for presentation. Gene set enrichment analysis
(GSEA) was conducted using GSEA v4.2.3 software with
hallmark gene sets.

Immune Microenvironment Analysis
The tumor immune microenvironment (TIME) cell infiltration
characterization was evaluated by the single-sample gene set
enrichment analysis (ssGSEA) with the “GSVA” R package
(Hänzelmann et al., 2013). An ESTIMATE algorithm was used to
evaluate the immune and stromal activity in the LGG
microenvironment with the “estimate” R package (Yoshihara et al.,
2013). The correlation analysis was performed based on Pearson’s
correlation coefficient and presented using R packages “corrplot” and
“circlize” (Gu et al., 2014).

Protein–Protein Interaction Network
Analysis
A PPI network was constructed based on the substrates of E3RG
signature with required interaction score > 0.4 using the STRING
database (https://cn.string-db.org/) and visualized using
Cytoscape (version 3.9.1) (Shannon et al., 2003; Szklarczyk
et al., 2019). The top 10 hub genes in the PPI network were
identified using the MCC algorithm with the CytoHubba plugin
in Cytoscape.

RESULTS

Identification of Differentially Expressed
E3-Related Genes With the Prognostic
Value in Low-Grade Gliomas
The overall study workflow is presented in Figure 1. The TCGA
cohort was used as the training set. The transcriptome and
clinical data from TCGA included 451 tumor samples and five
normal brain samples. The 630 E3RGs were selected and applied
in this study (Supplementary Table S1). Three
differential expression analyses were performed. According to
the | log2 FC | > 1.0 and p < 0.05, DEGs were displayed in volcano
plots (Figure 2A). The overlapping of DEGs from three
differential expression analyses indicated that 44 genes were
upregulated and 47 genes were downregulated in tumor
samples (Figure 2B). Subsequently, DEGs were further
analyzed by univariate Cox regression analysis and log-rank
statistical test to evaluate the prognostic significance. In total,
38 E3RGs with a significant prognostic value were obtained by the
intersection of results from both analyses (Figure 2C).

Construction of E3-Related Gene
Prognostic Risk Signature in Low-Grade
Gliomas
To further explore the prognostic value of E3RGs in LGGs, 38
overall survival–associated E3RGs were incorporated into the
LASSO regression (Liu et al., 2021; 2022a; 2022b; 2022c), 20 of
which were selected for further multivariate Cox regression
analysis (Figures 3A,B). Following this, a seven-E3RG
prognostic signature significantly correlated with LGG
prognosis was developed by performing multivariate Cox
regression analysis and shown in the forest plot (Figure 3C).
The risk score was calculated for each LGG patient by the
following formula:

Riskscore=(0.4121493)p AURKA+ (-0.8124184)pPCGF2+
(0.6318466)pMAP3K1+ (0.2558092)pTRIM34+(-0.5951688)p
PRKN+(-0.5669701)pTLE3+(0.1586579)pTRIM17.

The expression of the signature genes was validated in both
GSE4290 and GSE68848 datasets and proved consistent with that
in the TCGA cohort (Figures 3D,E). Univariate Cox regression
analysis revealed that seven signature genes were all strongly
correlated with the prognosis (Figure 4A). As shown in the
Kaplan–Meier curves, four genes of the E3RG signature were
considered to have favorable prognostic effects, while three were
considered to have poor prognostic effects (Figure 4B).

Based on the seven-E3RG risk signature, patients were divided into
the high-risk and low-risk subgroups according to the median risk
score in TCGA cohorts. The resulting Kaplan–Meier curve displayed
a significant difference in overall survival between the LGG patients in
the high-risk and the low-risk group, suggesting the established
signature effectively predicts survival (Figure 5A; p < 0.0001). The
overall survival of patients with low-risk scores was significantly
higher than that of patients with high-risk scores. The genes
referred to in the signature were remarkably differentially
expressed in the high-risk group and the low-risk group. The

FIGURE 1 | Workflow of the study.
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expression of AURKA,MAP3K1, and TRIM34 was lower in low-risk
patients than in high-risk patients, while PCGF2, PRKN, TLE3, and
TRIM17 expressions were higher in patients with low-risk scores than
in those with high-risk scores. The distribution of risk score, survival
status, and the expression of the signature genes is shown in Figures
5B–D. To evaluate the predictive effect of the prognostic model, 1-
year, 3-year, and 5-year time-dependent ROC curves were plotted,
and the concordance index was calculated. The area under the curve
(AUC) values were 0.9 (1-year ROC), 0.89 (3-year ROC), and 0.85 (5-
year ROC) (Figure 5E). Given the results earlier, the risk signature
presented a superior predictive capacity for LGGs.

