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A B S T R A C T

Hepatocellular carcinoma (HCC) is among the most common malignant tumors worldwide, and transcatheter
arterial chemoembolization (TACE) technology has become the first-line treatment for advanced HCC. Another
important, recently developed technique is blood oxygen level–dependent functional magnetic resonance imaging
(BOLD-fMRI), which utilizes hemoglobin as an endogenous contrast agent and measures deoxygenated hemo-
globin content by sampling the oxygen content of tissues, thus reflecting the hemodynamics and pathophysiologic
changes in body organs. Currently this technology is being used in patients with liver tumors; that is, it serves as
an important tool in follow-up after TACE. The present paper summarizes these developments.
1. Introduction

Hepatocellular carcinoma (HCC) is among the most common malig-
nant tumors, causing more than 600,000 deaths annually.1,2 In terms of
fatalities due to cancer,1 it is exceeded only by pulmonary carcinoma and
gastric carcinoma.

There are several effective treatment approaches for early-stage HCC,
including surgical excision, transplantation, and radiofrequency abla-
tion. Nevertheless, in more than 70% HCC patients, the disease is
detected only at a middle or advanced stage, making many of these
treatment approaches unsuitable.3–5 Fortunately, transcatheter arterial
chemoembolization (TACE) can effectively treat middle- or
advanced-stage HCC by embolizing the arteries surrounding the tumor
and injecting chemotherapeutic drugs into the tumor. Because of its su-
periority to other methods, TACE has been recommended as the first-line
therapeutic method for middle-to advanced-stage HCC.5

Imaging examinations play an increasingly significant role in the
follow-up after TACE in patients with HCC. Another important, recently
developed technique is blood oxygen level–dependent functional mag-
netic resonance imaging (BOLD-fMRI), which utilizes hemoglobin as an
endogenous contrast agent and measures deoxygenated hemoglobin
content by sampling the oxygen content of tissues, thus reflecting the
hemodynamics and pathophysiologic changes in body organs. At present,
this method has been used in the detection of lesions in multiple organs
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and organ systems, including liver tumors. It can therefore serve as an
important follow-up detection technique in HCC patients who have un-
dergone TACE.6

2. TACE for the primary treatment of HCC

TACE uses a percutaneous interventional technique to cut off the liver
tumor's blood supply; it does so by embolizing branches of the hepatic
artery and then injecting chemotherapeutic drugs into the tumor, thus
resulting in the apoptosis and necrosis of the malignant cells.7 The results
of previous meta-analyses show that TACE can significantly extend the
survival of patients with HCC.8,9

Although TACE is effective in inducing the apoptosis and necrosis of
HCC cells, some studies suggest that TACE may also promote angiogen-
esis by inducing hypoxia, facilitating proliferation of residual HCC cells,
and promoting the activation of angiogenesis-related factors, such as
vascular endothelial growth factor (VEGF).10 Other studies indicate that
the high concentration of insulin-like growth factor-2 (IGF-2) in HCC
patients may serve as an independent risk factor of post-TACE metastasis
of the tumor.11 Therefore, it is extremely important to determine the
precise therapeutic effects of TACE.

Several factors can account for the recurrence of post-TACE HCC,
including changes in the blood supply of the tumor, such as a portal vein
supply to the tumor's marginal sections; failure of TACE to fully embolize
oduction and hosting by Elsevier B.V. on behalf of KeAi. This is an open access

mailto:xiaoenhua64@csu.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jimed.2019.05.002&domain=pdf
www.sciencedirect.com/science/journal/20963602
www.keaipublishing.com/cn/journals/journal-of-interventional-medicine/
https://doi.org/10.1016/j.jimed.2019.05.002
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jimed.2019.05.002
https://doi.org/10.1016/j.jimed.2019.05.002


L. Xiao, E. Xiao Journal of Interventional Medicine 2 (2019) 5–7
or recanalize the tumor's supply vessels; the formation of a collateral
blood supply; opening of the tumor's potential communicating branches;
angiogenesis of the tumor; and partial hepatic arteriovenous fistula.12

Additional variables include the numbers, sizes, and differentiation levels
of the primary tumor; degree of liver function and of hepatic cirrhosis;
and possible liver damage during or after TACE. All of these may
contribute to the recurrence of HCC. The early detection of residual
and/or recurrent tumor can facilitate early treatment and help to
improve the survival rate.

3. Post-TACE detection methods by imaging

Imaging detection methods play an increasingly significant role in the
follow-up of HCC patients after TACE. Currently used imaging modalities
include Doppler color-flow imaging (DCFI), digital subtraction angiog-
raphy (DSA), computed tomography (CT), and magnetic resonance im-
aging (MRI). Each of these has advantages and disadvantages. DCFI is
sensitive to early diagnosis while it also results in high-false positive
rates. DSA is effective in evaluating the therapeutic effect of TACE, yet its
invasiveness impedes its application as a routine examination. Dynamic
enhanced CT can clearly show the status of residual tumor necrosis and
new lesions, but highly iodinated contrast agents can also enhance the
cancer survival zone. Conventional MRI can sensitively detect new can-
cer lesions after surgery.15 Furthermore, there is a common deficiency of
the aforementioned methods—namely, they cannot determine the oxy-
gen content of HCC tissues or show its changes.

4. BOLD-fMRI in post-TACE HCC

4.1. Fundamental principles of BOLD-fMRI

In the 1930s, Pauling et al.16 pointed out that deoxyhemoglobin is a
paramagnetic substance; the hemoglobin and deoxyhemoglobin in the
blood have opposite magnetic properties, and the magnetism of the blood
is dependent on the hemoglobin's level of oxygenation. Thereafter,
Ogawa et al.17 proposed that the paramagnetic deoxyhemoglobin in
blood could serve as a natural contrast agent in MRI scanning. That is,
researchers could measure the oxygen content of microvessels by using a
gradient echo pulse sequence in a high magnetic field.

