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Viral infections are very common, and in most cases, the virus is well con-

trolled and eliminated by the immune system. Nevertheless, in some cases,

damage of the host tissue inflicted by the virus itself or by the elicited

immune response may result in severe disease courses. Thus, regulatory

mechanisms are necessary to control virus-induced and immune pathology.

This ensures immune responses are elicited in a potent but controlled man-

ner. In this review, we will outline how immune regulation may contribute

to this process. We focus on regulatory T cells and co-inhibitory receptors

and outline how these two regulatory immune components allow for and

may even promote potent but not pathologic immune responses. By

enabling a balanced immune response, regulatory mechanisms can thus

contribute to pathogen control as well as tissue and host protection.

Introduction

The main function of the immune system is to protect

the body from infections that could cause damage and

disease. To achieve this, the immune system uses sev-

eral layers of defense ranging from physical barriers to

specific recognition of individual antigens by the adap-

tive immune system. To cope with the diversity of

pathogens, the mammalian immune system has

evolved sophisticated recombination strategies to allow

for the generation of an immense repertoire of antigen

receptors, enabling it to recognize virtually all foreign

antigens [1]. This enables the immune system to recog-

nize pathogens it has never encountered before and

protect the individual from infections.

Generally, protection from infections is achieved

through elimination of the pathogen. However, clear-

ance of pathogens, particularly viruses that reside and

replicate inside the host’s cells, does not come without

a price and, under certain circumstances, dampening

of the immune response can be necessary to prevent

collateral damage even if this impairs pathogen clear-

ance (Fig. 1). On one hand, if viral infections are wide-

spread, full elimination of the pathogen will cause

massive tissue damage that could harm the host. In

these cases, coexistence with a virus may be preferable

for the individual. Indeed, this is a common occur-

rence and adults are estimated to carry approximately

8–12 chronic viral infections [2]. On the other hand, an

overabounding but often unfocused immune response

is the basis for the severe outcomes observed in

patients infected with influenza virus, hepatitis A virus,

respiratory syncytial virus (RSV), or the latest SARS-

CoV-2 virus causing coronavirus disease (COVID)-19

[3–6]. Thus, a focused and controlled immune response

is necessary to prevent a severe disease course. Several
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regulatory mechanisms are in place to ensure immune

responses are elicited in a controlled manner, including

the control of immune responses by regulatory T cells

(Tregs) and the fine-tuning of T cell activation through

co-inhibitory receptors.

In this review, we will highlight how these regula-

tory mechanisms of the immune system can play a

key role in establishing optimal conditions for host

defense despite the fact that they are generally asso-

ciated with inhibition of immunity. We will focus on

Tregs and co-inhibitory receptors and outline how

these two regulatory immune components allow and

may even promote potent but not pathologic

immune responses and thus contribute to tissue and

host protection.

Role of regulatory T cells in infections

Regulatory T cells are a distinct subset of CD4+ T

helper cells that play an essential role in maintaining

immune tolerance and homeostasis by restraining

autoimmune responses and excessive inflammation.

Characterized by expression of the transcription factor

Foxp3 and high levels of CD25 (IL-2Ra), Tregs have

been divided into thymically derived Tregs (tTregs)

and peripherally induced Tregs (pTregs) according to

their source [7,8]. Equipped with various inhibitory

receptors and immunosuppressive molecules and

cytokines, Tregs can efficiently inhibit the activation

and effector functions of both innate and adaptive

immune cells, and their dysfunction results in
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Fig. 1. Possible outcomes of anti-viral immunity. (Top) A balanced immune response following a moderate viral infection is cleared by a

controlled effector T cell response and restoration of homeostasis. (Middle) Infection with a high viral dose results in a stronger effector T

cell expansion, which clears the virus but also causes tissue damage due to the high dissemination of the virus or a dysregulated immune

response due to the impaired regulatory pathways. (Bottom) High viral loads may also result in upregulation of checkpoint inhibitors and

T cell exhaustion leading to a dampened immune response and viral persistence but less immune pathology.
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autoimmune diseases and can lead to uncontrolled

inflammation upon infection [9].

