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Abstract: Recently, 1H NMR (nuclear magnetic resonance) spectroscopy was presented as a viable
option for the quality assurance of foods and beverages, such as wine products. Here, a complex
chemometric analysis of red and white wine samples was carried out based on their 1H NMR
spectra. Extreme gradient boosting (XGBoost) machine learning algorithm was applied for the wine
variety classification with an iterative double cross-validation loop, developed during the present
work. In the case of red wines, Cabernet Franc, Merlot and Blue Frankish samples were successfully
classified. Three very common white wine varieties were selected and classified: Chardonnay,
Sauvignon Blanc and Riesling. The models were robust and were validated against overfitting with
iterative randomization tests. Moreover, four novel partial least-squares (PLS) regression models
were constructed to predict the major quantitative parameters of the wines: density, total alcohol,
total sugar and total SO2 concentrations. All the models performed successfully, with R2 values
above 0.80 in almost every case, providing additional information about the wine samples for the
quality control of the products. 1H NMR spectra combined with chemometric modeling can be a
good and reliable candidate for the replacement of the time-consuming traditional standards, not
just in wine analysis, but also in other aspects of food science.

Keywords: wine; machine learning; spectroscopy; cross-validation; metabolomics

1. Introduction

As Hungary is one of the top ten wine producing countries in Europe with twenty-two
different wine regions, the quality control of Hungarian wines has utmost importance [1].

Wine is a complex beverage with numerous metabolites and other compounds that can
characterize the products. It is well-known that the amount of different metabolites and the
chemical profile of the wines depend on the environmental parameters of the region (soil,
temperature, wine variety etc.) [2,3]. In the past few decades, several analytical techniques
were developed for complex wine analysis, such as chromatographic and spectroscopic
methods. Nuclear magnetic resonance spectroscopy (NMR) (sometimes coupled with
isotope analysis) is one of the best ones for this task because of the high sensitivity for the
chemical characterization of the wine samples [4,5]. NMR spectroscopy became a common
tool for metabolic analysis of wine samples in the recent years [6,7]. Classification studies
based on 1H NMR spectra were dedicated even to the aging periods of the wines [8].

Some of the recent classification studies based on NMR spectroscopy are summarized
in Table 1, including 13C and SNIF-NMR (Site-Specific Natural Isotope Fractionation) ex-
amples, as well. It should be mentioned that in most cases, NMR-related classifications
employ different multivariate chemometric methods, such as principal component analysis
(PCA), linear discriminant analysis (LDA) or partial least-squares discriminant analysis
(PLS-DA) [9,10]. As machine learning algorithms have become an integral part of food
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analysis (foodomics), these tools are highly recommended for the quality control of wine
samples, as well [11]. Interestingly, quantitative NMR-based wine analysis is less common
in the literature than classification. There are only a few examples, mainly focusing on the
compounds involved in the fermentation process, or minor metabolites [12,13]. However,
these models can also contribute to the quality control of the wines (even in adulteration
and fraud detection). Moreover, with the measurement of qualitative and quantitative pa-
rameters together, NMR can provide a comprehensive evaluation of the samples in a faster
and easier way with the same precision and sensitivity compared to classical experimental
tools such as HPLC or UV-Vis spectroscopy-based measurements. Chemometric analysis
can be easily implemented in any NMR-based protocol for laboratories with continuous
wine analysis.

Table 1. Summary of the previous classification and regression studies based on nuclear magnetic resonance (NMR) spectra.

