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SUMMARY

EndoC-βH1 is emerging as a critical human β cell model to study the genetic and environmental 

etiologies of β cell (dys)function and diabetes. Comprehensive knowledge of its molecular 

landscape is lacking, yet required, for effective use of this model. Here, we report chromosomal 

(spectral karyotyping), genetic (genotyping), epigenomic (ChIP-seq and ATAC-seq), chromatin 

interaction (Hi-C and Pol2 ChIA-PET), and transcriptomic (RNA-seq and miRNA-seq) maps of 

EndoC-βH1. Analyses of these maps define known (e.g., PDX1 and ISL1) and putative (e.g., 

PCSK1 and mir-375) β cell-specific transcriptional cis-regulatory networks and identify allelic 

effects on cis-regulatory element use. Importantly, comparison with maps generated in primary 

human islets and/or β cells indicates preservation of chromatin looping but also highlights 

chromosomal aberrations and fetal genomic signatures in EndoC-βH1. Together, these maps, and a 

web application we created for their exploration, provide important tools for the design of 

experiments to probe and manipulate the genetic programs governing β cell identity and 

(dys)function in diabetes.

In Brief

EndoC-βH1 is becoming an important cellular model to study genes and pathways governing 

human β cell identity and function, but its (epi)genomic similarity to primary human islets is 

unknown. Lawlor et al. complete and compare extensive EndoC and primary human islet 

multiomic maps to identify shared and distinct genomic circuitry.

Graphical Abstract
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INTRODUCTION

Type 2 diabetes (T2D) is a complex disease characterized by elevated blood glucose levels. 

Ultimately, T2D results when pancreatic islets are unable to produce and secrete enough 

insulin to compensate for insulin resistance in peripheral tissues of the body. Individual 

genetic variation combined with dietary and environmental stressors contribute to disease 

risk and pathogenesis (Lawlor et al., 2017b; Mohlke and Boehnke, 2015). Genome-wide 

association studies have identified hundreds of genetic loci associated with T2D and related 

traits, but extensive work remains to identify the causal or functional variants, define their 

target genes, and determine the roles of these genes in β cell identity and function. Several 

studies have employed (epi) genomic and transcriptomic profiling of human islets (van de 

Bunt et al., 2015; Fadista et al., 2014; Varshney et al., 2017), purified b cells (Ackermann et 

al., 2016; Blodgett et al., 2015), and single-cell populations (Lawlor et al., 2017a; 

Segerstolpe et al., 2016; Xin et al., 2016) to identify changes in transcriptional regulation 

and gene expression associated with β cell (dys)function and T2D. However, the molecular 

and physiologic consequences of these alterations and their causal link to β cell failure and 

T2D pathogenesis remain largely undefined.

With the recent creation of an immortalized human β cell line, EndoC-βH1 (Ravassard et al., 

2011), islet researchers now possess a tool to experimentally interrogate the molecular 

mechanisms governing human β cell identity and (dys)function. Since the initial report of 

their creation, studies utilizing EndoC-βH1 to build insights into human β cell regulation 

and function have grown steadily. These studies have demonstrated that the physiology (e.g., 

response to glucose and insulin secretion) of EndoC-βH1 cells resembles that of their 

primary islet counterparts (Andersson et al., 2015; Krizhanovskii et al., 2017; Oleson et al., 

2015; Teraoku and Lenzen, 2017) and that EndoC-βH1 can be used to identify novel genes 

involved in human insulin secretion (Ndiaye et al., 2017). To motivate further functional 

studies of human β cell molecular biology and guide the development of cellular models 
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(e.g., for small molecule screening; Tsonkova et al., 2018), extensive characterization of the 

EndoC-βH1 molecular landscape is needed. Here, we completed multiomic profiling of 

EndoC-βH1 cells to extensively map (1) chromosomal (spectral karyotyping), (2) 3D 

epigenomic and/or chromatin looping (Hi-C [Belton et al., 2012] and ChIA-PET [Li et al., 

2014]), (3) histone modification (ChIP-seq), (4) chromatin accessibility (ATAC-seq) 

(Buenrostro et al., 2013), (5) genetic (dense genotyping and imputation), and (6) 

transcriptomic (RNA-seq and miRNA-seq) signatures of EndoC-βH1. With these high-

resolution maps, we sought to (1) identify gene regulatory programs central to human β cell 

identity and function; (2) nominate putative functional variants, putative molecular 

mechanisms, and target genes underlying T2D, glucose, and insulin genetic associations; 

and (3) build a publicly available web application for interactive, intuitive exploration of 

these data. By comparing these multiomic profiles to those generated from human islets in 

this study (Hi-C) and parallel studies (Khetan et al., 2018), we identified shared and unique 

cis-regulatory elements (cis-REs) and gene expression features. Taken together, these data, 

the insights gleaned from their analysis, and the research support provided by the web 

application serve as a high-content resource to enable and guide future functional assessment 

and molecular studies of β cell (dys)function.

RESULTS

Chromosomal and Genetic Heterogeneity in EndoC-βH1

To pursue a precise, comprehensive understanding of the regulatory networks that govern 

EndoC-βH1 and/or islet β cell identity and function, we first investigated the chromosomal 

complement and stability of this cell line using spectral karyotyping (SKY) (Figure 1A). 

SKY analysis of 14 EndoC-βH1 metaphase spreads revealed that the number of 

chromosomes was pseudo-diploid (n = 46–48) (Figure S1). Nearly all metaphases (n = 

13/14) had a normal XY sex complement, with only one having a missing Y chromosome, 

(metaphase 2; Table S1).

The most common autosomal aberrations in EndoC-βH1 included chromosome 20 gains (n 

= 11/14 metaphases) and chromosome 10 losses (n = 10/14). Both of these were 

independently detected as copy-number changes by comparative genomic hybridization 

(CGH) analysis of the cell line (Univercell Biosolutions, 2011). As summarized in Figure 

1B and Table S1, we also noted recurrent 10;17 (11/14 metaphases), 7;18 (10/14 

metaphases), 3;17 (7/14 metaphases), and 3;21 (7/14 meta-phases) chromosomal 

translocations as well as rarer events including 12;22 (metaphase 1) and 3;5 (metaphase 

S2.5) translocations and chromosome 12 losses (2/14 metaphases; Table S1). Together, these 

results emphasize that although EndoC-βH1 is largely diploid, vigilance and caution are 

warranted when completing and interpreting studies of genes or cis-REs on chromosomes 3, 

7, 10, 17, 18, 20, and 21. We advise investigators to specifically assess copy-number 

variation at loci of interest, particularly in the regions identified herein as unstable or 

variable among the population.

Lawlor et al. Page 4

Cell Rep. Author manuscript; available in PMC 2019 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Delineation of T2D- and Related-Metabolic-Trait-Associated GWAS SNP Genotypes in 
EndoC-βH1

Genome-wide association studies (GWASs) have identified hundreds of index and linked 

SNPs representing putative causal variants at hundreds of loci (Mahajan et al., 2018) 

associated with T2D genetic risk and changes in associated quantitative traits (e.g., fasting 

glucose, insulin, and proinsulin levels). We completed dense genotyping and imputation of 

EndoC-βH1 (STAR Methods) to determine the genotypes at ~2.5 million sites genome-wide 

(minor allele frequency, MAF >1%), including disease-associated SNPs. First, we 

overlapped EndoC-βH1 genotypes with National Human Genome Research Institute/

European Bioinformatics Institute (NHGRI/EBI) GWAS catalog (STAR Methods) single 

lead SNPs associated with glucose levels (fasting glucose), insulin levels (fasting insulin and 

proinsulin levels), type 1 diabetes (T1D), or T2D (MacArthur et al., 2017). EndoC-βH1 

exhibited homozygous non-risk genotypes at >50% of these SNPs (Figure 1C; Table S2). 

For ~20% of analyzed GWAS loci, EndoC-βH1 possessed a heterozygous genotype, 

including rs10830963 at the MTNR1B locus (chr11) and rs11920090 at the SLC2A2 locus 

(chr3) (Figure 1D; Table S2). Overlap with T2D-associated SNPs (n = 6,725 index and 

linked [R2 >0.8] SNPs, representing 403 unique signals) reported in the most recent meta-

analysis (Mahajan et al., 2018) revealed a similar genotype distribution, in which EndoC-

βH1 was heterozygous for ~30% (n = 119/403; Table S2) of T2D signals. These unique 

signals represent attractive candidates for (epi)genome editing to experimentally determine 

T2D-associated allelic effects on cis-RE use in human β cells.

The EndoC-βH1 Epigenome and Transcriptome Largely Resemble Those of Primary Islets 
but Retain Fetal or Progenitor Islet Cell Signatures

To identify the genome-wide location of EndoC-βH1 cis-REs (Figure 2A), we generated 

chromatin accessibility maps using ATAC-seq and defined chromatin states (ChromHMM) 

by completing and integrating ChIP-seq profiles for multiple histone modifications. ATAC-

seq identified 127,894 open chromatin sites in EndoC-βH1. Qualitative comparison of 

EndoC-βH1 open chromatin and chromatin state maps to those in primary human islets 

(Khetan et al., 2018; Varshney et al., 2017) revealed that the genomic architecture for well-

known islet-specific loci such as PCSK1 (Figure 2A), PDX1, and NKX6–1 was remarkably 

similar in both, suggesting EndoC-βH1 cells effectively recapitulate b cell cis-regulatory 

landscapes.

We further compared each ATAC-seq dataset to those from primary islets, sorted β or α 
cells, and other primary cell types, including adipocyte, skeletal muscle, peripheral blood 

mononuclear cells (PBMCs), and CD4+ T cells (STAR Methods). We identified a total of 

269,701 open chromatin regions (OCRs) across all cell types analyzed (STAR Methods). 