Paramagnetic deoxyhemoglobin can create a magnetic field gradient
and cause asymmetry in local tissues within the magnetic field by
forming a smaller magnetic field, thus shortening the T2-weighted signal.
When the blood supply increases, the hemoglobin will increase and the
paramagnetic deoxyhemoglobin's effect in shortening the T2 signal will
be weakened, thus lengthening the T2 signal of corresponding tissues.
The opposite effect will occur when the deoxyhemoglobin increases, thus
shortening the T2 signal.18 BOLD-fMRI is based on these principles. It
depends on changes in the oxygen content of normal and abnormal tis-
sues based on the hemodynamics of the tissues and/or organs being
studied. As the transverse relaxation rate (Rf) is directly relevant to the
concentration of deoxyhemoglobin in tissues, Rf (R2*¼ l/T2*, unit Hz) is
often adopted as an indicator in the assessment of changes in oxygen
content.19 BOLD-fMRI uses a 1.5T or 3.0T MRI system to scan with a
BOLD T2* sequence or transverse section R2* sequence. In image pro-
cessing, researchers can then calculate the R2* or T2* value by
measuring the mean value of the region of interest (ROI) using specific
measuring tools.19–24

4.2. Clinical application of BOLD-fMRI

BOLD has been widely used in studying the central nervous system
(CNS).25 There has also been progress in applying BOLD in studying
diseases of the kidney26 and prostate.27 The application of BOLD in HCC
is in its early stages, and there are not as yet any large-scale clinical trials
in this field.

Haque et al.20 hypothesized that BOLD-fMRI could show changes in
6

oxygen consumption in pig liver as well as in the human body by using
glucose as stimulant. Yang et al.21 studied normal rabbits as well as a
rabbit liver fibrosis model by using BOLD-fMRI scanning; they found that
the Rf value increased as the pathologic stage of fibrosis progressed, but
BOLD-fMRI was not useful for staging early fibrosis, nor could it stage or
grade fibrosis explicitly. Nevertheless, BOLD-fMRI is effective in diag-
nosing severe liver fibrosis and cirrhosis; it can also reflect the severity of
liver fibrosis to some extent, thus providing a new way of guiding clinical
treatment.

The use of BOLD-fMRI to evaluate the oxygen content of liver tumors
and facilitate differential diagnosis has good prospects for clinical
application. Rhee et al.22 used polyethylene alcohol particles to embo-
lize rabbit VX2 tumors by TACE and then used BOLD-fMRI to evaluate
the therapeutic effect. They found a significant decrease in the T2*
value after TACE, which is congruent with a decrease in the blood ox-
ygen saturation of liver tumors and reflects a decrease in abnormal
blood supply to tumor tissues. This indicates that the use of BOLD to
detect changes in the blood oxygen content of liver tumors after
embolization is feasible. Yu et al.23 applied pretreatment BOLD detec-
tion to 35 patients with benign liver tumors, 62 patients with malignant
liver tumors, and 12 patients with liver abscesses. The results showed
that the Tf value, lesion/muscle ratio, and lesion/spleen ratio in ma-
lignant liver tumors were all significantly lower than those in benign
liver lesions, suggesting that T2*-relevant values were useful in differ-
entiating benign versus malignant liver tumors and that the Tf value and
its lesion/muscle ratio can be used as a parameter in the diagnosis of
liver abscess. In 16 patients with primary HCC, Luo et al.19 used
BOLD-fMRI to detect oxygen before and after treatment with
high-intensity focused ultrasound. Two weeks after treatment, they
found a significant increase in the Rf value and a significant decrease in
the T2* value compared with pretreatment, implying that BOLD-fMRI
may be useful in evaluating oxygen uptake in primary HCC before
and after treatment with high-intensity focused ultrasound. Dai et al.24

compared the pre- and post-TACE BOLD-fMRI scans of 10 primary HCC
patients and further compared the BOLD scans of the 10 patients with
those of 10 healthy controls; they found no statistically significant dif-
ferences between the HCC patients and healthy controls in T2* values of
liver parenchyma, whereas primary HCC patients showed a significant
decrease in T2* values of the tumor tissues with rich blood supplies and
a significant increase in the T2* values of the liver tissues surrounding
the tumors. These findings showed that using BOLD-fMRI technique to
evaluate the pre- and post-TACE changes of oxygen content in both the
tumor and normal tissues of HCC patients is both feasible and practical.
The BOLD-fMRI technique has huge potential and can be of particular
value in following the progression and treatment of liver tumors.
However, it still requires further study via large-scale clinical trials.

4.3. Disadvantages of BOLD-fMRI

In the analysis of BOLD-fMRI scanning data, the R2* value is
measured in a manually selected region of interest, which is easily
affected by partial volume effect, the distribution of blood vessels, ne-
crosis and bleeding, the radiofrequency pulse parameter, and subjective
factors.21 This technique is also easily affected by plasma proteins, mo-
lecular diffusion, pH value, temperature, pixel size, and the direction of
blood and vascular flow. Furthermore, because iron, stored in the liver, is
a paramagnetic substance, it may also affect the results of BOLD-fMRI.

5. Summary

TACE is now the first-line treatment for middle and advanced liver
cancer; however, further studies evaluating its efficacy are needed.
BOLD-fMRI as a burgeoning noninvasive method for evaluating hypoxia
in tumors still has disadvantages. With further development, BOLD-fMRI
may find a place in clinical practice owing to its noninvasiveness and
high repeatability, and its application in evaluating the efficacy of TACE
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will also be improved increasingly.
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