Validation of the Risk Signature in the
Chinese Glioma Genome Atlas Cohort
To test whether the prognostic gene signature has similar predictive
performance and accuracy in other LGG cohorts, the CGGA cohort
was used as a validation set. In the CGGA cohort, the patients were
divided into low-risk and high-risk groups by the median risk score
with the same formula calculated from the TCGA cohort
(Figure 6B). Consistent with the results obtained from the
training set, survival analysis using the Kaplan–Meier method
exhibited a better prognosis for patients in the low-risk group
(Figure 6A, p < 0.0001). The distribution of risk score and
survival status is shown in Figures 6B,C. A heatmap of gene
expression in the CGGA cohort is presented in Figure 6D, based

on the risk score. The predicted AUCs of 1 year, 3 year, and 5 year
are 0.80, 0.79, and 0.71, respectively (Figure 6E). Prognostic analyses
showed similar results. These results demonstrated that the E3RG
risk signature was positively correlated with LGG prognosis.

Independent Prognostic Value of the
E3-Related Gene Risk Signature in the
Cancer Genome Atlas and the Chinese
Glioma Genome Atlas Low-Grade Glioma
Cohorts and Construction of a Nomogram
We first evaluated the prognostic value of age, gender, and risk score
in patients with LGG from the TCGA cohort through univariate Cox
regression analysis. The result revealed that both age (HR = 1.07, 95%
CI = 1.05–1.09, p < 0.001) and risk score (HR = 2.72, 95% CI =
2.26–3.27, p < 0.001) of LGG patients were significantly correlated
with overall survival (Figure 7A). Moreover, multivariate Cox
regression analysis showed that age (HR = 1.05, 95% CI =
1.03–1.07, p < 0.001) and risk score (HR = 2.28, 95% CI =
1.87–2.76, p < 0.001) affected overall survival as independent
prognostic factors (Figure 7B). Similar results were obtained when
univariate and multivariate Cox regression analyses were applied in
LGG patients from the CGGA cohort. Of note, gender (HR = 1.56,
95% CI = 1–2.44, p = 0.049) and risk score (HR = 1.97, 95% CI =
1.62–2.38, p < 0.001) were correlated with overall survival, but only
risk score (HR = 1.97, 95% CI = 1.62–2.39, p < 0.001) became an

FIGURE 2 | Identification of E3-related DEGs with prognostic value in LGG. (A) Volcano plot of E3-related DEGs between 451 LGG samples and five normal brain
samples identified using edgeR, limma, and DESeq2 algorithms, with the cut-off criterion p < 0.05 and |log2FC| ≥ 1. Blue dots: significantly downregulated genes; red
dots: significantly upregulated genes. (B) Venn diagram of the overlapping E3-related DEGs screened by the three differential expression analyses. (C) Venn diagram of
the intersection for overall survival–correlated E3-related DEGs identified using univariate Cox regression analysis and log-rank statistical test with the cut-off criteria
of p < 0.05. Left, predicted favorable prognosis; right, predicted poor prognosis.
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independent prognostic factor in the CGGA cohort (Figures 7C,D).
The subtle difference may be attributed to the ethnicity difference.

On the basis of the seven-E3RG risk signature, we established a
nomogram that could predict the prognosis of LGG in the TCGA
cohort (Figure 7E). Briefly, the points of different variables were
mapped to the corresponding lines, while the total points of the
patients were calculated and normalized to a distribution of
0–100. By performing this, the 1-, 3-, and 5-year survival
status for LGG patients could be approximately estimated
based on the prognosis axis and total point axis. In addition,
the calibration curves for the probability of 1-, 3-, and 5-year
overall survival showed a strong consistency between the

predicted value of the nomogram and the actual value in both
the TCGA and CGGA cohorts (Figures 7F,G). Thus, the
nomogram could serve as a favorable reference for clinical
decision-making.