Among all studied cell types, EndoC-βH1 ATAC-seq profiles most resembled those of β 
cells (Figure 2B; Spearman R = 0.67), islets (Figure 2B; Spearman R = 0.64), and α cells 

(Figure 2B; Spearman R = 0.62) (Spearman’s test p values < 2.225 e−308).

Next, we compared OCRs and chromatin states to determine where and to what extent 

EndoC-βH1 chromatin states recapitulated those of human islets, their constituent cell types, 

or other metabolic tissues. EndoC-βH1, islet, and β cell OCRs were commonly enriched for 
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binding sites of transcription factors (TFs) implicated in islet cellular identity and function 

(Figure 2C; group III: FOXA2, FOXO1, RFX, NKX6–1, and PDX1). EndoC-βH1 OCRs 

also showed exclusive enrichment of sequence motifs that correspond to TFs reported to 

regulate pluripotency and pancreatic progenitor states (Figure 2C; group IV: HNF6, SOX2, 

and OCT4), perhaps reflecting the fetal origin and/or derivation of EndoC-βH1. At EndoC-

βH1 ATAC-seq OCRs, promoter annotations (from ChromHMM; STAR Methods) were 

widely conserved between EndoC-βH1 and other cell types, including islets as expected 

(Figure S2A; centered Pearson correlation >0.95; STAR Methods). In contrast, enhancers, 

which often encode cell-specific transcriptional regulatory elements (Heinz et al., 2015), at 

EndoC-βH1 ATAC-seq OCRs were most comparable between islet and EndoC-βH1 (Figure 

S2A, black point; centered Pearson correlation ~0.71).

To further assess similarities and differences between islet and EndoC-βH1 epigenomes, we 

investigated the proportions and features of chromatin states that were preserved or disparate 

between them. Unsurprisingly, a large proportion of promoters (11,907/19,482; ~61%) were 

preserved (Figure 2D) and contained motifs for a variety of TFs from the ETS family (e.g., 

ELK4, ETS, and ELF1; Table S3) with established roles in cellular differentiation, 

proliferation, and apoptosis (Findlay et al., 2013). Regions annotated as repressed in both 

islets and EndoC-βH1 were enriched for CTCF and BORIS binding motifs (Table S3), 

DNA-binding proteins known to bind and establish transcriptional insulators at chromatin 

territory boundaries. 16,351 out of 51,325 putative enhancers (defined via ChromHMM) 

were shared between islets and EndoC-βH1 (Figure 2D, blue box) and showed strong 

enrichment for general (ATF3, AP-1, and JUN) TFs (Figure 2E, blue dots; Table S3) relative 

to all enhancer regions. Interestingly, we observed a substantial number of EndoC-βH1 

enhancers that were annotated as quiescent or repressed in islets (n = 19,380) (Figure 2D, 

orange box). Relative to all enhancers, these sites were enriched for sequence motifs of TFs 

controlling pluripotency (OCT2 and NANOG) (Sokolik et al., 2015; Tantin, 2013), 

pancreatic development or lineage specification (HNF6 and ISL1) (Zhang et al., 2009), and 

β cell fate determination (PDX1 and NKX6–1) (Thompson and Bhushan, 2017) (Figure 2E, 

orange dots; Table S3). Based on these findings, it is possible that these regions may 

represent fetal or developmental cis-REs that are active in the fetal-derived EndoC-βH1 and 

inactive in adult islets composed of mature β cells. Nonetheless, a significant number of cis-

REs (n = 16,351) are conserved between EndoC-βH1 and human islets.

Next, we measured EndoC-βH1 gene expression using RNA-seq and compared it to RNA-

seq profiles of islets and other cell types and/or tissues (Figure S2B). As anticipated, the 

EndoC-βH1 transcriptome most strongly correlated with transcriptomes of islets (R = 0.87) 

and primary β cells (R = 0.86) among all tissues or cells tested. Of the 27,564 protein coding 

and/or large intergenic noncoding RNA (lincRNA) genes considered, 11,554 were expressed 

in EndoC-βH1 and 12,231 genes were expressed in islet (with 10,473 genes expressed in 

both). Similarly, EndoC-βH1 small non-coding RNA (miRNA) profiles resembled human 

islets more than other profiled tissues (adipose, skeletal muscle; Figure S2C) in principal-

component analysis (PCA). In particular, PC1 loadings were highly correlated with key islet 

miRNAs, including mir-375 (Table 1), a critical regulator of b cell mass and identity 

(Eliasson, 2017), while PC2 stratified primary tissue (adipose, skeletal muscle, and islet) 

from immortalized cells (EndoC-βH1). Consistent with the PCA, miRNA expression levels 
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in EndoC-βH1 and islets were highly correlated (R = 0.779; Figure S2D), and the vast 

majority of the most highly expressed miRNAs in EndoC-βH1 have been reported 

previously to be enriched in primary human β cells relative to whole islets (Table 1) (van de 

Bunt et al., 2013). Together, the chromatin accessibility, chromatin state, gene expression, 

and small RNA expression analyses reveal substantial conservation between the 

transcriptional regulatory and gene expression landscapes of EndoC-βH1 and primary islets.

Hi-C Profiling of EndoC-βH1 and Human Islets Reveals β Cell-Specific Chromatin Looping 
Domains

Next, we sought to determine spatial chromatin organization and identify chromatin domains 

both in EndoC-βH1 and islets using Hi-C. We generated Hi-C maps with ~6 billion reads 

each for EndoC-βH1 and human islet cells. The maps have 1.9 billion contacts and 1.5 

billion contacts, respectively. Using Juicer (Durand et al., 2016a) (STAR Methods), we 

identified 9,100, 2,580, and 9,448 Hi-C loops in EndoC-βH1, human islet, and GM12878 (a 

human lymphoblastoid cell line) (Rao et al., 2014), respectively. The reduced number of Hi-

C loops identified in primary islet may be attributed to lower unique read depth (~3.7 billion 

unique reads in islet cells versus ~4.7 billion unique reads in EndoC-βH1) (Table S1). 

Together, this represents 19,428 independent DNA loops. Aggregate peak analyses (APAs) 

(Rao et al., 2014) (Figure 3A, top plots) revealed that chromatin looping sites (anchors) were 

comparable in EndoC-βH1, islets, and GM12878 for the majority of (>90%) the total 

chromatin loops (n = 19,428/21,128). Consistent with previous studies (Rao et al., 2014; 

Vietri Rudan et al., 2015), CTCF and CTCFL DNA-binding motifs were overwhelmingly 

enriched (p < 1e-229 and p < 1e-114, respectively) among all Hi-C anchor sequences (Table 

S4), verifying that general 3D chromatin structures and loops are preserved between 

different mammalian tissues and cell types. Importantly, however, we detected 1,078 and 

117 chromatin loops that were exclusively present in EndoC-βH1 and islet, respectively, 

compared to GM12878 (Figure 3A, bottom plots).

To further study cell-specific loops, we subdivided EndoC-βH1 and GM12878 differential 

Hi-C loops into three classes based on the cell type specificity of the ATAC-seq OCRs they 

bring into physical proximity (Figure 3B): (A) loops between two non-specific OCRs, (B) 

loops between two cell-specific OCRs, or (C) loops between one cell-specific OCR and one 

non-specific OCR. Class B/C loops were classified as cell-specific and further studied. 

Comparison of EndoC-βH1-specific (n = 315) and GM12878-specific (n = 308) loops 

revealed a strong bias for cell-specific TF binding at anchor sites (Figure 3C). In EndoC-

βH1-specific anchors, we observed enrichment for TFs involved in β cell differentiation and 

function (NKX6–1, FOXA2, and FOXA1) (Thompson and Bhushan, 2017) as well as 

OCT4, a key regulator for early embryo development (Le Bin et al., 2014; Wu and Schöler, 

2014), while GM12878-specific anchors were enriched for TFs necessary for B cell 

proliferation and activation (MEF2C and NFAT) (Herglotz et al., 2016; Peng et al., 2001). 

Furthermore, genes adjacent to EndoC-βH1-specific anchors (STAR Methods) were most 

enriched (hypergeometric false discovery rate [FDR]-adjusted p value < 0.05) for islet-

associated gene ontology (GO) terms, including insulin secretion, glucose homeostasis, and 

neuronal or endocrine development (Figure S3A; complete results are shown in Table S4). 

For several genes affiliated with these GO terms, such as SLC30A8, which encodes a zinc 
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efflux transporter involved in zinc ion sequestering and insulin secretion (Mitchell et al., 

2016), we observed striking similarities in Hi-C contact frequencies between islet and 

EndoC-βH1 cells (Figure 3D). In contrast, we observed far fewer chromatin loops and large 

spans of polycomb-repressed and/or quiescent chromatin for this locus in GM12878 cells 

(Figure 3E).

Approximately 50% (4,543/9,100) of EndoC-βH1 loop anchors overlapped EndoC-βH1 

ATAC-seq OCRs, 44% (n = 1,987/4,543) of which occurred between promoter and enhancer 

elements (Figure S3B). Of these 4,543 loops, 587 were specifically present in EndoC-βH1 

yet absent in GM12878 cells (EndoC-βH1 specific); the remaining 3,956 were captured in 

both EndoC-βH1 and GM12878 (non-specific). We observed a substantially higher 

proportion (64%; 376/587) of EndoC-βH1-specific loops that overlapped EndoC-βH1 

stretch enhancers (Parker et al., 2013) (Fisher’s exact test p value < 4.23 e-42) compared to 

that of nonspecific loops (34%; 1,358/3,956). To examine the functional specificity of these 

loops, we overlapped chromatin state (ChromHMM) information from EndoC-βH1 and 27 

other tissue or cell types for all EndoC-βH1 Hi-C loops. For each cell type, we determined 

the percentage of Hi-C anchors that contained the same chromatin state as EndoC-βH1 

(STAR Methods). Islets had the highest percentage of chromatin states identical to) EndoC-

βH1 at Hi-C anchor sites among all tested tissues or cell types, especially promoter-enhancer 

loops (Figure S3C; orange line plot). These findings enumerate regions of cell-specific 

chromatin looping associated with islet development and function and indicate that EndoC-

βH1 forms cell-type-specific chromatin domains or territories highly similar to primary 

human islets.

