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Abstract

The transport of nutrients by migratory animals across ecosystem boundaries can significantly enrich recipient food webs,
thereby shaping the ecosystems’ structure and function. To illustrate the potential role of islands in enabling the transfer of
matter across ecosystem boundaries to be gauged, we investigated the influence of seabirds on nitrogen input on islands.
Basing our study on four widely differing islands in terms of their biogeography and ecological characteristics, sampled at
different spatial and temporal intervals, we analyzed the nitrogen isotopic values of the main terrestrial ecosystem
compartments (vascular plants, arthropods, lizards and rodents) and their relationship to seabird values. For each island, the
isotopic values of the ecosystem were driven by those of seabirds, which ultimately corresponded to changes in their
marine prey. First, terrestrial compartments sampled within seabird colonies were the most enriched in d15N compared with
those collected at various distances outside colonies. Second, isotopic values of the whole terrestrial ecosystems changed
over time, reflecting the values of seabirds and their prey, showing a fast turnover throughout the ecosystems. Our results
demonstrate that seabird-derived nutrients not only spread across the terrestrial ecosystems and trophic webs, but also
modulate their isotopic values locally and temporally on these islands. The wealth of experimental possibilities in insular
ecosystems justifies greater use of these model systems to further our understanding of the modalities of trans-boundary
nutrient transfers.

Citation: Caut S, Angulo E, Pisanu B, Ruffino L, Faulquier L, et al. (2012) Seabird Modulations of Isotopic Nitrogen on Islands. PLoS ONE 7(6): e39125. doi:10.1371/
journal.pone.0039125

Editor: Tanguy Daufresne, Toulouse, France

Received February 6, 2012; Accepted May 16, 2012; Published June 18, 2012

Copyright: � 2012 Caut et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was made possible thanks to logistical support from the French Navy in New Caledonia and from OPT Nouméa, authorities from Port-Cros
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Introduction

Inputs of energy and nutrients in an ecosystem can exert a

major influence on the dynamics of local populations, as well as

the structure and evolution of recipient communities and food

webs [1–5]. The particular mobility, behavior and physiology of

biotic vectors can have a striking effect on the rate and type of

exchanges across habitat boundaries [4,6]. The ecological

importance of nutrient transfers generated by species crossing

boundaries between two ecosystems, whether for foraging or

breeding, has long been recognized. Some clear examples of

nutrient flows have been observed between aquatic and

terrestrial ecosystems mediated by the trophic relationship

between salmon and bears, i.e. [7], or between marine

ecosystems and coastal ecosystems through inputs by nesting

sea turtles [8,9], by sea lions and whales [6,10], or by terrestrial

mammal predators of marine intertidal communities [11]. The

flux of matter and energy across two ecosystems is especially

important for small and closed ecosystems, such as islands.

Given the size of their colonies, their wide distribution and the

large amount of marine biomass that seabirds deposit on islands

via guano, feathers, carcasses or regurgitated marine prey

[5,12,13,14], breeding colonies of seabirds have been shown

to have a major impact on terrestrial insular ecosystems.

Nitrogen stable isotope ratios serve as useful tools to trace

marine inputs in terrestrial trophic webs, making it possible to

trace bottom-up effects of nutrient input [15]. Seabird guano is

enriched in 15N relative to 14N, partly due to the birds’ high

position in the trophic chain [16] and to preferential volatilization

of 14N from guano [17]. There is solid scientific literature

demonstrating nitrogen enrichment of primary producers due to

guano deposition across vegetal taxonomic groups (mosses, plants,

algae; [18–21]). As a consequence, guano fertilization increases the

primary productivity of plants, indirectly benefitting populations

that consume detritus, plant tissues and seeds. This, in turn,

facilitates high densities of their consumers’ predators [22]. In a

more direct way, large marine-bird breeding colonies also increase

the numbers of scavengers and predators, which feed directly on

their carcasses [2,22]. Thus, either directly or indirectly, seabirds

alter the dynamics of terrestrial ecosystem compartments through-

out the entire trophic web [23].

A comparison of the nutrient enrichment of islands with and

without seabirds theoretically provides a means to demonstrate the

contribution of seabirds to insular ecosystems. In this regard, the
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introduction of natural seabird predators can be seen as a large-

scale ‘experiment’ that allows the study of the effects of seabirds on

insular ecosystems. They can provide a means of comparing

islands which have varying levels of seabird presence. In pioneer

studies, Stapp et al. [24] and Stapp and Polis [3] demonstrated a

seabird-derived 15N enrichment in native rodents and several

arthropod groups (detritivores, herbivores and predators), while

Markwell and Daugherty [22] found a 15N enrichment in lizards

on seabird islands. More recently, predators introduced on New

Zealand islands have been shown to disrupt below-ground and

above-ground food webs via the suppression of the seabird-driven

nutrient flow [25–27]. These innovative and pivotal studies have

opened up a new avenue of research in insular ecosystem

functioning. Understanding the extent and modalities of terrestrial

trophic web enrichment by seabirds is essential to the proper

understanding and conservation of insular biodiversity. If we are to

gain a better understanding of these processes, we now need to

generalize these studies by repeating them in contrasting ecological

contexts, as well as characterize the processes by ascribing them to

influences of ecosystem particularities.

