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Kong et al. present Capybara, a computational method to identify cell states from single-cell gene expression
data. Notably, Capybara can identify intermediate cell states and cell state transitions, offering biologists new
means with which to interrogate the states and fates of cells.
To understand cell fate is to understand

what cells are and where they are going.

It is a question of fundamental importance

in developmental and cell biology, for it

underlies the rules that govern organ

growth, responses to pathogens, and

cancer. The power we have with which

to address these questions of cellular

identities has expanded enormously

over the last decade, thanks in large part

to the rise of single-cell genomics

technologies. Yet, the curse of dim-

ensionality looms always nearby. Whe-

reas before, the identity of a cell may

have been defined by a few morpholog-

ical features or a handful of markers

measurable by flow cytometry, character-

izing the state of a cell from thousands of

noisy measurements of noisy gene

expression genome-wide requires more

sophisticated tools.

Capybara (Kong et al., 2022) is a new

tool to ID cells, a giant rodent bouncer, if

you will. Established methods are able to

identify cell fates when these are well-

defined states, such as previously known

cell types (Herman et al., 2018; Setty

et al., 2019); the task becomes more diffi-

cult when cells acquire less well-charac-

terized cell states. These include hybrid

or intermediate cell states, which can

arise during development or differentia-

tion, or as a result of perturbations, e.g.,

pathological insults or cellular reprogram-

ming. Intermediate cell states may be

transitional, which is characteristic of a

dynamic cell fate change, or may repre-

sent cells ofmixed-lineage state (Figure 1).

Using single-cell gene expression as

input, Capybara employs quadratic pro-

gramming (a method for nonlinear opti-
This is an open access ar
mization) to assign cell identities

sequentially: first to broad tissue-level

categories and then to more specific

cell types. Capybara builds upon the

successes of probabilistic methods for

cell type assignment (Zhang et al.,

2019) to assign cells not only to distinct

cell types but also to hybrid identities.

Benchmarking against data generated

in silico or with clonal barcodes provide

support that Capybara is accurately

capturing the identities of both well-

characterized and hybrid cell states dur-

ing hematopoiesis.

Cell reprogramming presents greater

hurdles for cell identification due to an

amplification in the number of cells with in-

termediate-state identities and even the

creation of new ‘‘dead-end’’ cell states

(Biddy et al., 2018). In application to fibro-

blast-to-cardiomyocyte reprogramming,

Capybara distinguishes both well-defined

cardiac and off-target cell states. Using a

method for transition scoring based on

the proximity of cells to hybrid states,

Capybara identifies higher transition rates

in the first two days of reprogramming

than at the initial or the final time points.

Furthermore, Kong et al. (2022) show that

these transition scores are correlated with

graph connectivity and RNA velocity,

lending support to the notion that theycap-

ture local changes in cell state space. It

would also be of interest to compare the

transitionscoresasdefinedherewith those

based upon entropy and concepts from

statistical physics (Teschendorff and Fein-

berg, 2021). There are limitations to the

extent to which dynamic processes can

be quantified by single-cell sequencing

overall (Weinreb et al., 2018), in part due

to the snapshot nature of the data,
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ogiesmay help to overcome someof these

challenges (Lange et al., 2022; Qiu et al.,

2022).

A crucial assumption underlying the

use of quadratic programming to assign

cell identities is that the cell state space

is continuous. However, it is possible

that hybrid cell states can be produ-

ced from both continuous and disco-

ntinuous transitions in the cell state

space (Moris et al., 2016). This becomes

particularly relevant in the case of mu-

ltistability, as predicted by theory (Mojta-

hedi et al., 2016) and observed experi-

mentally (Schuijers et al., 2015; Wang

et al., 2022). Transitions on bistable cell

state landscapes can be sharp, dis-

continuous, and lead to short-term in-

creases in cell state heterogeneity.

Whether or not discontinuous cell state

transitions violate the assumptions req-

uired for quadratic programming likely

depends on their magnitude: if small

enough, this may not be a barrier to

use in practice.

Cell states are defined and maintained

by a tug-and-pull of internal and external

cell signals. The effects of external

signaling on cell fate determination are

oft-neglected, yet can exert key control

over the processes of fate determination

(Rommelfanger and MacLean, 2021).

Currently, Capybara does not incorporate

the effects of cell-cell interactions into its

methods. Recently, the inclusion of dy-

namic information via pseudotemporal

ordering has improved the inference of

cell-cell interactions (Li et al., 2022). It

will be interesting to see in future work

whether the incorporation of cell-cell

interaction information can also assist
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Figure 1. Examples of cell state transitions
Cell differentiation and cell reprogramming give rise to different distributions of cell fates that Capybara
can distinguish. In the case of differentiation, two cell fates (A and B) are produced. In the case of re-
programming, cell fate B can be reprogrammed into cell fate A. Under either type of cell state transition,
intermediate cell states can arise either as mixed-lineage states or as transient states.

ll
OPEN ACCESS Spotlight
here with the task of cell state identifica-

tion.

Identifying cell fates and states is a

fickle business. In many cases it has tran-

spired that the more data we gather, the

less we know with certitude. Kong

et al.(2022) offer new means to work

with this uncertainty rather than fight

against it. The ability to identify hybrid

cell states from single-cell data and track

them (over time, pseudotime, or experi-

mental conditions) strengthens our under-

standing of the cell states present in a

particular dataset as well as of the pro-

cesses underlying cell state transitions

more generally. This, in turn, helps us

move toward a fuller picture of the dy-

namic identities of cells.
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