EndoC-βH1 Pol2 ChIA-PET Identifies β Cell cis-Regulatory Hubs

To map functional cis-regulatory networks, we completed RNA polymerase (Pol2) ChIA-

PET (Li et al., 2017b) in EndoC-βH1, identifying 25,336 putative Pol2-mediated chromatin 

interactions. We further filtered these interactions, retaining only those for which both 

interacting sites (ChIA-PET anchors) overlapped EndoC-βH1 ATAC-seq OCRs, resulting in 

16,756 putative cis-regulatory interactions (STAR Methods). As shown in Figure 4A, the 

overwhelming majority of Pol2-mediated chromatin interactions linked active enhancer and 

active promoter chromatin states to themselves and each other. Importantly, ChIA-PET 

detected EndoC-βH1-specific interactions (Figure 4B; compare EndoC-βH1, GM12878, and 

K562 ChIA-PET tracks) coinciding with those previously reported in targeted 4C-seq 

analyses of human islets (Pasquali et al., 2014), including the ISL1 (Figure 4B; n = 8 sites 

denoted by asterisks) and PDX1 (Figure S4A; n = 9 sites) loci.

In addition to replicating interactions previously studied by 4C-seq in human islets, Pol2 

ChIA-PET identified hundreds of additional promoter-promoter and promoter-enhancer 

interactions genome-wide (Figure 4C; STAR Methods). These include extensive Pol2 

interactions in loci containing genes crucial for b cell identity and development such as 

PDX1, ISL1, NKX6–1, MAFB, and miR375 (Figure 4C, red text). As shown in Figures 4C 

and S4A, multiple interactions were detected between the PDX1 promoter and classically 

described essential PDX1 transcriptional enhancer sequences (n = 7/14 enhancer 

interactions), which contain binding sites for islet TFs such as FOXA2 (Gao et al., 2008; 
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Gerrish et al., 2004). During embryonic development, C57BL/6 mouse pancreata displayed 

a transition in expression of MafB to MafA (Nishimura et al., 2006), suggesting that these 

two factors are tightly involved in β cell differentiation and function. The high degree of 

connectivity in MAFB (versus that of MAFA) may therefore reflect the fetal or naive state of 

EndoC-βH1 cells. miR375, a small non-coding RNA, possessed multiple connections to 

active promoter and enhancer elements (Figure 4C; red text), consistent with its role as a 

post-transcriptional regulator of genes involved in β cell development or differentiation and 

insulin secretion or exocytosis (Eliasson, 2017).

Interestingly, INSM1, a gene necessary for pancreatic endocrine cell differentiation 

(Osipovich et al., 2014), harbored the most connections in EndoC-βH1 (n = 97 total 

interactions, n = 7 between active promoters and enhancers; Figure S4B). Other genes linked 

by ChIA-PET interactions are involved in insulin processing and secretion, including 

PCSK1, one of the prohormone convertases that catalyzes (pro)insulin processing; RIMBP2, 

whose protein mediates formation of a complex for polarized accumulation and exocytosis 

of insulin granules (Fan et al., 2017); RGS7, a critical regulator of muscarinic-stimulated 

insulin secretion (Wang et al., 2017); and CDC42, which is essential for second-phase 

insulin secretion (Wang et al., 2007). Additionally, genes implicated in the protection and 

management of stress were highly connected in EndoC-βH1 ChIA-PET interactions. 

Notable candidates were ZFAND2B, whose induction helps protect against human β 
amyloid peptide toxicity or accumulation in a C. elegans transgenic Alzheimer’s disease 

model (Hassan et al., 2009); SUSD4, a complement inhibitor and tumor suppressor that 

modulates endoplasmic reticulum stress; and CD59, which is required for mediating 

exocytosis events facilitating insulin secretion (Blom, 2017; Krus et al., 2014). Finally, 

TSHZ1, a PDX1 target gene whose expression levels were notably lower in human islet 

donors with T2D (Raum et al., 2015), harbored five links to active enhancer elements in 

EndoC-βH1, suggesting that perturbation of the cis-regulatory networks identified herein 

may contribute to T2D pathogenesis.

Finally, we sought to study to what extent the putative cis-regulatory networks detected in 

EndoC-βH1 may be preserved in islets and other cell types. Due to limited availability of 

ChIA-PET data in human islets and other relevant tissues, we decided to use the chromatin 

interaction sites determined by EndoC-βH1 ChIA-PET and compare the functional 

annotations (ChromHMM state annotations) at these loci across 27 different tissue or cell 

types. Overall, aggregate counts of these chromatin state interactions for each cell type were 

most similar between EndoC-βH1 and islet (Figure 4D, green bar plots; STAR Methods). 

ChIA-PET interactions between regions annotated as active promoters in EndoC-βH1 were 

similarly annotated as active promoters across the 27 other cell or tissue types (Figure 4D, 

Act. promoter 3 Act. promoter, red line plot; STAR Methods). In contrast, the majority of 

active enhancers interacting in EndoC-βH1 were marked as active enhancers only in human 

islets (Figure 4D, Act. Enhancer × Act. Enhancer, yellow line plot). Multidimensional 

scaling of all cell or tissue chromatin state annotations at EndoC-βH1 ChIA-PET interacting 

sites reaffirmed high similarity between EndoC-βH1 and islets (Figure S4C), consistent with 

strong conservation of active enhancer state annotations, as previously observed (Figure 4D, 

line plots). These results suggest that these interactions may represent β cell cis-regulatory 

hubs. Indeed, anchors for 41% of ChIA-PET interactions (6,904/16,756) overlapped islet 
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stretch enhancers, suggesting that these interactions may encompass key islet functional 

chromatin domains.

Integration of EndoC-βH1 Genotype and 3D Genomic Interaction Maps Identifies Allelic 
Imbalance at β Cell-Specific cis-REs

We and others have demonstrated that genetic variants, including those associated with T2D 

and other quantitative measures of islet (dys)function, can alter cis-RE use (chromatin 

accessibility quantitative trait loci [caQTL]) (Khetan et al., 2018) and target gene expression 

(expression quantitative trait loci [eQTL]; van de Bunt et al., 2015; Fadista et al., 2014). 

Recently, approaches have been used to assess allelic effects on these molecular features at 

heterozygous sites within a single sample. We applied these allelic imbalance (AI) analyses 

in EndoC-βH1 to identify genetic variants that alter b cell cis-REs and target gene 

expression. To identify instances of AI in EndoC-βH1, we examined the allelic bias of ~2 

million heterozygous SNPs (STAR Methods) within OCRs (ATAC-seq peaks), active 

enhancer elements (H3K27ac peaks), or expressed genes (RNA-seq; Figure 5A). Less than 

10% of all SNPs occurring in OCRs and enhancer elements showed significant AI (Figure 

5A; part I; FDR <10%). Approximately 25% of SNPs exhibited gene expression AI (Figure 

5A). When considering variants with adequate coverage in both EndoC-βH1 ATAC-seq 

OCRs and H3K27ac-marked enhancer regions (n = 1,734 SNPs), we noted a positive 

correlation (R = 0.2) in the corresponding AI ratios (Figure S5A), suggesting the potential 

for coordinate regulation of chromatin accessibility and histone modification at these cis-

regulatory sites. In total, 119 out of 403 T2D-associated signals (~30%) overlapped EndoC-

βH1 cis-REs (Table S2); 34 out of 119 of these unique signals (~29%) were heterozygous in 

EndoC-βH1 and potentially amenable to allelic analyses. GREGOR (Schmidt et al., 2015) 

enrichment analysis of these same 403 signals identified significant overlap (p value < 1 e-7) 

in EndoC-βH1 ATAC-seq (n = 67 SNPs) OCRs. Moreover, 24,102 out of 126,013 of T2D-

associated 99% genetic credible set SNPs (19%) (Mahajan et al., 2018), representing 327 

out of 380 distinct association signals (86%), overlapped an EndoC-βH1 ATAC-seq OCR 

and/or H3K27ac peak. These overlaps suggest that EndoC-βH1 may be a useful tool to 

dissect the function of cis-REs implicated in T2D genetic risk.

Next, we leveraged information from EndoC-βH1 ChIA-PET interactions to determine 

potential allelic effects on cis-regulatory networks and target gene expression. To achieve 

this, we (1) identified SNPs overlapping enhancers with AI (H3K27ac and/or ATAC-seq), 

(2) determined if the SNP-containing enhancer linked (via ChIA-PET) to the transcription 

start site (TSS) of a gene, and (3) assessed if SNPs in the promoter or transcribed region of 

the predicted target gene exhibited AI in H3K27ac and/or ATAC-seq or RNA-seq, 

respectively (Figure 5B). For example, rs2294805 exhibited AI in an EndoC-βH1 enhancer 

downstream of SAMD5 and was linked to this gene’s TSS by a ChIA-PET interaction 

(Figure 5C). Notably, 5 out of 11 transcribed SAMD5 SNPs exhibited significant AI in 

RNA-seq gene expression data. In all cases, one parental allele (denoted in blue) was 

consistently over-represented in both H3K27ac ChIP-seq and RNA-seq data. Although the 

exact role of SAMD5 in human islets has not been described, expression of this gene is high 

in adult α cells but absent in adult β cells (Lawlor et al., 2017a; Segerstolpe et al., 2016; 

Wang et al., 2016). SAMD5 has been recently identified as a marker of peribiliary gland 
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(PBG) cells (Yagai et al., 2017), and PBG stem cells have been documented to differentiate 

into glucose-responsive pancreatic islets (Cardinale et al., 2011). These data identify 

SAMD5 as one of the most highly connected loci in EndoC-βH1 (Figures 4C and S4B; n = 

35 ChIA-PET connections between the gene and active enhancers; n = 5 interactions to other 

active promoters) and highlight a potential cis-regulatory hub for fetal β and islet cell 

development. Further manipulation of the cis-regulatory network in this locus may provide 

greater insight into its putative roles in islet cell differentiation and function.