Identification and Function Analysis of
Risk-Related Differentially Expressed
Genes
To further investigate the potential biological functions and
pathways of the risk signature, we screened the DEGs by three

FIGURE 3 | Construction of the prognostic E3-related signature. (A) LASSO regression cross-validation for tuning parameter lambda selection. (B) Coefficient
profiles of the LASSO regression analysis. (C) Seven optimal prognostic E3-related DEGs selected by multivariate Cox regression analysis are shown in the forest plot.
(D) Expression of the signature genes in the GSE4290 dataset. (E) Expression of the signature genes in the GSE68848 dataset. (*p < 0.05; **p < 0.01; ***p < 0.001;
****p < 0.0001; ns, not significant).
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differential expression analyses between the high-risk group and
the low-risk group in the TCGA LGG cohort. These results were
displayed in volcano plots (Figure 8A). As shown by the Venn
diagrams in Figure 8B, 528 upregulated genes and 134
downregulated genes in the high-risk group were identified
and applied for GO and KEGG pathway analyses (Figure 8B).
From the GO analysis, the risk-related DEGs were enriched in
extracellular matrix–related functions, which suggested stronger
migration and invasion potentials of tumors for LGG patients in
the high-risk group, such as collagen-containing extracellular
matrix and extracellular matrix structural constituent.
Meanwhile, the risk-related DEG high enrichment was
observed in several immune-related biological processes, such
as MHC class II protein complex, MHC protein complex, MHC
class II receptor activity, and immune receptor activity
(Figure 8C). Moreover, the KEGG pathway enrichment
analysis showed that risk-related DEGs were principally
intensified in immune-related pathways and cell adhesion
molecules, which reflected the malignant characteristics of
LGG in the high-risk group (Figure 8D). This was also
consistent with the results of GO analysis.

GSEA Enrichment Analysis
To elucidate the potential functional differences between the
high-risk and low-risk groups, GSEA was performed with the
TCGA LGG cohort. GSEA revealed that pathways related to
inflammatory response, such as complement, IL-2/STAT5

signaling, IL-6/JAK/STAT3 signaling, and inflammatory
response, were enriched in the high-risk group. Pathways that
promote tumorigenesis and progression were also enriched in the
high-risk group, such as PI3K/AKT/MTOR signaling, mTORC1
signaling, epithelial–mesenchymal transition, glycolysis, and
KRAS signaling up. The enrichment of genes related to E2F
targets, G2M checkpoint, and mitotic spindle suggested the
correlation of cell cycle dysregulation with the risk score
(Figure 9).

The Role of the E3-Related Gene Risk
Signature in the Tumor Immune
Microenvironment
In order to further investigate the roles of the risk signature in
TIME cell infiltration, we evaluated the landscape of 28 TIME-
infiltrating cell types in the low-risk and high-risk groups by
ssGSEA (Charoentong et al., 2017). In total, 25 TIME cell types
presented significant differences in infiltration between low-risk
and high-risk groups (Figure 10A). Although eosinophils,
monocytes, and CD56 dim natural killer cells were not highly
enriched in the high-risk group, a mild increase was still noted in
eosinophils and monocytes. The expression of immune cell
markers was displayed in a heatmap (Figure 10B). Next, the
ESTIMATE algorithm was applied to evaluate the immune and
stromal activity in the LGG tumormicroenvironment. The results
disclosed that the immune and stromal activities were

FIGURE 4 | Prognostic analysis of the seven-E3RG risk signature. Univariate Cox regression analysis (A) and Kaplan–Meier curves (B) of the seven-E3RG
prognostic signature (**p < 0.01; ***p < 0.001).
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significantly elevated in the high-risk group, which might provide
evidence for the contribution of an inflammatory environment of
LGG as well (Figures 10C,D). Correlation analysis was
performed, and potential relations between the risk score
signature and each TIME cell type are shown in Figure 10E.
A significant positive correlation between the risk score and
TIME cell infiltration was observed, except for eosinophils,
monocytes, and CD56 dim natural killer cells. The risk score
was proven to be positively correlated with the expression of
immune checkpoint molecules (Figure 10F), implying the
meaningful roles of risk score signature in predicting the
possible response of LGG patients to clinical immunotherapy.