Even though Tregs play a critical role in limiting

pathologic inflammation, their excessive number or

function can also restrain the immune response

required to eradicate pathogens and may promote

their persistence (Fig. 2, left). For instance, persistence

of Leishmania major in the skin requires the presence

of CD4+CD25+ Tregs [10]. Similarly, reduction of

Tregs in herpes simplex virus (HSV) or Friend virus

infection markedly increases the virus-specific CD8+ T

cell response and the rate of viral clearance, while

adoptive transfer of Tregs impairs the CD8+ T cell

response and prolongs viral persistence [11,12]. Hence,

Tregs can contribute to the establishment of persistent

infections by suppressing CD8+ T cell responses.

Indeed, Tregs have been shown to promote CD8+ T

cell dysfunction and foster viral persistence in chronic

lymphocytic choriomeningitis virus (LCMV) infection

[13]. Similar correlations can be observed in chronic

viral infections in patients, where enhanced Treg fre-

quencies are associated with persistence of HIV, hep-

atitis A and B virus, and disease progression [14–16].

On the flip side, Tregs can dampen excessive and

persistent inflammatory responses induced upon infec-

tion, which, if uncontrolled, can have profound nega-

tive consequences for the host (Fig. 2, left) [4,6]. In

RSV, influenza and SARS-CoV-2 infections, excessive

immune activation contributes to severe disease

courses and severely ill patients show reduced Treg

numbers in peripheral blood [17–21]. RSV is the lead-

ing cause of respiratory infection in young children

throughout the world and is also gaining more atten-

tion as a pathogen of the elderly [22]. In RSV infection

models, Tregs with an activated phenotype have been

found to accumulate in the lung and draining lymph

nodes and their depletion increases disease severity,

likely due to enhanced TNF-a production by CD8+ T

cells [23]. Several molecules have been identified as

crucial mediators for Treg-mediated regulation but

during RSV infection, Treg-mediated cytotoxicity

appears to play a key role in limiting disease severity

[24]. Tregs found in the lungs of RSV infected mice

express high levels of the cytotoxic mediator granzyme

B and the degranulation marker CD107a. Further-

more, mice in which Tregs lack granzyme B show
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Fig. 2. Effects of Tregs in antiviral immune responses. During type 1 immune responses, such as those elicited upon viral infection, Tregs

can act as potent suppressors of immunity (left) and exhibit tailored immune control to properly guide effector responses (right). (Left) Tregs

specialize in response to IFN-c and IL-27 to co-express T-bet together with Foxp3 as well as the chemokine receptor CXCR3 and the co-

inhibitory receptors CD85k and Lag-3. Tregs show increasing responsiveness to IL-12 as the immune response progresses, which

eventually inhibits Treg function. Treg specialization in response to type 1 cytokines as well as high Treg numbers can result in excessive

suppression of effector responses, leading to viral persistence but also reduced immune pathology. (Right) Treg-mediated inhibition through

CTLA-4, IL-10, and TGF-b focuses the CD8+ effector T cell response and supports the differentiation of high affinity memory CD8+ T cells.
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enhanced weight loss and cell infiltration in the lung

upon RSV infection. Conversely, IL-2 immune com-

plex treatment, which expands Tregs and boosts their

granzyme B expression, reduces disease severity with-

out affecting viral clearance [24]. Tregs thus control

RSV-induced immunopathology but not viral persis-

tence through cytotoxicity-mediated immune suppres-

sion of CD8+ T cells. Whether Tregs employ the same

mechanisms to dampen disease severity upon influenza

infection and in COVID-19 patients or whether other

tissue protective functions may be dominant in these

settings remains to be determined.

Although the tissue protective role of Tregs in infec-

tions is well documented, it is still unclear whether this

effect is mediated through tTregs or whether pTregs

induced upon infection contribute to control of

immunopathology. We showed in a recent study that

pTregs generated in the periphery are critical for pre-

venting collateral colitis triggered by chronic LCMV

infection [25]. Nevertheless, given that pTregs generally

play an important role in maintaining intestinal home-

ostasis [26], it remains to be determined whether

pTregs induced upon infection also control immune

pathology at other sites.