Overall, 2,500 out of 5,515 (~45%) and 8,794 out of 43,492 (~20%) of heterozygous SNPs 

passing coverage thresholds (STAR Methods) in ATAC-seq and H3K27ac cis-REs, 

respectively, overlapped a ChIA-PET anchor (Figure 5D, bar plots). For both datasets, <5% 

of SNPs demonstrated significant AI. AI SNPs were present in active promoter and enhancer 

regions of the genome (Figure 5D, pie charts marked with blue arrows). Enhancers exhibited 

enriched AI compared to promoters. For example, in the ATAC-seq data, 49.5% of AI SNPs 

occurred in enhancers compared to 30.9% of non-AI SNPs (Fisher’s exact test p value = 

0.0002824 for comparison of enhancer versus promoter counts). Similarly, 54.6% of 

H3K27ac AI SNPs occurred in enhancers compared to 43% of non-AI SNPs (Fisher’s exact 

test p value = 3.343e-05 for comparison of enhancer versus promoter counts) (Figure 5D).

Enhancers govern cell-type-specific gene expression patterns (Heinz et al., 2015). We 

identified 50 and 185 enhancer SNPs with significant ATAC-seq and H3K27ac AI, 

respectively (Figure 5D, yellow portion of pie charts marked with blue arrows). We used 

ChIA-PET interactions to link enhancers showing AI to promoters of the genes they might 

regulate (Table S5). This identified enhancer-promoter links for 21 out of 50 (42%) ATAC-

seq and 91 out of 185 (~49%) H3K27ac AI enhancer SNPs, respectively. To assess if 

observed allelic effects on EndoC-βH1 cis-regulatory networks extended to primary islets, 

we examined the eQTL direction of effect of these SNPs on steady-state expression of their 

predicted target genes in human islets (Varshney et al., 2017). Islet eQTL Z scores (STAR 

Methods) were most correlated to the H3K27ac allelic ratio at SNPs where the human islet 

eQTL target gene (i.e., the gene whose expression in human islets is influenced by a genetic 

variant) matched that of the EndoC-βH1 ChIA-PET target gene (i.e., the gene linked to the 

enhancer by EndoC-βH1 ChIA-PET as depicted in Figure 5B) (n = 42/91) (Figure S5B, red 

points; R = 0.32), as opposed to those genes in the locus that were not linked to the enhancer 

by ChIA-PET (Figure S5B, gray points; R = 0.17).

Importantly, these analyses suggest that integrated EndoC-βH1 omics analyses provide 

molecular insights into diabetes genetics (e.g., GWAS). For example, T2D-associated index 

and 99% credible set SNP rs57235767, for which the “C” risk allele exhibited reduced 

EndoC-βH1 H3K27ac counts, exhibited consistent downregulation of the ChIA-PET-

predicted target gene C11orf54 (Figure S5B, asterisk) expression in islet cohorts (Fadista et 

al., 2014; Varshney et al., 2017). Similarly, the T2D risk allele of rs3807136, a 99% credible 

set SNP in linkage disequilibrium (r2 > 0.8) with the index and 99% credible set SNP 

rs2268382, displayed a higher proportion of H3K27ac counts in EndoC-βH1 and increased 

expression of the predicted target gene, CEP41. These human islet SNP-gene interactions 

(that are also recapitulated in EndoC-βH1 cells) represent high-priority targets for 
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(epi)genomic modification and should assist efforts to decrypt the genes contributing to T2D 

pathogenesis.

DISCUSSION

Here, we report extensive multiomic mapping and integrated analysis of cytogenetic 

(karyotyping), large-scale chromatin structural conformation (Hi-C), cis-regulatory networks 

(ChIAPET), histone mark (ChIP-seq), chromatin accessibility (ATAC-seq), genetic 

(genotyping), and gene expression (RNA-seq) information in EndoC-βH1 human β cells. 

For convenient and interactive browsing of this data, we have created an R shiny web 

application (Chang et al., 2018) available at https://shinyapps.jax.org/endoc-islet-multi-

omics/. These data and the browser application should serve as a resource for future studies 

to explore the complex β cell regulatory programs uncovered in this study and guide targeted 

studies of regulatory networks, genes, and pathways of interest.

SKY revealed chromosomal heterogeneity among individual cells in the EndoC-βH1 

population. These included copy number variation, such as chromosome 20 gain and 

chromosome 10 loss, that has been identified independently by array CGH analyses, as well 

as previously unappreciated structural alterations, including chromosome 10:17 and 3:21 

translocations, that are frequent within the population. Consistent with SKY, we observed 

enhanced contact frequency between chromosomes 3 and 21 in EndoC-βH1 Hi-C maps 

(Juicebox [Durand et al., 2016b]; http://aidenlab.org/juicebox/?juiceboxURL=http://bit.ly/

2NxWcDp), suggesting that these two technologies may complement one another to identify 

cell line abnormalities. As evidenced by other less prevalent chromosomal aberrations 

among the population, it is possible that this cell line may continue to evolve with continued 

passaging. Thus, caution should be taken, and these aberrations should be considered, in 

future (epi)genome editing or EndoC-βH1 molecular and functional experiments involving 

genes or regulatory elements on these chromosomes.

Overall, comparative analyses of omics profiles indicate substantial similarity among 

EndoC-βH1, islet, and primary β cell transcriptomes (Figure 2B; Pearson R > 0.86). EndoC-

βH1 open chromatin profiles were modestly correlated with islet (R = 0.64) and primary β 
(R = 0.67) cells, highlighting potential drift between the cell line and primary islet cells at 

the level of chromatin accessibility. This includes ~19,000 putative EndoC-βH1 enhancers 

annotated as quiescent or polycomb repressed in human islets. Interestingly, these sites 

contain potential binding sites for TFs with important roles in β cell development and 

pancreatic precursor fates and functions (e.g., NKX6–1, PDX1, ISL1, and HNF6) 

(Thompson and Bhushan, 2017) and pluripotency (e.g., NANOG and OCT2) (Sokolik et al., 

2015; Tantin, 2013). Thus, these discordant features may reflect the fetal nature of EndoC-

βH1 cells, their transformed state, or both.

Using Hi-C to map higher-order chromatin structure in EndoC-βH1 and a corresponding 

map from a human islet donor, we defined islet and β cell chromatin domains and territories. 

Consistent with previous findings (Rao et al., 2014), the overall spatial chromatin 

organization was similar across EndoC-βH1, islet, and GM12878 cells (Figure 3A; top 

panel), and all Hi-C anchors were enriched for TFs with general roles in chromatin 
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organization (e.g., CTCF and BORIS; Table S4). Importantly, however, Hi-C analyses also 

identified ~1,078 islet and β cell-specific chromatin domains, several of which were evident 

in both EndoC-βH1 and primary human islets (Figure 3). These cell-specific chromatin 

territories were enriched for β cell-specific TFs (Figure 3C) and brought into close physical 

proximity genes linked to islet-associated biological process GO terms (Figure S3A) 

compared to those of GM12878.

Here, we also report a Pol2 ChIA-PET map of chromatin interactions in EndoC-βH1, which 

further refined chromatin territories to reveal functional EndoC-βH1 cis-regulatory 

networks. In addition to validating chromatin interactions previously reported in 4C-seq 

analyses at select loci in human islets, Pol2 ChIA-PET identified hundreds of interactions 

genome-wide between active promoter and enhancer regions potentially involved in the 

regulation and transcription of dozens of β cell-specific loci (Figures 4A–4C). Comparison 

of Pol2 ChIA-PET interaction locations in EndoC-βH1, GM12878, and K562 revealed that 

the overwhelming majority of interactions at these loci were unique to EndoC-βH1. Due to 

high cell input requirements (~100 million cells) for current ChIA-PET library construction 

protocols (Li et al., 2017b), we were unable to validate these findings in human islets. 

However, consistent with our previous observations between islet and EndoC-βH1 Hi-C 

maps (Figure S3C), we noted that chromatin states of ChIA-PET interaction nodes in 

EndoC-βH1 were most conserved in islet (Figure 4D, Figure S4C) compared to those of 27 

other cell or tissue types. Thus, the cis-regulatory programs we define for EndoC-βH1 

should provide valuable insights into important transcriptional hubs that drive islet and b cell 

identity and function.