Function Analysis of Substrates of
E3-Related Gene Risk Signature in
Low-Grade Gliomas
To acquire a better understanding of the potential biological
function of the risk signature, the potential substrates of E3-
related gene signature were searched on Ubibrowser 2.0 (http://
ubibrowser.bio-it.cn/ubibrowser_v3/). The known substrates
were applied for protein–protein interaction network analysis
using the STRING database (https://cn.string-db.org/). A PPI
network of 76 substrates of the risk signature, including 69 nodes
and 772 edges, was constructed using the STRING database
(Figure 11A). The top 10 hub genes with the highest linkage
degrees were obtained using the MCC algorithm of the

cytoHubba plugin in Cytoscape3.9.1. These genes included
PARK2, VDAC1, DNM1L, MFN2, MFN1, PINK1, TOMM20,
PARK7, BCL2L1, and SNCA (Figure 11B). To disclose the
potential biological functions of the substrates that were
involved, GO and KEGG pathway analyses were performed.
GO analysis presented high enrichment in neuron death
(regulation of neuron death, neuron death, negative regulation
of neuron death, apoptotic mitochondrial changes, and death
domain binding) and ubiquitin-related functions (ubiquitin-like
protein ligase binding and ubiquitin–protein ligase binding)
(Figure 11C). KEGG pathway analysis results demonstrated
that the substrates were mostly correlated with
neurodegeneration (pathways of neurodegeneration,
Parkinson’s disease, and amyotrophic lateral sclerosis), cell
death (mitophagy, apoptosis, and autophagy), and immune
response (NOD-like receptor signaling pathway, PD-L1
expression, and PD-1 checkpoint pathway in cancer)
(Figure 11D).

DISCUSSION

In the past few decades, overwhelming evidence indicates that E3
ubiquitin ligases play pivotal roles in tumorigenesis, cancer
progression, and treatment responses. Since E3 ligases
determine the targets of the UPS, they play an essential role in
cellular functions. They take part in biological processes,

FIGURE 5 |Distribution and prognostic analysis of the E3RG prognostic signature in the TCGA cohort. (A) Kaplan–Meier curves of overall survival for the patients in
the high-risk group and the low-risk group of the TCGA cohort. The distribution plots (B), corresponding survival status (C), and the expression of the seven signature
genes (D) in the TCGA cohort. (E) Time-dependent ROC curve validation of the predictive capacity of the risk signature in the TCGA cohort.
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including but not limited to apoptosis, cell growth, senescence,
proliferation, immune system evasion, metabolism, DNA repair,
inflammation, invasion, metastasis, and angiogenesis. In GBM,
alterations in EGFR are commonly seen (Brennan et al., 2013).
EGFR could be downregulated by PARK2 but increased by
TRIM11; both are E3 ligases possessing opposite effects on
EGFR (Di et al., 2013; Lin et al., 2015). The PI3K/Akt
pathway is altered in approximately 90% of GBM cases
(Brennan et al., 2013). The PI3K/Akt signaling could be
modulated by the SCFβ−TrCP complex and SCFSkp2 complex
and regulate the proliferation of primary GBM cell lines,
glioma stem cells (GSCs), and established GBM cell line
models (Winston et al., 1999; Li et al., 2009; Yang et al., 2009;
Chan et al., 2012; Feng et al., 2014). Hence, more and more E3
ubiquitin ligases emerge as potential targets of drug designs for
cancer therapies as they own better specificity for the recognition
of substrates.

In this study, we first identified 38 DEGs with survival
significance, in which seven DEGs showed strong prognostic
performance and constituted a risk signature. The signature
consists of AURKA, MAP3K1, TRIM34, PCGF2, PRKN, TLE3,
and TRIM17. Patients in the high-risk group were more likely to
have a worse prognosis compared with the ones in the low-risk
group. Among the seven genes of the risk signature, many have
been reported in glioma pathogenesis. Aurora kinase A
(AURKA) has emerged as a drug target for glioblastoma for
being highly involved in cell proliferation, migration, and