Interestingly, in addition to suppressing excessive

immune responses and inflammation, Tregs also play a

direct role in tissue repair and maintenance. During

influenza infection, Tregs were shown to produce

amphiregulin, a ligand for epidermal growth factor

receptor, in response to stimulation with the alarmins

IL-33 and IL-18 and thereby facilitate tissue repair

[27]. Interestingly, this noncanonical Treg function is

independent of their classical suppressive activity and

does not affect the antiviral immune response during

influenza infection [27]. Increased Treg frequencies also

correlate with milder disease course in patients infected

with West Nile virus or Dengue virus, and hence,

Tregs likely also dampen immunopathology in humans

during viral infection [28,29]. However, whether this is

mediated through suppression of inflammation or

direct tissue protective effects will have to be addressed

in future studies.

Infection-induced changes in Tregs

Infections result in the activation of innate and adap-

tive immune cells and the induction of cytokines and

other effector molecules to combat the infection. At

the same time, the ongoing immune response also initi-

ates the specialization of Tregs. Intracellular pathogens

generally induce type 1 responses, where antigen pre-

senting cell-derived IL-12 drives the differentiation of

naive CD4+ T cells into type 1 T helper (Th1) cells.

Type 1 immune responses are dominated by IFN-c,
which not only promotes and mediates effector cell

responses but also directly acts on Tregs to induce

their functional specialization [30,31]. Even though

exposure to high concentrations of IFN-c can reduce

the suppressive capacity of Tregs [32], IFN-c (as well

as IL-27) also drives the specialization of Tregs into

type 1 Tregs, which are essential for effective suppres-

sion of Th1 responses (Fig. 2, left) [30,31,33]. Type 1

Tregs are characterized by the expression of the Th1

master regulator T-bet and the chemokine receptor

CXCR3. IFN-c and IL-27 signal through STAT1 to

induce T-bet expression, which in turn drives expres-

sion of CXCR3 [34]. Different from Th1 cells, type 1

Tregs show delayed and low expression of IL-12Rb2
upon infection and exposure to IFN-c and are thus

less responsive to IL-12, which reduces their suppres-

sive function [34]. At the early stage of infection, the

low responsiveness to IL-12 prevents type 1 Treg insta-

bility and loss of their suppressive function. With the

gradual acquisition of IL-12Rb2 expression over the

course of infection, Tregs increasingly respond to IL-

12, which then drives Treg contraction at the late stage

of infection [35].

At steady state, the T-bet+ CXCR3+ type 1 Tregs

are already present and gradually accumulate after

birth [33,34]. Similar to effector T cells, type 1 Tregs

are extensively expanded upon infections with patho-

gens eliciting a Th1 response in both lymphoid and

nonlymphoid organs and then contract again once the

infection is resolved [30,31,33,36,37]. With the mir-

rored expression of chemokine receptors, the special-

ized type 1 Tregs are thought to be optimally

equipped to migrate to the same inflammatory sites as

the effector Th1 cells and control local immune

responses efficiently. Although mice with Treg-specific

T-bet deficiency show mild or no Th1 cell activation at

steady state [33,38,39], they have a higher susceptibility

to induced autoimmunity and present with exacerbated

diabetes and insulitis in nonobese diabetic mice [40]

and enhanced leukocyte infiltration in the kidneys of

mice with induced nephritis [41].

In humans, CXCR3 can also mark a Th1-like subset

of memory CD4+CD25+CD127�/low Tregs that

expresses T-bet and high levels of FOXP3 and Helios

[42]. They can be generated from na€ıve Tregs under

Th1-polarizing conditions and maintain their stability

and suppressive activity in vitro. Similar to mouse

Tregs, IL-12 signaling can hamper human Treg func-

tion and induce IFN-c production [42–44]. In addition,

the type 1 Treg-specific molecules CD85k and gran-

zyme K are induced in human Tregs upon influenza

vaccination [36], which induces a Th1 response,
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suggesting human Treg cells are responsive to antigen

challenge and may also participate in immune regula-

tion during infections in humans.