GWASs have identified hundreds of loci that contribute to genetic risk of T2D and other 

quantitative measures of islet dysfunction, such as glucose, insulin, and proinsulin levels 

(Fuchsberger et al., 2016; Mahajan et al., 2018). We and others have linked a subset of SNPs 

and loci to altered cis-RE activity and steady-state islet gene expression (van de Bunt et al., 

2015; Fadista et al., 2014; Khetan et al., 2018; Varshney et al., 2017). For the majority of 

loci, challenges remain to define the (1) causal or functional SNP, (2) determine its 

molecular effect on cis-RE activity, and (3) identify the putative target gene(s). By 

combining our dense genotype and 3D chromatin interaction (ChIA-PET) networks in 

EndoC-βH1, we sought to identify SNPs with imbalanced expression or cis-RE use and link 

them physically with their target genes. Using this approach, we linked 91 out of 185 

(H3K27ac imbalanced) and 21 out of 50 (ATAC-seq imbalanced) SNPs to potential target 

genes (e.g., rs2294805 to SAMD5 in Figure 5B). Our ability to assess chromatin interactions 

between diabetes-associated SNPs and their target genes was modest. Nonetheless, we 

identified two candidate SNPs (rs57235767, rs3807136) that demonstrated consistent 

directions-of-effect on measures of cis-RE activity (e.g., H3K27ac) and target gene 

expression in EndoC-βH1 and human islets (Figure S5B) (Varshney et al., 2017). Several 

factors could underlie the modest frequency of diabetes-associated GWAS SNPs linked by 

Pol2 ChIA-PET interactions: (1) limited sensitivity of ChIA-PET technology, (2) condition 

or disease specificity of GWAS SNP effects on cis-RE use or activity, or (3) condition-

specific Pol2 interactions between cis-REs and their target genes.
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In summary, this study provides an integrated multiomic analysis of EndoC-βH1, a human 

pancreatic β cell line with increasing utility and importance to the β cell and diabetes 

communities. Integrated analysis of chromatin interaction and gene expression information 

identified chromosomal territories and cis-regulatory networks governing β cell identity and 

function. Overall, comparison of EndoC-βH1 (epi)genomic and 3D chromatin profiles with 

those of human islets verified common signatures of gene expression, TF binding, and cis-

RE use. These analyses also highlighted genomic discrepancies between EndoC-βH1 and 

their primary cell counterparts, possibly reflecting the fetal or embryonic origin of the cell 

line and/or its transformed state. Integration of EndoC-βH1 cis-regulatory maps with 

genome-wide genotype information nominated target genes and identified SNP allelic 

effects on transcriptional regulatory networks, including a subset of T2D-associated SNPs. 

Together, the data and tools provided here should serve as helpful guides for rational design 

of targeted and hypothesis-driven studies of candidate genes, pathways, or cis-REs to 

determine their roles in β cell (dys)function and diabetes.

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Michael Stitzel (michael.stitzel@jax.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

EndoC-βH1 cell culture and processing—EndoC-βH1 cells provided by EndoCells/

INSERM were cultured and passaged as previously described (Ravassard et al., 2011). 

Briefly, cells were seeded at a density of approximately 600,000 cells/cm2 on tissue culture-

treated plates pre-coated overnight with extracellular matrix (Sigma) and fibronectin 

(Sigma) in EndoC-βH1 complete medium. Cells were passaged approximately every 7 days. 

Cells were harvested at various passages and distinct sites (e.g., NHGRI, JAX-GM) for 

karyotyping, genotyping, ATAC-seq, ChIP-seq, RNA-seq, Hi-C, and Pol2 ChIA-PET 

analyses.

Human islet acquisition and procurement—The single human pancreatic islet sample 

(obtained from a cadaveric donor; UNOS ID: ADAC418; sex: Female; age: 43 years old) 

used in this study was obtained from the National Disease Research Interchange (NDRI) and 

processed according to NHGRI institutional review board-approved protocols. The islet was 

shipped overnight from the distribution center. On receipt, we pre-warmed the islet to 37°C 

in shipping media for 1–2 h before harvest; ~50,000 islet equivalents (IEQs) were harvested 

for Hi-C.

METHOD DETAILS

Spectral karyotyping (SKY)—Spectral karyotyping of EndoC-βH1 was completed to 

identify structural and numerical chromosome aberrations using standard procedures as 

previously described. In brief, EndoC-βH1 cells were cultured to 80% confluence. 

Metaphase spreads were prepared from these cells after mitotic arrest with Colcemid (0.015 

mg/mL, 16 to 18 hours) (GIBCO, Gaithersburg, MD), hypotonic treatment(0.075 mol/L 
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KCl, 20 minutes, 37°C), and fixation with methanol–acetic acid (3:1). Commercial SKY 

probe and software (Applied Spectral Imaging INC, Carlsbad, CA) was used to identify and 

visualize the individually colored chromosomes obtained from two slides’ worth of 

metaphase spreads from the same passage.

Genotyping, imputation, and phasing of EndoC-βH1—EndoC-βH1 was genotyped 

with the HumanOmni2.5–4v1_H BeadChip Array (Illumina, San Diego, CA, USA). We 

mapped the Illumina array probe sequences to the hg19 genome assembly and excluded 

likely problematic ones as described in (Varshney et al., 2017).

We applied the following filtering criteria to remove additional SNP probes prior to pre-

phasing of the array genotypes: 1) we assessed allele frequency of the SNPs using combined 

genotypes of EndoC-βH1 and 163 other samples that were genotyped on similar chips; and 

2) we removed SNPs with an alternate allele frequency difference with 1000G EUR samples 

> 20%, or palindromic SNPs with a minor allele frequency > 20%, genotype missingness > 

2.5%, Hardy-Weinberg p value < 10−4. At the end, a total of 1,851,388 SNPs were used in 

pre-phasing and imputation.

We performed pre-phasing and imputation separately on autosomal and chrX markers using 

the Michigan Imputation Server (Das et al., 2016). We used Eagle v2.3 (Loh et al., 2016) for 

autosomal chip marker pre-phasing and SHAPEIT v2.r790 (Delaneau et al., 2011) for chrX 

markers. We subsequently used minimac3 (Das et al., 2016) for imputation of missing 

genotypes using the Haplotype Reference Consortium (HRC version, hrc.r1.1.2016) panel 

(McCarthy et al., 2016).

GWAS SNP pruning—Lists of reference SNP identifiers were obtained from the NHGRI-

EBI Catalog of SNPs (https://www.ebi.ac.uk/gwas/; accessed January 19th, 2017) for Type 2 

diabetes, Type 1 diabetes, fasting glucose traits, fasting insulin traits, and proinsulin level 

categories. For each disease category, GWAS SNPs were pruned using PLINK version 1.9 

(Purcell et al., 2007) to identify SNPs in high linkage disequilibrium (LD) (R2 > 0.8) using 

the parameters “–maf 0.05–clump–clump-p1 0.0001–clump-p2 0.01–clump-r2 0.8–clump-

kb 1000” to ensure that each variant haplotype was tested only once during the enrichment 

analysis. For each SNP pair in LD (R2 > 0.8) the SNP with the least significant p value was 

discarded. T2D-associated SNPs from (Mahajan et al., 2018) were obtained and pruned 

using the same methodology described above.

ATAC-seq—EndoC-βH1 ATAC-seq libraries were prepared as previously described 

(Varshney et al., 2017) and sequenced on an Illumina NextSeq 500 with 2 3 125 bp cycles. 

Raw sequence fastq files for adipocyte tissue, bulk islet (Khetan et al., 2018), islet beta and 

alpha (GSE76268) (Ackermann et al., 2016), peripheral mononuclear blood cells (PBMC) 

(Ucar et al., 2017), skeletal muscle (Scott et al., 2016), GM12878 and CD4+ T cells 

(GSE47753) (Buenrostro et al., 2013) were obtained from their corresponding studies. 

Paired-end ATAC-seq reads were quality trimmed using Trimmomatic version 0.33 (Bolger 

et al., 2014) and parameters “TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36.” 

Trimmed reads were aligned to human genome (hg19) using BWA version 0.7.12 (Li, 2013), 

specifically using the bwa mem –M option. Duplicate reads were removed using 
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“MarkDuplicates” from Picard-tools version 1.95 (The Broad Institute, 2013). Quality of 

aligned reads were examined using Qualimap version 2.2.1 and default parameters “bamqc –

bam –gd hg19.” (Okonechnikov et al., 2016). After preprocessing and quality filtering, 

peaks were called on alignments with MACS version 2.1.0 (Zhang et al., 2008) using the 

parameters “-g ‘hs’–nomodel–keep-dup all–broad–broad-cutoff 0.05 -f BAMPE.” Peaks 

located in blacklisted regions of the genome were removed. Remaining overlapping peaks 

from all cell types were merged with BEDTools version 2.26.0 (Quinlan and Hall, 2010) to 

generate a single peak set (n = 269,701). Raw read counts in these peaks for each cell type 

were determined using the R package DiffBind_2.4.8 (Ross-Innes et al., 2012). Spearman 

rank-order correlation was calculated for cell types using the merged peaks with deepTools 
version 2.4.2 (Ramírez et al., 2014) and parameters “multiBamSummary BED-file –BED.”

ChIP-seq—CTCF, H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K79me2, H3K4me3, 

H3K9me3 ChIP-seq was performed as previously described (Stitzel et al., 2010) and 

sequenced on an Illumina HiSeq 2000 using 2 × 100 bp cycles. Harmonized ChromHMM 

(Ernst and Kellis, 2017) states for EndoC-βH1 and NIH Roadmap cells/tissues were 

determined as previously described: “Chromatin states were determined by applying the 

ChromHMM (version 1.10) hidden Markov model algorithm at 200-bp resolution to five 

chromatin marks and input. We ran ChromHMM with a range of possible states and selected 

a 13-state model, because it most accurately captured information from higher-state models 

and provided sufficient resolution to identify biologically meaningful patterns in a 

reproducible way” (Varshney et al., 2017).

Transcription factor motif enrichment analysis—“findMotifsGenome.pl” (HOMER 
version 4.6 (Heinz et al., 2010)) script with parameters “hg19 -size 200” was used to 

determine TF motifs enriched in ATAC-seq OCRs for each cell type (Figure 2C). In each 

analysis, all merged OCRs (n = 269,701) were provided as background (e.g., EndoC-βH1 

called OCRs (foreground) versus all merged OCRs (background)). The same parameters 

were used to identify enriched motifs in either “Enhancers in Both EndoC-βH1 and Islet” (n 

= 16,351) or “Enhancers in EndoC-βH1 Only” (n = 19,380) compared to all enhancers (n = 

51,325) (Figure 2D). The same HOMER script and parameters were also used to identify 

enriched motifs in EndoC-βH1 (n = 315) versus GM12878 (n = 308) cell-specific Hi-C 

loops.