invasion (Wang et al., 2018; Nguyen et al., 2021). MAP3K1
might promote glioma stem cell progression and be positively
associated with resistance to temozolomide (TMZ) and
radiotherapy (Bi et al., 2020; Wang et al., 2020). PRKN, first
found to be mutated in patients with early-onset Parkinson’s
disease, has also been confirmed to carry mutations and
deletions in human malignancies including glioblastoma,
colon cancer, and lung cancers (Veeriah et al., 2010). In
addition, PRKN inhibits glioma cell growth in vitro and in
vivo by downregulating the intracellular levels of β-catenin and
EGFR, leading to decreased activation of both Wnt- and EGF-
stimulated pathways (Lin et al., 2015). Although having not
been reported in glioma-related research, TRIM34, PCGF2,
TLE3, and TRIM17 have been revealed to contribute to the
carcinogenesis of other cancers. TRIM34 appears to attenuate
colon inflammation and tumorigenesis by sustaining barrier
integrity, highlighting its role in immune responses (Lian et al.,
2021). PCGF2 serves as a tumor suppressor in breast cancer,
gastric cancer, and colon cancer probably for the negative
regulation of Akt activation (Wang et al., 2009; Guo et al.,
2010; Zhang et al., 2010). TLE3 expression is positively
correlated with taxane sensitivity in patients with ovarian
carcinoma but not breast cancer (Samimi et al., 2012; Bartlett
et al., 2015). TRIM17 augments BRAF-targeted therapy
sensitivity of melanoma cells by preventing BCL2A1 from
being ubiquitinated and degraded by TRIM28 (Lionnard
et al., 2019). The studies mentioned earlier once again

FIGURE 6 | Validation of the E3RG prognostic signature in the CGGA cohort. (A) Kaplan–Meier curves of the overall survival in the high-risk group and low-risk
group of the CGGA cohort. The distribution plots (B), survival status (C), and the expression of seven signature genes (D) in the CGGA cohort. (E) Time-dependent ROC
curve validation of the predictive capacity of the risk signature in the CGGA cohort.
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FIGURE 7 | Construction and evaluation of a nomogram. Independent prognostic factors were identified by univariate and multivariate Cox regression analyses
(Continued )

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 90504710

Tan et al. E3-Related Signature in LGGs

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


address the potent roles of our risk genes in modulating cancer
biological functions.

We screened the DEGs between high-risk and low-risk
groups and performed the GO and KEGG pathway analyses.
GO analysis revealed that the DEGs were enriched in
extracellular matrix–related (ECM-related) functions in the
high-risk group. The glioma ECM has several unique
characteristics that make it distinct from the ECM of
normal brain tissue. Glioma cells express components such
as tenascin-C, fibronectin, and thrombospondin, which
support the adhesion and migration of glioma cells.

Furthermore, signals driven by the ECM also help shape
tumor phenotypes (Sood et al., 2019). Our result
corroborated that glioma ECM is tightly related to tumor
cell proliferation and differentiation and poor prognosis. In
addition, DEG high enrichment was observed in several
immune-related biological processes such as MHC-related
complex and immune receptor activity. The glioma TIME
has diverse cell types and immune cell infiltration which
consequently create a field of dynamic cytokine and
chemokine communication. MHCII is expressed in different
types of gliomas and is associated with increased infiltration of

FIGURE 7 | regarding overall survival in the TCGA cohort (A,B) and the CGGA cohort (C,D) (*p < 0.05; ***p < 0.001). (E)Construction of a nomogram based on the
independent prognostic values in the TCGA cohort. The calibration curves between predicted and observed 1-year, 3-year, and 5-year outcomes of nomograms in the
TCGA cohort (F) and the CGGA cohort (G). Gray diagonal line represented ideal prediction.

FIGURE 8 | Identification and functional enrichment analyses of risk-related DEGs. (A) Volcano plot of risk-related DEGs between the high-risk group and low-risk
group identified using edgeR, limma, and DESeq2 algorithms, with the cut-off criterion p < 0.05 and |log2FC| ≥ 1. Blue dots: significantly downregulated genes; red dots:
significantly upregulated genes. (B) Venn diagram of the overlapping risk-related DEGs screened by the three differential expression analyses. (C) GO analysis of risk-
related DEGs with three terms biological processes, cellular components, and molecular functions (P.adjust < 0.05). (D) KEGG pathways enriched in the
upregulated and downregulated risk-related DEGs (P.adjust < 0.01).
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T cells. Both clinical and transcriptomic data have uncovered
that tumoral MHCII is tightly correlated with poor prognosis
and immune responses (Chih et al., 2021, 01). The KEGG
pathway enrichment analysis showed that risk-related DEGs
were primarily intensified in immune-related pathways and
cell adhesion molecules. Accordingly, both pathways
contribute to the invasion and metastasis of glioma.