Type of
Analysis Method Features Number of

Samples Analytical Method Reference

regression PLS ethanol, glycerol, lactic acid,
methanol and malic acid 40 1H NMR [14]

regression Tchebichef moment-PLS glycerol, ethanol, lactic acid, malic
acid, methanol 40 1H NMR 3D spectra [13]

classification LDA, PLS-DA, FDA, ICA geographical origin, red wine
varieties, year of vintage 718

1H NMR and stable
isotopes

[15]

classification RF white wine varieties 679 1H NMR [16]
classification LDA wine varieties, geographical origin 107 1H NMR [17]

classification LDA, MANOVA wine varieties, year of vintage,
geographical origin 579 1H NMR [18]

classification LDA wine varieties, year of vintage 56 HPLC, Isotopic analysis,
1H NMR, 13C NMR [19]

classification PCA, SOM, CA addition of beet or cane sugar,
geographical origin 50 SNIF-NMR, Isotopic ratio [20]

classification PLS-DA wine varieties 58 HPLC, EEM, 1H NMR [21]

LDA = linear discriminant analysis, PCA = principal component analysis, CA = cluster analysis, PLS/PLS-DA = partial least squares
regression/discriminant analysis, RF = random forest, FDA = factorial discriminant analysis, ICA = independent component analysis,
MANOVA = multiway analysis of variance, SOM = self-organizing maps (Kohonen networks), EEM = emission-excitation fluorescence
spectroscopy.

Table 1 clearly shows that even though machine learning tools are widespread in food
science, in this specific task they are underrepresented. Moreover, the number of samples
is sometimes very small for a robust modeling, especially for prediction of the physical
properties or metabolic concentrations.

In our study, we present the complex chemometric analysis of a total of 403 wine
samples. Our aim was to examine the variety-based classification possibilities in the
case of white and red wine samples with a machine learning algorithm. Moreover, we
provide robust regression models for major and minor constituents and physicochemical
parameters of the wines such as (i) total alcohol concentration, (ii) density, (iii) total sugar
concentration and (iv) total SO2 concentration. This way, we will showcase the extended
use of NMR spectroscopy in the whole process of wine analysis.

2. Materials and Methods
2.1. Samples

The National Food Chain Safety Office (Nébih/NFCSO, Hungary) inspects all the
commercially available wine products in Hungary, and verifies their authenticity, and
the major quality and quantity parameters. The samples in the study were coming from
this activity. In total, 403 authentic wine samples were measured and evaluated based on
different aspects. Sample sets for modeling were compiled based on the availability of the
reference values. The number of the applied samples are summarized in Table 2.
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Table 2. Number of samples used in the training and test sets in the regression models.

Type of Method Model Training Set Test Set

PLS Regression

Density 278 71
Total alcohol concentration 299 71
Total sugar concentration 71 7
Total SO2 concentration 250 55

Classification
White wine varieties 102 26
Red wine varieties 97 25

The samples were diluted with 10% buffer in D2O with 3-(trimethylsilyl)propanoic
acid sodium salt (TSP) as an internal standard as pretreatment for the NMR measurements.
The pH of the samples was adjusted to 3.10. Finally, 600 µL of the sample solutions were
transferred to a 5 mm NMR tube.

2.2. Reference Measurements

Reference measurements for the four regression models were performed based on
OIV standards for wine analysis. Density measurements were performed at 20 ◦C by
laboratory density meter (based on oscillation) (OIV-MA-AS2-01A:R2012). The total alcohol
concentration was determined by an Alcolyzer (Anton Paar, Graz, Austria) bench-top
device based on a NIR measurement between 1150 and 1200 nm. The detection range was
between 0 and 30 v/v%. The total sugar concentration was measured by an HPLC standard
method (OIV-MA-AS311-03: R2016). The total SO2 concentration was measured with
an UV-Vis spectrophotometer (at 560 nm) after dialyzation through a gas-membrane to
separate the interfering compounds from the sample matrix (OIV.FV.823). The equipment
and reagents are summarized in detail in the abovementioned standard protocols.