As part of this new avenue of research, we performed two

different but connected lines of research, illustrating them with a

set of studies on the modulation of insular isotopic trophic webs by

seabird-derived nutrients. We propose that such studies be

conducted across different spatial and temporal scales at both

the inter- and intra-island level, focusing on islands with different

ecological characteristics (different latitudes, longitudes, geological

origins and sizes). Because the seabird influence is likely to vary in

space, different sampling sites with different bird densities on the

same island would appropriately complement the biogeographic

approach, thereby contributing to assess the spatial scale at which

seabird nitrogen enrichment is effective. Lastly, temporal varia-

tions in the influence of seabirds on trophic webs would add to the

panel of possible seabird-driven fluctuations in nutrient flows, thus

allowing us to understand the timing, duration and amplitude of

these effects.

We illustrate this proposition with results from large-scale

studies of the trophic webs of four islands with different

biogeographic and ecological characteristics (Fig. 1), where

changes were tracked over time (between 1 and 4 years) or, when

possible, at different sites on each island,. Seabird nutrient input

was tracked by measuring nitrogen isotopic values in seabirds and

relating them to those of different ecosystem compartments, from

plants to mammalian predators. We compared nitrogen isotopic

values of species in each terrestrial ecosystem compartment (plants,

arthropods and rodents): (1) between sites with different levels of

seabird influence within islands (absence, presence, or sporadic

presence of nesting seabirds) on Bagaud and La Possesion islands;

(2) over time (to time the incorporation of seabird-derived

nutrients into the trophic web) on Teuaua and Surprise islands.

Although seabird nutrient input is expected to play a key role in

the terrestrial ecosystem [24–27], there is a lack of isotopic studies

exploring these two scales. We expected that spatial and temporal

variations of d15N values along the trophic webs (plants,

arthropods, reptiles, rodents) of our various terrestrial ecosystems

would be generated by the variations in the isotopic nitrogen

values of seabirds on these islands.

Materials and Methods

Study Sites
Sampling was carried out on four islands located in four

different oceans and seas, and differing widely in latitude,

longitude, area and geology: Teuaua, Surprise, La Possession

and Bagaud (Fig. 1). Surprise and La Possession are isolated

oceanic islands, Bagaud is coastal, and Teuaua lies close to Ua

Huka, a larger, inhabited island of the Marquesas Archipelago. As

all are currently uninhabited, human activity may be supposed to

have few effects on the nitrogen enrichment, and all four islands

have an ecosystem that consists of at least 3 different terrestrial

compartments, including plants, arthropods and rodents (Rattus

spp. and sometimes Mus musculus).

Animals in this study were humanely treated according to the

French and Overseas French Territories legislations (Décret

nu2003-768/NOR: AGRD0300394D). Stephane Caut was au-

thorized by the French Minister of Agriculture (R-45GRETA-F1-

04). Different institutional review boards approved the sampling

for each island: on La Possesion Island sampling was approved by

the Scientific Committee of the French Polar Institute (Pr.

No. 136); on Teuaua islet, sampling was performed within the

context of a Pacific rat eradication attempt (‘‘Restoration of

Important Pacific Seabird Islands - Phase 1’’ program) approved

by the local municipality of Ua Huka (Grant 2006–30661 and

30662) and Direction Régional de l’Environnement (DIREN) of

the Gouvernement Territorial de la Polynésie Française; on

Bagaud island, which is a strict Nature Reserve managed by the

Part-Cros National Park (French ministry for the environment),

licenses and permission to work, handle and collect were issued

and approved by the prefecture of Var (authorisation No. 7/2004)

and by the authorities of the Port-Cros National Park (pro-

grammes 08.031.83400 and 10-006 83400 PC); and sampling on

Surprise Island was approved by the Gouvernement de la

Nouvelle-Calédonie (CS05-7000-1044).

Sampling the Ecosystem Compartments
All islands were sampled using the same protocol and most of

the authors worked on at least two islands in order to minimize

sampling variability.

In order to study the spatial effect of seabirds at a smaller spatial

scale (i.e., within an island), the two larger islands, Bagaud and La

Possession, were sampled at three and two sites, respectively,

characterized by different levels of seabird influence (absent,

present or sporadic). As Teuaua and Surprise are small islands

characterized by a high density of breeding seabirds which

occupied the total area of the islands during the breeding period,

we focused on illustrating temporal variations.