GSEA results showed that pathways related to
inflammatory responses were enriched in the high-risk
group. Previous research indicates that about 15–20% of
cancer cases suffer infection, chronic inflammation, or
autoimmunity in the same tissue before solid tumor
formation (Grivennikov et al., 2010). Meanwhile, the
inflammatory nature of the tumor microenvironment
promotes the development and survival of tumors
(Mantovani et al., 2008). IL-2/STAT5 signaling is crucial for
the regulation of regulatory T cells and immune tolerance (Shi
et al., 2018). Similarly, the IL6-JAK-STAT3 signaling pathway
may promote tumor cell proliferation, invasion, and metastasis
and suppress immune response (Johnson et al., 2018). In
addition, inflammatory responses and complement-related
pathways could affect the tumorigenesis, immune

surveillance, and immunotherapy response (Greten and
Grivennikov, 2019). Our study showed the enrichment of
the immune-related pathways in the high-risk group, which
emphasized their significant roles in glioma prognosis.
Furthermore, pathways that facilitate tumorigenesis and
progression were also enriched in the high-risk group. The
PI3K/AKT/mTOR pathway is widely dysregulated almost in
all human cancers and is pivotal to cancer cell proliferation,
survival, and therapy resistance (Cirone, 2021; Pungsrinont
et al., 2021). Mutations within genes of this signaling pathway
are the most common events occurring in solid malignancies
including glioma (Baghery Saghchy Khorasani et al., 2021).
mTORC1, one of the mTOR forms, comprises mTOR, raptor,
GβL, and deptor. In particular, mTORC1 signaling is mainly
involved in cell growth and metabolism (Unni and Arteaga,
2019). Furthermore, AKT/PI3K signaling could indirectly
activate mTORC1 by the phosphorylation of PRAS40, a
known mTORC1 inhibitor (Sancak et al., 2007; Thedieck
et al., 2007; Vander Haar et al., 2007; Wang et al., 2007).
Activated mTORC1 signaling may trigger recurrent
reprograming that helps escape from glycolytic addiction in
cancer cell lines from various solid tumor types (Pusapati et al.,

FIGURE 9 | Gene set enrichment analysis (GSEA) of DEGs in the high-risk group.
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2016). Recently, treatments targeting PI3K/AKT/mTOR and
mTORC1 pathways have emerged as promising strategies in
cancer therapeutics (Yang et al., 2019; Peng et al., 2022).
Epithelial–mesenchymal transition (EMT) is a process that
the majority of tumors have gone through during tumor
progression. The role of EMT in tumorigenesis has been
extensively investigated in different cancers including
glioma (Lee et al., 2006; Phillips et al., 2006; Hugo et al.,

2007; Thiery et al., 2009; Zarkoob et al., 2013). Activated EMT
has also been found to be associated with the generation of
cancer stem cells (Ye and Weinberg, 2015). KRAS gene
polymorphisms are associated with the risk of glioma (Guan
et al., 2021). Collectively, GSEA results suggested that LGG
patients with high-risk scores tend to develop a faster
deterioration than patients with the low-risk scores.

Recently, a growing body of studies has demonstrated how
E3 ligases function in the tumor microenvironment (Do et al.,
2022; Hosein et al., 2022; Iwamoto et al., 2022). The tumor
microenvironment consists of different cells, including tumor
cells, tumor stem cells, and stromal cells. These cells form a
complex network and interact with one another to regulate
tumor malignant behaviors and treatment resistance. Growth
factors, chemokines, and cytokines released by immune cells
are widely involved in tumor progression and therapy
responses (Bindea et al., 2013). Here, we assessed the
infiltration level of 28 TIME immune cells in the high- and
low-risk groups to explore the roles of identified signature
genes. By ssGSEA, our results showed that 25 out of 28
immune cells are more abundant in the high-risk group
than in the low-risk group. In line with other studies,
macrophages seem to constitute a majority of infiltration
in low-grade gliomas (Rossi et al., 1988; Mieczkowski
et al., 2015). These could be important findings since it has
been shown that the infiltration of macrophages is highly
associated with shorter overall survival in low-grade glioma
(Müller et al., 2017). Our study observed the increase of most
immune cells infiltrated in the high-risk group, which might
be correlated with poor prognosis. The immune activity and
stromal activity were remarkably elevated in the high-risk
group, which once again reiterated the heterogeneity of the
glioma TIME between the two groups. Determining the roles
of the signature genes in TIME cell infiltration heterogeneity
will be beneficial to better understand the mechanisms of the
TIME antitumor immune response and developing novel
immunotherapy strategies (Kim et al., 2022; Ogino et al.,
2022; Tian et al., 2022).