2.3. 1H NMR Analysis and Spectral Preprocessing
1H NMR measurements were performed on a Bruker AVANCE III HD 400 MHz NMR

Spectrometer FoodScreener™ system (Bruker, Biospin, Rheinstetten, Germany) equipped
with a 5 mm PA BBI 400S1 H-BB-D-05 Z probe-head, operating at 9.4 T and observing 1H
at 400.15 MHz. A BTpH combined-pH titration unit was also added to the equipment.
The measurements were carried out at a temperature of 300 K. Water suppression with
an additional suppression of ethanol were applied. The sweep width (SW) was 20.5 ppm.
The spectra were aligned to the TSP signal (δ = 0 ppm). Exponential weighting function
was used (0.3 Hz line broadening) before Fourier transformation with Topspin software
3.5 (Bruker, Biospin, Rheinstetten, Germany). The suppression of ethanol and water peaks
was implemented in the pulse sequence (shown in Supplementary Materials Figure S1).
The NMR measurements were based on the work of Godelman et al. [22].

Spectral intensities were normalized to total intensity. The spectral preprocessing was
handled by Mestrenova 9.0 software (Mestrelab research, Santiago de Compostela, Spain).
The bucketing [15] of the spectra was carried out with 0.01 width regions between δ 0.5
and 9.99 ppm. The regions of ethanol (δ 0.98–1.35 ppm and δ 3.43–3.85 ppm) and water
(δ 4.78–4.86 ppm) satellites were excluded from the spectra. After the exclusion of these
regions, the final dataset contained 860 variables (the bucketed regions) with the scaled
spectral intensity values in the cells and the samples in the rows. A representative spectrum
(after preprocessing) of a wine sample is shown in Supplementary material Figure S2.

2.4. Chemometric Analysis

Extreme gradient boosting (XGBoost) algorithm was applied for the classification
of the wine varieties [23]. XGBoost is a very popular machine learning algorithm in
every field of data science. The method originated from the work of Friedman and his
coworkers [24,25]. Generally, tree-based ensemble methods combine more tree models
to provide a final, more effective model with better predictive performances; XGBoost is
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based on this idea as well. The basis of the method is the boosting of the trees, where the
sequentially built tree-based models are boosting the high-performance models amongst
them with the minimization of the errors. In gradient boosting, the minimization process
is based on a gradient descent algorithm. XGBoost is an optimized version, where tree-
pruning, parallelized tree building, missing value handling and optimization to avoid
overfitting are all included in the algorithm.

Classification modeling was carried out in the KNIME analytics platform (KNIME AG,
4.0.2, Zurich, Switzerland). An iterative double cross-validation workflow procedure with
internal and external test sets and fivefold randomized cross-validation (CV) (with stratified
class ratios) was developed for the effective validation of the models [26]. The performance
of the models was expressed by the accuracy and the weighted area under ROC (receiver
operating characteristic) curve values (AUC) [27]. The weightings were implemented
according to the number of samples in each class. The developed classification workflow
in KNIME is shown in Supplementary material Figure S3.

A traditional multivariate regression method, partial least squares regression (PLSR)
was applied in regression analysis [28]. The idea of PLS combines multilinear regression
(MLR) and principal component regression (PCR). Latent variables are calculated as the
linear combination of the original X variables and the Y dependent (target) variable. The
number of latent variables (PLS components) was selected based on two criteria: the
first local minimum of the root mean squared error of cross-validation (RMSECV), or if
it was not located, additional components were chosen only if the RMSECV value was
improved (decreased) by at least 2%. The number of components was maximized to twenty.
Randomized fivefold cross-validation (CV) with twenty iterations was used for internal
validation, and a separate test set (based on a chronological order of the samples) was
selected for each task before model building. MATLAB software (R2019a, Natick, MA,
USA) with PLS toolbox (Eigenvector research, Inc., Manson, WA, USA) was applied for
regression model building.

Genetic algorithm was used for variable selection both for classification and regres-
sion [29] to increase the predictive power of the models and to eliminate the possibility of
overfitting. Moreover, permutation test (randomization test) was applied with 50 iterations
for the verification of the models against overfitting. Outlier selection was applied for
regression, where samples outside the 95% confidence interval on the scatterplot of the
first two latent variables were excluded from further analysis.