Importantly, type 1 Tregs are also essential for

ensuring controlled Th1 immune response during

infections, as adoptive transfer of type 1 Tregs allevi-

ates pathology and prevents acute lethality of Toxo-

plasma gondii-infected IL-27 KO mice and

Mycobacterium tuberculosis infected scurfy mice

[30,31]. Type 1 Tregs thus seem to play a key role in

preventing pathology caused by excessive type 1

immune responses.

Tregs can promote viral clearance

Tregs are generally associated with suppression of

immunity and hence pathogen persistence [10,14]. Nev-

ertheless, in some situations, Treg depletion unexpect-

edly results in reduced antiviral immunity and

impaired virus clearance [45]. Studies in HSV infection

models revealed that Tregs modulate chemokine

expression in lymphoid organs and local tissues to pro-

mote the homing of effector cells to the site of infec-

tion [45]. Similarly, Tregs promote CD8+ T cell influx

into the lung upon RSV infection, while Treg deple-

tion results in a delayed viral clearance [46]. Interest-

ingly, in addition to regulating effector cell trafficking,

Tregs can improve the quality of the CD8+ T cell

response by limiting low-affinity CD8+ T cell expan-

sion [47]. Furthermore, type 1 Tregs play an essential

role in the establishment of CD8+ tissue resident mem-

ory T cells through providing TGF-b, a key cytokine

for the differentiation of CD8+ effector T cells into tis-

sue resident memory T cells [38,48]. Finally, Treg-

derived IL-10 and cytotoxic T-lymphocyte antigen 4

(CTLA-4) contribute to the transition from effector to

memory CD8+ T cell by insulating them from pro-in-

flammatory signals and promoting their quiescence

(Fig. 2, right) [49,50]. As such, transient depletion of

Tregs during CD8+ T cell contraction impairs CD8+

memory T cell generation [50]. Tregs thus play an

important role in promoting controlled T cell

responses upon viral infections and can thereby quite

unexpectedly enhance antiviral immunity (Fig. 2,

right). This positive effect of Tregs on anti-pathogen

immunity is in line with the emerging role of Tregs in

actively promoting tissue integrity [27,51].

Co-inhibitory receptors in viral
infections: an overview

Co-stimulatory and co-inhibitory receptor molecules

play a fundamental role in the regulation of the

immune response to viral infections. Their delicate and

balanced crosstalk is a major player in ensuring a con-

trolled immune response to pathogens. Co-signaling

molecules are cell surface glycoproteins that can mod-

ulate and adapt the immune response by positively

and negatively regulating T cell receptor (TCR) sig-

nals, thus affecting the priming, expansion, differentia-

tion, and functional maturation of the adaptive

immune system [52]. The first line of co-inhibitory

receptors includes CTLA-4 and programmed cell death

protein 1 (PD-1), which act as global regulators of the

threshold for T cell activation [53–55]. In addition,

there is a more recently discovered new generation of

co-inhibitory receptors, including T cell immunorecep-

tor with immunoglobulin and ITIM domains (TIGIT),

lymphocyte-activation gene 3 (Lag-3), and T cell

immunoglobulin mucin-3 (Tim-3) [56–59], which have

more subtle effects on T cell activation and seem to

act predominantly in peripheral tissues [59]. Among

other signals, T cell activation through interaction with

their cognate antigen induces the transient expression

of many co-inhibitory receptors [60–63]. This built-in

regulation of the TCR signal prevents sustained T cell

stimulation and thereby limits excessive T cell activa-

tion and tissue damage. During infections, co-in-

hibitory receptors are also highly expressed on

exhausted virus-specific T cells and activated Tregs

[36,64]. The concomitant upregulation of co-inhibitory

receptors with T cell activation allows for the induc-

tion of a potent but controlled immune response dur-

ing viral infection and re-establishment of immune

homeostasis upon resolution of the inflammatory state.