Possession Island was sampled in November-December 2007 at

the beginning of the seabird breeding period. Bagaud Island was

sampled during May 2006 in the middle of the seabird breeding

season. From 2002 to 2005, Surprise Island was sampled yearly, in

early November, when most breeding bird species are present.

Teuaua Islet was sampled in February 2008 when the islet was

totally bird-free immediately after the breeding season, and in

November 2008 and in February 2009, when the islet hosted a

very large breeding population of sooty terns, Onychoprion fuscatus

[28]. Moreover, these seabird breeding periods corresponded to of

the peak activity of the ecosystems (e.g. plant growth, lizard

activity and rodent reproduction), generally before the dry season.

Two sites were selected in the north-eastern part of La

Possession Island, according to the presence or absence of seabirds

[29]: (i) American Bay, which hosts a permanent rookery of king

penguins, Aptenodytes patagonicus (density 0.8 to 1.2 breeding pairs/

m2, [29]), and three above-ground ecosystem compartments

besides that of the seabirds: vascular plants, arthropods (Amphi-

poda, Arachnida, Coleoptera, Diptera, Lepidoptera), and the

black rat, (Rattus rattus); (ii) a second site located 4 km north-west of

the former site and 1.5 km away from the sea coast (Hébé Bay),

totally devoid of bird colonies and hosting three ecosystem
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compartments: plants (mosses and vascular plants), arthropods

(Arachnida, Coleoptera, Diptera, Lepidoptera), and the black rat.

Three sites were sampled in the southern part of Bagaud Island,

according to different levels of seabird influence: the Gull site,

which hosts an important breeding colony of yellow-legged gulls

Larus michahellis (density 1.0 breeding pairs/m2), the Scrubland site

(200 m away) without seabirds, and a coastal site located 150 m

away from the Gull site and 50 m away from the Scrubland site,

Figure 1. Characteristics of the four studied islands.
doi:10.1371/journal.pone.0039125.g001
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where seabirds nested or rested sporadically (density 0.7 breeding

pairs/m2) [30]. Besides the seabird compartment, the same

ecosystem compartments were identified at the three sites: plants

(vascular plants), arthropods (Isopoda, Arachnida, Coleoptera,

Dermaptera, Hemiptera, Hymenoptera, Lepidoptera, Orthoptera)

and the black rat.

We sampled the centre of the small Surprise Island, where

various species of seabirds breed: the red-footed booby, Sula sula,

the brown booby, S. leucogaster, the masked booby, S. dactylatra, the

brown noddy, Anous stolidous, and the black noddy, A. minutus

(yearly recorded breeding pairs/100 m2 between 2002 and 2005:

1.1, 0.6, 1.1, 0.8). We identified five different ecosystem

compartments in addition to that of the seabirds: plants,

arthropods, (Orthoptera, Coleoptera and Lepidoptera), reptiles

(strand litter skink Caledoniscincus haplorhinus and mourning gecko

Lepidodactylus lugubris), and rodents (black rat and house mouse, Mus

musculus).

Lastly, Teuaua Islet hosts one of the largest breeding sooty tern

colonies (1.2 to 1.8 breeding pairs/m2 [28]) in French Polynesia, a

species which does not exhibit strict seasonality in reproduction.

Besides the seabird compartment, we identified four other

ecosystem compartments: plants, arthropods (Coleoptera and

Blattaria), reptiles (mottled snake-eyed skink, Cryptoblepharus

poecilopleurus), and rodent (Polynesian rat, Rattus exulans).

On each island we took into account most of the above-ground

ecosystem compartments, including fauna and flora. Tissue

samples of all plant species were collected on each island and at

each study site. Ground arthropods were captured with pitfall

traps or by hand and the whole body was used for isotopic

analysis. Reptiles were caught by hand and a tail muscle sample

was collected. Seabird samples consisted of muscle tissue from

freshly-dead seabirds or abandoned eggs found in the colony. Rats

and mice were captured with live traps or snap traps, depending

on the island. The seabird prey provided by seabird regurgitates

(65% Exocoetidae, 26% Cephalopoda and 9% indeterminate

fishes; n = 23) were collected on Surprise and Teuaua islands. All

samples were stored in 70% ethanol. Some species identifications

were performed or confirmed in the laboratory before stable

isotope analysis (see [31] for further information).

Isotope Analyses
All samples were dried at 60uC for 48 h, ground to a fine

powder, weighed in tin capsules and stored in a desiccator until

isotope measurement. Isotope analyses were performed using an

IsoPrime spectrometer (MicroMass, Service Central d’Analyse,

Solaize, France) coupled to a EuroEA 3024 analyzer. Stable N

isotope ratios are expressed as:

d15N~½(Rsample=Rs tan dart){1�| 1000

Where R is 15N/14N. The standard for the N isotopic ratio is

IAEA-N1 (+0.4%) and IAEA-N2 (+20.3%). Replicate assays of

internal laboratory standards indicated measurement maximum

errors (SD) of 60.2%.