Similarity of cell/tissue type chromatin state (ChromHMM) annotations at 
EndoC-βH1 ATAC-seq OCRs—EndoC-βH1 ATAC-seq OCRs (n = 127,894) were 

overlapped with chromatin state (ChromHMM) annotations from EndoC-βH1, human islet, 

adipocyte, skeletal muscle, GM12878, and PBMC cells provided in (Varshney et al., 2017). 

Next, only OCRs that intersected a ChromHMM annotation from all tissue/cell types (n = 

127,887/127,894) were retained (union set). Within a tissue/cell type, or instances where 

multiple chromatin state elements intersected an EndoC-βH1 OCR, annotations were 

prioritized as follows: promoter, enhancer, transcription, repressed, or low signal. At each 

OCR, cell/tissue ChromHMM annotations were compared to those of EndoC-βH1 and 

assigned a binary classification (1 = the annotations were the same, 0 = the annotations were 

different). Aggregated counts of pairwise chromatin state annotations based on EndoC-βH1 
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OCRs were then computed for each tissue/cell type, and a resulting similarity matrix was 

calculated using the “simil” function within the proxy version 0.4 R package (Meyer and 

Buchta, 2018).

RNA-seq—Total RNA was extracted and purified from EndoC-βH1 using Trizol as 

previously described (Varshney et al., 2017). All sequencing was performed on an Illumina 

NextSeq 500 with 2 × 101 bp cycles. Raw fastq files for human islets (Khetan et al., 2018), 

islet beta and alpha (Ackermann et al., 2016), PBMC (GSE90275), skeletal muscle 

(GSE78611), adipocyte (GSE93486) (ENCODE Project Consortium, 2012), GM12878 

(GSE30400) (Rozowsky et al., 2011), and CD4+ T cell (GSE18927) (Schultz et al., 2015) 

were obtained from the associated databases. Paired-end RNA-seq reads were trimmed using 

Trimmomatic with the same parameters as used for ATAC-seq reads. Trimmed reads were 

aligned to human genome (hg19) using STAR version 2.53 (Dobin et al., 2013) with default 

parameters and expression levels of all genes were determined using QoRTs version 1.2.42 

(Hartley and Mullikin, 2015) with default parameters and Gencode v19 transcript 

annotations. A total of 27,564 protein-coding genes and long intergenic non-coding RNAs 

(lincRNAs) were considered in the study.

miRNA-seq—Total RNA was extracted and purified from 2000–3000 islet equivalents 

(IEQ) or 2 × 106 EndoC-βH1 cells using Trizol (Life Technologies). RNA quality was 

confirmed with Bioanalyzer 2100 (Agilent); islet samples with RNA integrity number (RIN) 

greater than 6.5 were prepared for miRNA sequencing; EndoC- βH1 cells RNA RIN scores 

were > 9.0. miRNA libraries were prepared at the NIH Intramural Sequencing Core (NISC) 

from 1 μg total RNA using Illumina’s TruSeq Small RNA Library Kit according to the 

manufacturer’s guidelines, except a 10% acrylamide gel was used for better separation of 

library from adapters. Libraries were pooled in groups of about 8 for gel purification. Single-

end 51 base sequencing was performed on Illumina HiSeq 2500 sequencers in Rapid Mode 

using version 2 chemistry. Data was processed using RTA version 1.18.64 and CASAVA 

1.8.2. All resulting data was processed with miRquant 2.0 (Kanke et al., 2016).

Hi-C—Hi-C libraries were generated as described in (Rao et al., 2014) and analyzed using 

the Juicer Tools version 1.75 pipeline (Durand et al., 2016a). We sequenced 6,065,763,792 

Hi-C read pairs in EndoC-βH1 cells, yielding 1,909,699,446 Hi-C contacts; we also 

sequenced 6,009,242,588 Hi-C read pairs in islet cells, yielding 1,516,995,339 Hi-C 

contacts. Loci were assigned to A and B compartments at 500 kB resolution. Loops were 

annotated using HiCCUPS at 5kB and 10kB resolutions with default Juicer parameters. This 

yielded a list of 9,100 loops in EndoC-βH1 cells and 2,580 loops in Islet cells. GM12878 

loop calls (n = 9,448 loops) were downloaded from Gene Expression Omnibus (GSE63525). 

Differential loop calling with HiCCUPS at 5kb and 10kb identified 1,120 loops as 

significantly enriched for EndoC-βH1 cells and 829 loops as significantly enriched for 

GM12878 cells. Similar comparison of islet and EndoC-βH1 loops determined 935 loops as 

significantly enriched for EndoC-βH1 and 49 loops as being significantly enriched for islet. 

Aggregate peak analysis (APA) plots were calculated using Juicer and the “apa” command 

using default parameters. Visualization of Hi-C maps was performed using Juicebox version 

1.6.11 (Durand et al., 2016b) with the “Observed/Expected” view and “Balanced” (Knight-
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Ruiz) normalization. All the code used in the above steps is publicly available at (https://

github.com/theaidenlab). Genomic Regions Enrichment of Annotations Tool (GREAT; 

(McLean et al., 2010) was used to identify pathways enriched in the single nearest genes 

(whose TSS was within 2 kb) of EndoC-βH1-specific anchors.

ChIA-PET—EndoC-βH1 RNA Polymerase 2 (Pol2) ChIA-PET libraries were generated 

and sequenced reads were processed and analyzed according to the protocol in (Li et al., 

2017b). ChIA-PET interactions were identified using ChIA-PET2 (Li et al., 2017a) using the 

“bridge linker mode” option. Corresponding ChIA-PET interactions for K562 (GSE39495) 

and GM12878 (GSE72816) cells were obtained from Gene Expression Omnibus. ChIA-PET 

and Hi-C loops were further filtered using the Bioconductor package InteractionSet_1.8.0 
(Lun et al., 2016) to retain only those in which both interacting sites (anchors) overlapped 

OCRs. ChIA-PET anchors were annotated to the nearest gene. To assess the physical 

connectivity between genes and their putative regulatory regions as captured by ChIA-PET 

interactions, the number of distinct links between anchors annotated to each gene were 

counted and categorized by their chromatin state and regulatory function. Counting was 

carried out both between each gene promoter and all linked regulatory regions (Figure 4C), 

and also between all annotated anchors regardless of their chromatin state and all linked 

regulatory regions (Figure S4B). For example, consider anchors A1 and A2, both 

overlapping enhancer regions annotated to gene i. These anchors respectively link to anchors 

B1, located in a TSS, and B2, in an enhancer. In this scenario, a connectivity degree of two 

would be computed for gene i, corresponding to an enhancer-TSS and a TSS-TSS 

interaction, respectively.

The functional specificity of EndoC-βH1 ChIA-PET interactions was investigated by 

overlapping interaction anchors on ChromHMM chromatin states computed from EndoC-

βH1 data as well as 27 other tissue/cell types (Varshney et al., 2017), and calculating the rate 

of conservation of chromatin states of both anchors. For example, a rate of 80% enhancer-

enhancer conservation would mean that 8 out of 10 interactions of this type in EndoC-βH1 

are also found in another cell type. The resulting proportions were computed for all 

interactions combined, and for specific relevant regulatory interactions (Figure 4D, line 

plots). In addition, aggregated counts of pairwise chromatin state interactions based on 

EndoC-βH1 ChIA-PET interactions were computed for the same cell types as above, and 

pairwise distances (D) between the resulting 29 count matrices were computed and plotted 

as scaled similarity values relative to EndoC-βH1 (i.e., 1-D/Dmax), so that D = 0 for EndoC-

βH1 interactions and D = Dmax for the most divergent cell type (Figure 4D, bar plot). These 

same methods were used to determine the functional specificity of EndoC-βH1 Hi-C 

interactions.

ATAC-seq allelic bias analysis—All allelic bias analyses were performed using WASP 

(van de Geijn et al., 2015) (version 0.2.2 after GitHub commit 5a52185 and bug fix in pull 

request #67). For the EndoC-βH1 ATAC-seq allelic bias analyses, after original BWA 

mapping, reads were filtered to properly-paired, high-quality autosomal reads using 

SAMtools (v. 1.3.1; flags -f 3 -F 4 -F 8 -F 256 -F 2048 -q 30) (Li et al., 2009). Remapping 

and filtering as part of the WASP pipeline utilized the same parameters. As the last step of 
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the WASP pipeline, duplicate removal was performed using WASP’s rmdup_pe.py script. In 

order to avoid double-counting SNPs covered by both reads in a pair, overlapping read pairs 

were clipped using bamUtil’s clipOverlap (https://genome.sph.umich.edu/wiki/

BamUtil:_clipOverlap; v. 1.0.14). The four replicate libraries were then merged using 

SAMtools merge.

For each SNP, we determined the number of reads containing each allele (requiring base 

quality of at least 20). We excluded SNPs with total coverage less than 10, as well as SNPs 

in regions blacklisted by the ENCODE Consortium because of poor mappability 

(wgEncodeDacMapabilityConsensusExcludable.bed and 

wgEncodeDukeMapabilityRegionsExcludable.bed). Allelic bias testing was performed using 

a two-tailed binomial test, using an adjusted expectation for the null to account for residual 

reference bias as described in (Scott et al., 2016). Briefly, for each of the 16 reference-

alternate allele pairs (e.g., AG and GA are separate allele pairs), we calculated the expected 

fraction of reference alleles (fracRef) under the null as the sum of the reference allele counts 

divided by the sum of the total allele counts for SNPs of that allele pair. To prevent SNPs of 

high coverage from biasing the expected fracRef, we down-sampled SNPs with coverage in 

the top 25th percentile to the median coverage, and used these downsampled reference and 

total allele counts when calculating the expected fracRef. We used the observed allele-pair 

specific fracRef as the true fracRef under the null hypothesis of no allelic bias in the 

binomial test. Multiple testing correction was performed using the Benjamini-Hochberg 

correction (FDR < 10%).