Moreover, co-inhibitory receptors such as TIGIT and

CTLA-4 additionally induce the secretion of anti-in-

flammatory cytokines such as IL-10 and TGF-b, which
additionally contribute to reducing tissue inflammation

and pathology [60,65].

The network through which T cell activation is kept

under control is very complex: It includes the interac-

tion of positive and negative co-signaling receptors

with several different ligands that, in turn, can be

shared between the stimulatory and inhibitory recep-

tors but with different affinities. For example, the co-

inhibitory receptor PD-1 interacts with its ligands PD-

L1 and PD-L2, while PD-L1 binds the co-inhibitory

receptors PD-1 as well as the co-stimulatory receptor

CD80 [55]. In addition, PD-1–PD-L1 and PD-1–PD-

L2 interactions can have distinct effects on pathogen

directed immune responses [66,67]. Similarly, TIGIT

shares its ligands CD155 (PVR) and CD112 with the

co-stimulatory receptor CD226 (also called DNAM-1)

but binds them with much higher affinity [56,68–70].
Hence, depending on the receptor and ligand
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expression pattern, multiple interactions and down-

stream effects on signaling pathways can be induced

(for reviews, see Ref. [71] and Ref. [72]). The network

of these molecules and their effects during viral infec-

tion are thus quite intricate but generally ensure the

induction of potent yet controlled immune responses

and the maintenance of tissue homeostasis.

Co-inhibitory receptors are highly upregulated and

implicated in persistent infections, such as, for exam-

ple, HIV or the LCMV model in mice [64,73]. In addi-

tion, they have been reported to be highly expressed

during excessive immune responses, such as those

observed in severe cases of influenza or COVID-19,

caused by infection with SARS-CoV-2, which has been

rapidly spreading globally over the course of the last

year [74,75]. Here, co-inhibitory receptors are induced

in response to the massive immune activation in order

to dampen the immune response and allow for return

to immune homeostasis [76]. In the following, we will

outline the role of co-inhibitory receptors specifically

in chronic infections and the induction of T cell

exhaustion as well as their newly suggested intrinsic

role in tissue protection and in limiting tissue pathol-

ogy during viral infections.

T cell exhaustion

Infections result in exposure of the immune system to

antigens for variable periods of time. In acute infec-

tions, effector T cells give rise to memory cells once

the virus is cleared. Chronic infection settings, instead,

are characterized by a prolonged and persistent expo-

sure of the immune system to antigens. This leads to

progressive loss of the effector functions of T cells,

driving them toward the so-called exhausted phenotype

[77]. T cell exhaustion was first defined in 1993 by

Moskophidis and colleagues as they showed impaired

cytotoxic T cell function upon chronic LCMV infec-

tion in mice [78]. Since then, exhaustion has been fur-

ther defined and associated with reduced proliferation

of T cells, decreased cytokine production and impaired

effector function that results from persistent exposure

to high levels of antigen [77]. Furthermore, exhausted

T cells are marked by expression of multiple inhibitory

receptors and a distinct transcriptional and metabolic

program [79–84]. Through this mechanism, the

immune response to overwhelming amounts of anti-

gen, such as those found upon chronic infection but

also in cancer and autoimmunity, is blunted to protect

the host from immunopathology but also allows for

pathogen persistence (Fig. 1) [85].

Overexpression of multiple co-inhibitory receptors,

such as PD-1, CTLA-4, Lag-3, Tim-3, TIGIT and

others, is a hallmark of exhausted T cells [64,86–88].
Their engagement by their respective ligands reduces T

cell activation and effector function and thereby acts

as a physiological mechanism to dampen the immune

response. Based on the fact that PD-1 is more highly

expressed on exhausted cells than other co-inhibitory

receptors, it was initially suggested as the driver of T

cell exhaustion [79]. However, further studies revealed

that while PD-1 is an important hallmark of T cell

dysfunction, it does not itself drive exhaustion [89].