3. Results and Discussion
3.1. Classification Results

Three wine varieties were applied in white wine classification, namely Chardonnay,
Sauvignon Blanc and Riesling, which were the most frequent groups amongst the samples.
In total, 128 samples were used for modeling. The dataset was split into internal (training)
and external (test) sets with an 80% split ratio and stratified sampling (preserving the ratio
of samples in the three groups in the internal and external sets as well). The training set
contained 102 samples. These samples were used in an iterative modeling workflow, where
the internal set was randomly selected in 50 iterations. This has resulted in 50 models,
and the mean of the predicted probability values was calculated for the final prediction
of the class memberships. This protocol is based on a commonly referred protocol, called
double cross-validation [26]. In the internal set, 70% of the samples were used for training
(calibration) and for a fivefold randomized cross-validation (also with stratified sampling).
The remaining 30% was used for internal test predictions. The workflow is summarized in
Figure 1. The original variables were selected by genetic algorithm, and the final number
of the used variables (buckets) was 84.
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Figure 1. Summary of the dataset splits for modeling.

The performance of the extreme gradient boosting (XGBoost) modeling for three
white wine varieties was determined in terms of the accuracy and weighted-AUC (area
under curve) values for the cross-validation (CV), internal test and external test set. The
results are summarized in Table 3 and the respective plots are presented in Figure 2. The
randomization (X-scrambling) test with 50 iterations showed that our final model was not
overfitted.
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The same procedure was applied for the three red wine varieties as well, namely:
Cabernet Franc, Merlot and Blue Frankish. These three groups were the most populated
amongst the used samples. Seventy-nine variables were selected from the original 860 with
a genetic algorithm for XGBoost modeling. The performance parameters of the final model
and the ROC curves of the validation set are summarized in Table 3 and Figure 3.
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Table 3. Summary of the performance parameters of the white and red wine classification.

Dataset Validation Accuracy AUC

White
CV 0.833 0.952

Internal test 0.814 0.948
External test 0.808 0.922

Red
CV 0.814 0.920

Internal test 0.804 0.921
External test 0.800 0.965

For both models, the accuracies were above 0.8 in each validation case, and the AUC
values were above 0.9. These results are especially convincing for the external set, where
the samples were entirely left out from the whole modeling phase. Figures 2 and 3 show
the n-class (three class) ROC curves, which highlight the consistently good results for
each class and validation set: in fact, all of the curves are close to the hypothetical perfect
classification (ROC curve going through the [0,1] point).

3.2. PLS Regression Results

Four models were built with PLS regression for (i) the density of the wine samples,
(ii) the total alcohol content of the samples, (iii) the concentration of sugar and (iv) the
total SO2 content of the wines. A genetic algorithm was applied to significantly reduce
the number of variables and increase the robustness and reliability. Validation consisted
of three parts: first, randomized fivefold cross-validation with 20 iterations was applied,
then external test samples were used to verify the prediction performance of the model
and finally, a permutation test with 50 iterations was applied to screen out the overfitted
models. We have to note that not all of the 403 samples were measured with all four
reference measurements, thus a subset of them was used for each model.

In the case of density prediction, 260 variables were selected for modeling by genetic
algorithm. The training set contained 278 samples and the external test set contained
71 samples. The external set was put aside prior to modeling; the samples were excluded
based on their exact chronological order. Six latent variables were sufficient for PLS
modeling (based on the global minimum of the RMSECV values). The performance of the
model was calculated for the training (calibration), the CV and the external test set. R2

values were 0.88 (training), 0.86 (CV) and 0.82 (external validation). The permutation test
with 50 iterations verified that the model was significantly different compared to the use of
random numbers. The root mean squared error of the training, CV and external test set
were 0.0011, 0.0012 and 0.0015 g/cm3, respectively. The measured and predicted density
values are presented in Figure 4A. For most samples, the density was below 1.00 due to the
ethanol concentration of the wines. On the other hand, wines with higher sugar levels can
have a higher density than water. The density distribution of external test samples covers
the applied range similarly as the training set samples.