ChIP-seq allelic bias analysis—For the EndoC-βH1 ChIP-seq allelic bias analyses, 

paired-end libraries were processed as follows. Adapters were trimmed using cta(v. 0.1.2) 

and reads mapped using BWA mem (-M flag; v. 0.7.12). Reads were filtered to properly-

paired, high-quality autosomal reads using SAMtools (flags -f 3 -F 4 -F 8 -F 256 -F 2048 -q 

30). Single-end libraries were mapped using BWA aln (v. 0.7.12; default parameters) and 

filtered using SAMtools (flags -F 4 -F 256 -F 2048 -q 30). Remapping and filtering as part 

of the WASP pipeline utilized the same parameters as for the original mapping. For paired-

end libraries, overlapping read pairs were clipped using bamUtil’s clipOverlap. Replicates 

were merged using SAMtools merge. Allele counting and allelic bias testing was performed 

as described above for ATAC-seq.

RNA-seq allelic bias analysis—For the EndoC-βH1 RNA-seq allelic bias analyses, 

after original STAR mapping, reads were filtered to properly-paired, high-quality autosomal 

reads using SAMtools (v. 1.3.1; flags -f 3 -F 4 -F 8 -F 256 -F 2048 -q 255). Remapping and 

filtering as part of the WASP pipeline utilized the same parameters. In order to avoid double-

counting SNPs covered by both reads in a pair, overlapping read pairs were clipped using 

bamUtil’s clipOverlap. Allele counting and allelic bias testing was performed as described 

above for ATAC-seq.

Comparison of islet eQTL and EndoC-βH1 biased SNPs allelic effect—Human 

islet eQTL data were obtained from (Varshney et al., 2017). For EndoC-βH1 biased 

(H3K27ac) enhancer SNPs that were also linked (via ChIA-PET chromatin interaction) to a 

target gene (n = 91/185 SNPs in Figure 5C), all corresponding islet eQTL SNP-gene pairs 

Lawlor et al. Page 19

Cell Rep. Author manuscript; available in PMC 2019 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://genome.sph.umich.edu/wiki/BamUtil:_clipOverlap
https://genome.sph.umich.edu/wiki/BamUtil:_clipOverlap


were retrieved. For 42/91 SNPs linked to target genes, the H3K27ac allelic effect bias was 

calculated assuming that the EndoC-βH1 effect allele was the same as the islet eQTL effect 

allele. Allelic effect bias was calculated by dividing the effect allele coverage (either 

reference or alternate allele) by the total coverage of the SNP. A scalar value of 0.5 was 

subtracted from this value to determine whether the effect allele had an increased (positive 

value), decreased (negative value), or no (zero) bias in H3K27ac coverage. Randomly 

selected eQTL SNP-gene pairs that did not have corresponding connections (via ChIA-PET 

chromatin interaction) to a target gene were considered as a null/background set.

QUANTIFICATION AND STATISTICAL ANALYSIS

Visualization of all Hi-C, ChIA-PET, chromatin state (ChromHMM), ATAC-seq, and RNA-

seq data examined in this study (Figures 1, 2, 3, 4, and 5) were produced with R using 

ggplot2_3.0.0 (Wickham, 2016), pheatmap_1.0.10 (Kolde, 2018), Sushi_1.18.0 (Phanstiel et 

al., 2014), as well as Juicer Tools (Figure 3) (Durand et al., 2016a) and Juicebox (Figure 3) 

(Durand et al., 2016b).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Comprehensive multiomic maps of EndoC-βH1 human b cell line and 

primary islets

• Sequence motifs enriched in EndoC-specific enhancers reflect its precursor 

state

• Identification of regulatory hubs preserved between EndoC-βH1 and human 

islets

• Identified SNP alleles (including T2D GWAS) altering cis-regulatory 

signatures
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Figure 1. Extensive Karyotyping and Genotyping of EndoC-βH1
(A) SKY of EndoC-βH1 for a representative metaphase.

(B) Summary of the frequency of chromosomal abnormalities across 14 metaphases. Black 

boxes indicate the presence of an event, while white boxes indicate an absence.

(C) Bar plots highlighting the risk allele burden of NHGRI-EBI GWAS Catalog diabetes-

associated GWAS loci in EndoC-βH1. T1D, type 1 diabetes; T2D, type 2 diabetes. Glucose 

traits include fasting plasma-glucose- and fasting glucose-related traits interacting with BMI 

from the NHGRI-EBI GWAS catalog (MacArthur et al., 2017). Insulin traits include 

proinsulin and fasting insulin traits interacting with BMI.

(D) Chromosome cartoons illustrating EndoC-βH1 genotypes and the reported locus at 

glucose trait GWAS SNPs. Cases in which independent association signals mapped to the 

same locus are indicated by the locus name followed by parentheses containing numbers of 

SNPs with each risk genotype. Chromosomes 10 and 20 are marked with asterisks to 

indicate that the previously observed copy-number alterations (illustrated in Figure 1B) may 

obfuscate interpretation of variant genotypes on these chromosomes.
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See also Figure S1 and Table S1.
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Figure 2. Multiomic Comparative Analysis of EndoC-βH1 and Human Pancreatic Islets
(A) Integrated view of the EndoC-βH1 and human islet (epi)genomic and transcriptomic 

features surrounding the PCSK1 locus on chromosome 5. Histone modification ChIP-seq 

data from EndoC-βH1, human islets, and five Epigenome Roadmap cell types and/or tissues 

(Roadmap Epigenomics Consortium et al., 2015) were jointly analyzed to determine 

ChromHMM-based chromatin states in a uniform manner.

(B) Spearman correlation between EndoC-βH1 ATAC-seq profiles and their corresponding 

profiles from islets, sorted α or β cells, and other cell types and tissues (STAR Methods). α, 

primary islet α cells; β, primary islet β cells; CD4T, CD4+ T immune cell; GM12878, B-

lymphoblast cell line; skeletal, skeletal muscle; PBMC, peripheral blood mononuclear cells. 

EndoC-βH1 exhibits greatest similarity to islets and their cellular constituents.

(C) Heatmap illustrating Z scores of HOMER enrichment p values for TF motifs in cell-

type-specific OCRs.

(D) Comparison of chromatin states between EndoC-βH1 and human islets. Blue box 

highlights putative enhancer cis-REs in both EndoC-βH1 and human islets; orange box 

indicates putative EndoC-βH1 enhancers that are repressed in islets.

(E) TF motifs enriched in genomic regions containing putative enhancer cis-REs in both 

EndoC-βH1 and islets (blue) or EndoC-βH1 only (orange). Points in gray denote TFs that 

are not enriched in either category.

See also Figure S2 and Table S3.
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Figure 3. Generating a Genome-wide Map of Looping in EndoC-βH1 and Human Pancreatic 
Islets (Hi-C)
(A) Aggregate peak analysis (APA) plots showing the total signal across all loops (top three 

panels) and EndoC-βH1-specific loops (bottom three panels) in EndoC-βH1 (left), human 

islet (center), and GM12878 (right) cells. Of note, islets exhibit similar contact point 

enrichments at EndoC-βH1-specific peaks compared to GM12878.

(B) Cartoon illustrating the different classes of Hi-C loops between example common (gray 

peaks) or cell-specific (black peaks) ATAC-seq OCRs for two different theoretical cell types.

(C) TF motifs enriched in GM12878 (blue) or EndoC-βH1 (red) Hi-C looping anchors that 

overlap cell-specific ATAC-seq peaks loop classes B and C in panel B above).

(D) Hi-C contact maps highlighting a specific loop at the SLC30A8 locus (denoted by dotted 

black circle) observed in both EndoC-βH1 (left) and primary human islets (center) but 

absent in GM12878 (right).

(E) Multiomics view of Hi-C, ChIA-PET (Pol2), chromatin states, ATAC-seq, RNA-seq, and 

gene tracks at the SLC30A8 neighborhood containing the Hi-C contact point highlighted in 

(D). Tracks corresponding to EndoC-βH1, human islet, and GM12878 are colored red, 

black, and blue, respectively. Dark blue boxes below each gene name represent the reference 

transcript annotations derived from Gencode v19. The red arrow at the bottom of the image 

indicates the putative EndoC-βH1- and islet-specific promoter for SLC30A8. The black 
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arrow indicates the putative embryonic stem cell and K562 cell-specific promoter for 

SLC30A8 (Roadmap Epigenomics Consortium et al., 2015).

See also Figure S3 and Table S4.

Lawlor et al. Page 31

Cell Rep. Author manuscript; available in PMC 2019 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. RNA Polymerase 2 ChIA-PET Identifies Chromatin Interactions in EndoC-βH1
(A) Heatmap showing the chromatin states of EndoC-βH1 ChIA-PET interaction nodes.

(B) Example of a Pol2 ChIA-PET interaction between active enhancer (blue box) and active 

promoter (green box) cis-REs in the ISL1 locus on chromosome 5. Asterisks under EndoC-

βH1 ChIA-PET interactions (red) indicate interacting sites in the ISL1 locus detected in 

human islet 4C-seq analyses (Pasquali et al., 2014).

(C) ChIA-PET network connectivity of gene promoters in EndoC-βH1 containing at least 

three interactions with other regulatory elements. For each gene, the number of connections 

between other regulatory elements (e.g., active enhancer and weak enhancer) and the 

proportion of total links in which the chromatin states are EndoC-βH1-specific (blue) or 

identical in both human islet and EndoC-βH1 (green) are shown in bar plots on the right. 

The remaining proportions that are neither EndoC-βH1 specific nor common to islet and 

EndoC-βH1 are not shown. Red font denotes loci containing genes crucial for β cell identity 

and development.
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(D) Top: Bar plot illustrating the proportions of chromatin states at the Pol2 ChIA-PET 

interacting sites (nodes) shared between EndoC-βH1, islets, and additional Epigenomics 

Roadmap tissues and cell lines. Bottom: Heatmap demonstrating the chromatin states of 

EndoC-βH1 Pol2 ChIA-PET interacting sites (nodes) in islets (left) or stomach smooth 

muscle (right).