Previous studies have identified different immune
checkpoint molecules in gliomas, such as CTLA-4, TIM-3,
PD-1, CD48, and LAG3 (Chouaib, 2020). Immunotherapy-
targeting immune checkpoint proteins have been found to
trigger an antitumor immune response (Zeng et al., 2013;
Reardon et al., 2016; Boussiotis and Charest, 2018).
Therefore, we evaluated the correlation between the risk
score and the expression of immune checkpoint molecules.
It is worth noting that the risk scores were positively
correlated with the expression of immune checkpoint
molecules. These results implied the involvement of the
signature genes in the pathogenesis of the gliomas via
regulating immune-related pathways. Accordingly, a
preliminary function analysis for the predicted substrates
of the risk signature was used. The results suggested that
the substrates might regulate the pathways of cell death and
immune responses. This partially explained better responses
of individuals with high-risk scores to immunotherapies. Yet,

FIGURE 10 |Role of the risk signature in the TIME. (A) ssGSEA scores of
the 28 immune cells in the high-risk group and the low-risk group (*p < 0.05;
****p < 0.0001; ns, not significant). (B) Heatmap of the expression of the
immune cell markers in the low-risk and the high-risk groups. (C,D)
Differences in overall immune and stromal activity between the high-risk group
and the low-risk group using the ESTIMATE algorithm. (E) Correlation
between the risk signature and 28 TIME cell infiltration. (F) Correlation
between the risk signature and immune checkpoints.
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these results further verified the reliability of the risk model in
predicting LGG prognosis.

Here, we constructed a prognostic model based on E3RGs
and a relevant nomogram in LGG. Of note, we identified a risk
signature in the TCGA dataset, which consisted predominately
of Caucasian and African American cases. Then, we validated
the effect of the risk signature in the CGGA dataset which
consisted of Chinese patients. The similar survival analysis
results observed in both training and validation sets proved
that our model could predict LGG prognosis in varying
ethnicities. Therefore, the predictive capability of this model
could be beneficial to clinical decision-making with LGG
patients. Nevertheless, the construction and validation of
the risk model were accomplished by retrospective analysis.

Prospective clinical research needs to be rendered for further
validation of this model. Moreover, the molecular mechanism
of the genes in the risk model requires in-depth investigation
in the future.

CONCLUSION

In summary, by differential expression analyses following
univariate Cox regression analysis and log-rank statistical test,
E3-related DEGs with a prognostic value were identified. A seven-
gene risk signature was constructed using the LASSO-Cox
regression model. The risk signature achieved good
performance in predicting the prognosis of LGG. Patients with

FIGURE 11 | PPI network and functional analysis of substrates of the E3RG signature in LGG. (A) PPI network of substrates of the E3RG signature
obtained with interaction scores > 0.4 based on the STRING online database and visualized using Cytoscape. (B) Top 10 hub genes identified using the MCC
algorithm of the cytoHubba plugin in Cytoscape. (C) GO analysis of substrates of the E3RG signature with three terms biological processes, cellular
components, and molecular functions (P.adjust < 0.05). (D) KEGG pathways enriched in the substrates of the E3RG signature analyzed using ClueGO
plugin in Cytoscape (p < 0.01).

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 90504714

Tan et al. E3-Related Signature in LGGs

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


high-risk scores were more likely to have a poor prognosis
compared with the ones with low-risk scores. Functional
analyses of the risk signature were performed. This study is
expected to benefit the diagnosis and the potential therapeutics
of low-grade glioma.
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