Nevertheless, PD-1 and other co-inhibitory receptors

enforce the dysfunctional phenotype as blockade of

PD-1 alone or in combination with other co-inhibitory

receptors reverses exhaustion and revitalizes T cells,

enabling them to clear persisting viral infections

[64,73,79,90].

The impact of exhaustion on the strength of the

immune response is further highlighted by the success

of checkpoint therapy in cancer patients. Ligands of

some of these co-inhibitory receptors (or immune

checkpoints) are upregulated by cancer cells as a strat-

egy of immune evasion [91,92]. Additionally, parallel

to chronic infections, continuous tumor antigen expo-

sure results in exhaustion and upregulation of co-in-

hibitory receptors on tumor-specific T cells [93].

Targeting of PD-1 and CTLA-4 with checkpoint

blockers revitalizes exhausted T cells and enables

potent anti-tumor immunity [94,95]. This approach

has revolutionized cancer therapy and was recognized

with the Nobel prize in Medicine awarded to James P.

Allison and Tasuku Honjo in 2018 [96].

Exhaustion thus is a state of hypo-function of T

cells that might be needed to limit immune activation

and preserve antigen-specific T cells under chronic

stimulation but at the same time prevents pathogen

clearance and potent anti-tumor responses. Overall,

the negative consequences of T cell exhaustion in can-

cer and infectious diseases are clear, but it is important

to point out that in the context of excessive immune

responses upon chronic or widespread viral infections,

T cell exhaustion has a positive impact on the general

condition of the host as it prevents tissue damage and

immunopathology (Fig. 1) [78,97]. Indeed, clonal

exhaustion can act as a mechanism to protect the host

against severe immunopathology and mortality result-

ing from an excessive CD8+ T cell response [97–99].
For instance, infection with an intermediate dose of

LCMV induces limited T cell exhaustion resulting in

massive immunopathology and high mortality. In con-

trast, high dose infection results in strong T cell

exhaustion but only limited tissue pathology [98].

Hence, although extensive clonal exhaustion is associ-

ated with virus persistence [78], it can also be beneficial
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by reducing pathology and mortality caused by over-

whelming CD8+ T cell responses. Again, this also

becomes apparent in checkpoint therapy as it is often

accompanied by massive side effects resulting from

severe immunopathology, which can be even more

pronounced than the damage caused by the tumor

itself [100]. Thus, while T cell exhaustion allows for

virus persistence and tumor progression, it also has

positive effects through limiting tissue damage and

immunopathology. Finding the sweet spot for enabling

an effective immune response without causing immune

pathology still remains unsolved but deepening our

understanding of T cell exhaustion may prove to be a

good starting point to reach this goal.

Limiting immunopathology

Following viral infections, the immune response is acti-

vated to eliminate the pathogen. However, in wide-

spread infections, this targeting of infected cells will

also damage a considerable proportion of the infected

organ (Fig. 1). In addition, soluble inflammatory

mediators will not only act on infected but also on the

surrounding cells potentially causing tissue damage

[101,102]. Indeed, in several infectious settings, such

as, for example, LCMV or RSV, the anti-viral immune

response causes more damage to the host than viral

infection itself [6,103].