For total alcohol concentration, 131 variables were selected by a genetic algorithm
for modeling. The training set contained 299 samples, while the external set included
71 samples. Randomized fivefold cross-validation was used in the same way as detailed
above. Twenty latent variables were used for the final PLS model. The permutation test
verified that the model was not overfitted. The R2 values for the training set, CV and
external test set were 0.92, 0.89 and 0.80, respectively. The root mean squared errors of
the training, CV and external validation were 0.24, 0.30 and 0.39 v/v%, respectively. The
predicted and measured values are plotted against each other in Figure 4B. The external
test samples were well-distributed in the evaluated range of the alcohol concentration.
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In the case of total sugar content, the number of measured samples was less compared
to the others, but it was still sufficient for building a robust model. In total, 71 samples were
used as the training set and 7 samples as the test set. The amount of external test samples
was less than in the previous cases, but we had to preserve the stability of the model
during training. A genetic algorithm has selected 259 variables out of 860 for modeling.
The validation of the PLS model was done in the same way as previously, and the final
model contained 10 latent variables. The permutation test showed that the model was not
overfitted and significantly better than the one used with random numbers. The measured
vs. predicted values are plotted in Figure 4C. The R2 values for the training, CV and
external test set were 0.95, 0.88 and 0.95, respectively. The root mean squared errors for
the training, CV and external test set were 4.99, 7.81 and 8.2 g/L, respectively. Most of the
measured wine samples had a total sugar content level below 30 g/L which is reasonable,
considering that there were more dry wines amongst the evaluated samples.

Our last PLS model was developed for the determination of SO2 concentration in
the wine samples. It total, 250 samples were used for the training of the model, and the
external test set contained 55 samples. The genetic algorithm selected 249 variables out of
860 for model building. The number of latent variables was 18. The appropriate robustness
and reliability of the model was verified by fivefold randomized cross-validation with
20 iterations and permutation tests with 50 iterations. The R2 values for the training, CV
and external test set were 0.88, 0.82 and 0.76, respectively. The root mean squared errors
of training, CV and external test set prediction (RMSEC, RMSECV and RMSEP) were
12.60, 16.40 and 16.17 mg/L, respectively. Figure 4D shows the predicted and measured
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concentrations plotted against each other. It is not surprising, that the models performed
slightly worse in external test validation, because SO2 is indirectly connected to 1H NMR
spectra, based on its well-known effects on the organic metabolites in wines (polyphenols,
enzyme reactivity, etc.) [30,31]. However, the model is still capable of predicting the SO2
concentration in wines with sufficient precision.

4. Conclusions

A comprehensive classification and regression analysis of Hungarian red and white
wines have been carried out. In total, 403 wine samples were measured by 1H NMR
spectroscopy, and the spectra were used for chemometric modeling. In the case of the
classification of white wines, the sorts of Chardonnay, Sauvignon Blanc and Riesling were
successfully predicted with the XGBoost algorithm combined with iterative double cross-
validation and the performance of the prediction was above 0.8 for accuracy and above
0.9 for AUC values, even for the external test set. A similarly good classification resulted
in the case of red wine varieties (Cabernet Franc, Merlot and Blue Frankish). The applied
classification workflow can be applied in quality controls of wines.

As for the regression models, four major quantitative parameters of the wine samples
were predicted: density, total sugar, total alcohol and total SO2 concentrations. The NMR
spectra of the samples provided sufficient information to develop robust and reliable
models with PLS regression. The goodness of the predictions (R2) was always above 0.80,
except for the external test set of the SO2 concentration determination. All the four models
are applicable for the substitution of the time-demanding reference measurement protocols.
Moreover, the chemometric models based on 1H NMR data could provide additional
information (qualitative and quantitative); thus, they are viable options for the replacement
of the traditional standards either in the wine analysis or in other endeavors of food science.

Supplementary Materials: The following are available online at https://www.mdpi.com/2304-815
8/10/1/64/s1, Figure S1: Pulse sequence for the 1H NMR measurements, Figure S2: Representative
1H NMR spectrum of a wine sample (after preprocessing), Figure S3: the applied KNIME workflow
for the classification of the wine samples.
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