See also Figure S4.
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Figure 5. Allelic Effects on EndoC-βH1 Transcriptional Regulatory Features
(A) EndoC-βH1 genotype information was integrated with ATAC-seq, H3K27ac, and RNA-

seq data to identify sequence variants altering cis-RE accessibility and/or activity (ATAC-seq 

and H3K27ac) or mRNA levels (RNA-seq) in EndoC-βH1. Pie charts summarize the 

proportions of variants exhibit significant AIs (blue; FDR < 10%) in each of the 

corresponding sequencing profiles.

(B) Cartoon representation of approach to identify systematic allelic effects on EndoC-βH1 

cis-regulatory networks.

(C) Multiomic view highlighting allelic effects on the SAMD5 locus cis-regulatory network 

in EndoC-βH1. A variant site exhibiting significant AI in H3K27 acetylation (denoted by 

blue arrow) is linked (red ChIA-PET interaction) to the transcription start site (TSS) of 

SAMD5. Within the SAMD5 locus, five transcribed SNPs exhibited significant allelic bias 

in gene expression (RNA-seq) in a direction consistent with the H3K27ac allelic bias.

(D) Left: Bar plots summarizing the proportions of variants with ATAC-seq/H3K27ac 

imbalance (blue bars; FDR < 10%) that overlap ChIA-PET interacting loci. Right: Pie charts 

specifying the chromatin state (ChromHMM) annotations of the overlapping variants.

See also Figure S5 and Table S5.
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Table 1.

Top 25 Expressed miRNAs in EndoC-βH1 Cells

miRNA EndoC-βH1 Rank EndoC-βH1 RPMMM β Cell Enrichment / Depletion

hsa-miR-375 1 162076.925 2.84

hsa-miR-127–3p 2 90512.35 -

hsa-miR-27b-3p 3 85043.195 3.09

hsa-miR-192–5p 4 70126.5525 2.01

hsa-miR-192–5p_+_1 5 37621.0275 -

hsa-miR-182–5p 6 36662.2475 2.15

hsa-miR-22–3p 7 29623.8 2.87

hsa-miR-191–5p 8 25424.1575 3.02

hsa-miR-26a-2–5p 9 15578.9175 2.94

hsa-miR-26a-1–5p 10 15496.7075 2.94

hsa-miR-141–3p 11 13656.6825 2.84

hsa-miR-92a-1–3p 12 13615.6425 2.30

hsa-miR-30d-5p 13 11108.9275 0.75

hsa-miR-654–3p 14 11107.385 -

hsa-miR-148a-3p 15 10651.885 2.22

hsa-miR-200b-3p 16 10266.2575 1.48

hsa-miR-92a-2–3p 17 10161.165 2.30

hsa-miR-381 18 9342.8875 1.08

hsa-miR-25–3p 19 9230.2225 1.98

hsa-miR-181a-1–5p 20 8702.47 1.81

hsa-miR-181a-2–5p 21 8702.3125 1.81

hsa-miR-21–5p 22 8439.755 0.21

hsa-miR-183–5p 23 8338.08 1.58

hsa-miR-92b-3p 24 7531.295 4.63

hsa-miR-125a-5p 25 6743.8375 1.24

Table consisting of the top 25 expressed miRNAs in EndoC-βH1 cells. Each miRNA rank was determined by its corresponding expression level 
(reads per million mapped miRNA [RPMMM]). β cell enrichment / depletion was determined by dividing the counts of each miRNA in β cells 
(from van de Bunt et al., 2013) by the counts in islets.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

H3K27ac-human antibody Abeam Abeam Cat# ab4729; RRID:AB_2118291

H3K4me3-mouse antibody Abeam Abeam Cat# ab12209; RRID:AB_442957

ENCODE Project Antibody validation 
H3K4me1 Abeam Abeam Cat# ab8895; RRID:AB_306847

ENCODE Project Antibody validation 
H3K36me3 Abeam Abeam Cat# ab9050; RRID:AB_306966

H3K27me3-celegans antibody Abeam Abeam Cat# ab6002; RRID:AB_305237

H3K79me2-human antibody Abeam Abeam Cat# ab3594; RRID:AB_303937

H3K9me3-human,H3K9me3-mouse antibody Abeam Abeam Cat# ab8898; RRID:AB_306848

Rabbit Anti-CTCF Polyclonal Antibody, 
Unconjugated Abeam Abeam Cat# ab70303; RRID:AB_1209546

RNA Polymerase II 8WG16 Monoclonal 
Antibody, anti-RNA Polymerase II Covance Research Products Covance Research Products Cat# MMS-126R; 

RRID:AB_10013665

Biological Samples

Human pancreatic islet NDRI UNOS ID: ADAC418

Critical Commercial Assays

SKY Probe Applied Spectral Imaging 
INC Cat# FPRPR0028

HumanOmni2.5–4v1_H BeadChip Array Illumina Cat# WG-311–2514

TruSeq ChIP Sample Prep Kit Illumina Cat# IP-202–1024

TruSeq Stranded mRNA Kit Illumina Cat# 20020595

TruSeq Small RNA Library Kit Illumina Cat# RS-200–0036

Deposited Data

Raw and analyzed data This paper NCBI BioProject: PRJNA480287; European Variation Archive: 
ERZ674947; NCBI GEO:GSE118588

Islet ATAC-seq and RNA-seq Khetan et al., 2018 NCBI SRA:SRP117935

Purified beta and alpha cell ATAC-seq and 
RNA-seq Ackermann et al., 2016 NCBI GEO: GSE76268

Peripheral mononuclear blood cells (PBMC) 
ATAC-seq Ucar et al., 2017 European Genome-phenome Archive: EGAS00001002605

PBMC RNA-seq ENCODE Project 
Consortium, 2012 NCBI GEO: GSE90275

Skeletal muscle ATAC-seq Scott et al., 2016 dbGap: phs001068.v1.p1

Skeletal muscle RNA-seq ENCODE Project 
Consortium, 2012 NCBI GEO: GSE78611

GM12878 and CD4+ T ATAC-seq Buenrostro et al., 2013 NCBI GEO: GSE47753

GM12878 RNA-seq Rozowsky et al., 2011 NCBI GEO: GSE30400

CD4+ T RNA-seq Schultz et al., 2015 NCBI GEO: GSE18927

Adipocyte RNA-seq ENCODE Project 
Consortium, 2012 NCBI GEO: GSE93486

GM12878Hi-C Rao et al., 2014 NCBI GEO: GSE63525

K562 RNA Pol2 ChlA-PET Li et al., 2012 NCBI GEO: GSE39495

GM12878 RNA Pol2 ChlA-PET Tang et al., 2015 NCBI GEO: GSE72816
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REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Cell Lines

EndoC-betaH1: Cell line EndoCells/INSERM RRID: CVCL_L909

Software and Algorithms

Michigan Imputation Server Das et al., 2016 https://imputationserver.sph.umich.edu/index.html

Eagle v2.3 Loh et al., 2016 https://data.broadinstitute.org/alkesgroup/Eagle/

SHAPEIT v2.r790 Delaneau et al., 2011 http://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html

minimac3 Das et al., 2016 https://genome.sph.umich.edu/wiki/Minimac3

PLINK version 1.9 Purcell et al., 2007 http://zzz.bwh.harvard.edu/plink/

Trimmomatic version 0.33 Bolger et al., 2014 http://www.usadellab.org/cms/?page=trimmomatic

BWA version 0.7.12 Li, 2013 http://bio-bwa.sourceforge.net

Samtools version 1.3.1 Li et al., 2009 http://samtools.sourceforge.net/

Picard-tools version 1.95 The Broad Institute, 2013 https://broadinstitute.github.io/picard/

Qualimap version 2.2.1 Okonechnikov et al., 2016 http://qualimap.bioinfo.cipf.es

MACS version 2.1.0 Zhang et al., 2008 http://liulab.dfci.harvard.edu/MACS/

BEDTools version 2.26.0 Quinlan and Hall, 2010 https://bedtools.readthedocs.io/en/latest/

deepTools version 2.4.2 Ramírez et al., 2014 https://deeptools.readthedocs.io/en/develop/

ChromHMM version 1.17 Ernst and Kellis, 2017 http://compbio.mit.edu/ChromHMM/

HOMER version 4.6 Heinz et al., 2010 http://homer.ucsd.edu/homer/index.html

STAR version 2.53 Dobin et al., 2013 https://github.com/alexdobin/STAR

QoRTs version 1.2.42 Hartley and Mullikin, 2015 https://hartleys.github.io/QoRTs/

miRquant 2.0 Kanke et al., 2016 https://github.com/Sethupathy-Lab/miRquant

Juicer Tools version 1.75 Durand et al., 2016a https://github.com/aidenlab/juicer/wiki/Juicer-Tools-Quick-Start

Juicebox version 1.6.11 Durand et al., 2016b https://www.aidenlab.org/juicebox/

GREAT version 3.0 McLean et al., 2010 http://great.stanford.edu/public/html/

ChlA-PET2 version 0.9.2 Li et al., 2017a https://github.com/GuipengLi/ChlA-PET2

WASP version 0.2.2 van deGeijn et al., 2015 https://github.com/bmvdgeijn/WASP

Other

Haplotype Reference Consortium (HRC 
version, hrc.r1.1.2016) panel McCarthy et al., 2016 http://www.haplotype-reference-consortium.org/

NHGRI-EBI Catalog of SNPs N/A https://www.ebi.ac.uk/gwas/

R Shiny application for browsing human islet 
and EndoC-βH1 genomic data This paper http://shinyapps.jax.org/endoc-islet-multi-omics
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