Many components of the immune system cooperate

to avoid hyper-activation of the immune system to

maintain self-tolerance but also limit peripheral tissue

damage during viral infection. Co-inhibitory receptors

and Tregs play an essential role in this regulatory

process and enable the immune system to limit viral

infection while still ensuring tissue protection. The

aforementioned co-inhibitory molecules, PD-1 and

TIGIT, are among the main players within this net-

work. As discussed in detail in the last section, these

co-inhibitory receptors play an important role in T

cell exhaustion and thereby facilitate viral persistence

but also limit tissue pathology. In addition, they also

dampen pathological immune responses independently

of T cell exhaustion. The PD-1 ligand PD-L1 is

widely expressed in peripheral, nonhematopoietic tis-

sues, suggesting a role of PD-1 in preventing tissue

inflammation and limiting tissue damage [55]. In con-

trast to CTLA-4, PD-1 deficiency in itself is not

lethal in mice [54,104]. However, PD-1-deficient mice

have a higher susceptibility to autoimmune diseases

and tissue damage [105,106]. In addition, the

immunopathology often observed as a side effect of

checkpoint therapy targeting the PD-1/PD-L1 path-

way in cancer patients is not only caused by an

overshooting of the revived tumor-specific T cells but

also by releasing the brakes on self-reactive T cells

that cause tissue damage [107,108]. This tissue protec-

tive function of PD-1 is also observed in infectious

settings as LCMV infection is lethal in PD-1-deficient

mice due to severe CD8+ T cell-mediated damage to

the blood vasculature [109]. PD-1 therefore seems to

not only limit immune pathology by contributing to

T cell exhaustion but also fulfill a direct protective

role in peripheral tissues.

In addition to limiting effector T cell function, co-

inhibitory receptor engagement has also been linked

to the production of anti-inflammatory cytokines,

such as IL-10. As such, PD-1 promotes IL-10 pro-

duction by myeloid cells and is highly expressed on

IL-10-producing T cells, including exhausted cells,

Tr1 cells, and Tregs [55,110,111]. Moreover, the

TIGIT pathway has been closely linked to IL-10 pro-

duction as TIGIT indirectly induces IL-10 production

in dendritic cells through engagement of its ligand

CD155 as well as directly inducing IL-10 in Tregs

[56,60]. TIGIT-induced IL-10 also plays a role in lim-

iting tissue pathology upon viral infection as TIGIT

engagement through an agonistic antibody reduced

pathology upon both acute LCMV and influenza

infection in an IL-10-dependent manner [112]. TIGIT

engagement resulted in significantly decreased liver or

lung damage, respectively, with a concomitant

increase in IL-10 expression. Interestingly, targeting

TIGIT during viral infection only restricted tissue

damage but had no effect on viral clearance. Con-

versely, enhanced tissue damage was observed in ful-

minant hepatitis if TIGIT was blocked [113], which is

in line with our own findings upon administration of

blocking anti-TIGIT antibody during LCMV infec-

tion [112]. Moreover, TIGIT was shown to play an

important role in maintaining immune tolerance and

preventing tissue damage in a model for chronic hep-

atitis and hepatocellular carcinoma [114]. These recent

studies uncover an active role of co-inhibitory recep-

tors in limiting immune pathology and their active

involvement in tissue protection during immune

responses to viral infection. As such, these co-in-

hibitory receptors seem to contribute to disease toler-

ance, a term that defines a defense strategy that

restricts tissue damage to maintain host fitness with-

out affecting the pathogen burden (reviewed in Ref.

[115] and Ref. [116]). The discovery of a possible role

of co-inhibitory receptors in limiting immune pathol-

ogy through a coordinated network of co-stimulatory

and co-inhibitory signals may even facilitate new

therapeutic approaches to treat infection-induced

immunopathologies.
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Concluding remarks

The immune system mostly responds to viral infections

by mounting a balanced and effective immune

response that allows for control and elimination of the

virus but causes limited, if any, tissue damage (Fig. 3).

Immune regulation may limit this process and allow

for viral persistence and potentially virus-induced

pathology. Nevertheless, it has become clear that these

regulatory processes can also have many beneficial

effects for the host such as limiting excessive immunity

to prevent immune pathology. Furthermore, Tregs and

co-inhibitory receptors ensure potent but controlled

immune responses that allow for a balanced immune

response. Finally, both Tregs and co-inhibitory recep-

tors have the intrinsic ability to promote tissue protec-

tion and repair to limit pathology and contribute to

disease tolerance.

While a healthy immune system is able to mount an

appropriate immune response upon most challenges,

infections with certain viruses such as influenza, RSV

or the latest SARS-CoV-2 can cause great harm, espe-

cially in young children or the elderly, where an imma-

ture or aging immune system is often not able to

mount a potent but balanced immune response. Har-

nessing the ability of regulatory receptors or cells to

promote tissue protection, while maintaining the abil-

ity of the immune system to clear the pathogen itself

could thus potentially bring great clinical benefit to

those at risk.
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