Data Analyses
To test the effect of seabird presence on the nitrogen isotopic

values of the different ecosystem compartments of La Possession

and Bagaud islands, we performed one ANOVA for each island.

d15N values were treated as the dependent variable, while the site

(two and three sites on La Possession and Bagaud islands,

respectively) was treated as the independent variable. On Bagaud

Island, a post-hoc contrast analysis was performed to identify

significant differences among the three sites [32]. Although only

one analysis was performed for each island, separate analyses for

each ecosystem compartment were carried out (specifying a ‘‘by’’

option [33]) within each island.

To test the effects of seabird isotopic values on the values of the

different ecosystem compartments of Surprise and Teuaua islands,

we performed one ANOVA for each island. We tested whether

d15N values differed among ecosystem compartments, dates and

the interaction between both factors (trends in d15N values vary in

the same (or opposite) direction). A non-significant interaction

would mean that the isotopic signatures of all ecosystem

compartments, including seabirds and seabird prey, follow the

same trend over time.

Data were analyzed with General Linear Models (GLM, SAS

v.8.2, PROC GENMOD, with ‘‘dscale’’ option as the scaled

deviance differed from unity). Normality of variables was tested

and all models were fitted specifying a normal distribution with

identity link function [33].

Results

Global Patterns
Analyses clearly show that for all islands (at all sites and on all

sampling dates, Fig. 1, Table S1), the nitrogen isotopic values of

the ecosystem depended on those of seabirds, which ultimately

corresponded to changes in their marine prey. In fact, the transfer

of nitrogen along trophic webs (Fig. 2, 3) was driven by birds.

These results are similar and show the same trend for the different

ecosystems studied. This congruence of results across islands of

widely diverging biogeography is strengthened by the results on

spatial and temporal variations of the influence of seabirds in

insular communities.

Figure 2. Mean (+SE) d15N values of the ecosystem compart-
ments for different levels of seabird influence; on (A) La
Possession Island and (B) Bagaud Island. Within each island, each
ecosystem compartment is represented by a symbol at the top and was
analyzed separately: plants, arthropods and rodents. In (A) asterisks
represent significant differences between bars within each compart-
ment. Bars sharing a common letter were not significantly different in
(B) based on contrast analyses. The dotted line with the seabird symbol
(penguin for La Possession Island and seagull for Bagaud Island)
represents the mean isotopic value of seabirds on each island.
doi:10.1371/journal.pone.0039125.g002
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Spatial Influence of Seabirds on d15N Values
Sampling at different sites of La Possession and Bagaud islands

revealed that d15N values of all terrestrial ecosystem compartments

were significantly higher at sites where seabirds were breeding

than at sites where they were absent or only sporadically present

(Fig. 2, Table S1). On La Possession Island, significantly higher

d15N values were consistently found between the seabird colony

site and the non-breeding site for the three terrestrial ecosystem

compartments (F1,25 = 18.28, p,0.001, n = 31 for plants;

F1,13 = 9.39, p = 0.002, n = 15 for arthropods; F1,25 = 26.99,

p,0.001, n = 27 for rodents; Fig. 2A), despite the close proximity

(i.e., 4 km) of the two sites. Similarly, on Bagaud Island, where the

three study sites (at which seabirds were present, absent or

sporadically present) were even shorter distances apart, i.e, 50–

200 m, significant differences in the d15N values of the three

terrestrial ecosystem compartments were found among sites

(F2,39 = 28.16, p,0.001, n = 42 for plants; F2,25 = 36.74,

p,0.001, n = 28 for arthropods; F2,42 = 71.84, p,0.001, n = 45

for rodents; Fig. 2B, Table S1). Post-hoc contrast analysis revealed

a spatial gradient in d15N values: the highest d15N were found at

the seabird breeding site, whereas the lowest d15N were found

where seabirds were absent. The third site, where seabirds only

nested and rested sporadically, had intermediate d15N values

(Fig. 2B). These differences were significant for all terrestrial

ecosystem compartments except plants, where values between the

two sites that were less influenced by seabirds did not significantly

differ (Fig. 2B).

Temporal Influence of Seabirds on d15N Values
Sampling during the seabird breeding season in different years

on Surprise Island revealed differences in d15N values among

ecosystem compartments (including seabirds and their marine

prey) and also among years (2003–2005), but the interaction

between both factors was not significant (F6,228 = 145.35, p,0.001

for compartments; F3,228 = 32.74, p,0.001 for dates; and

F18,228 = 1.55, p = 0.063, for the interaction, n = 256; Fig. 3B).

Mean d15N values were the lowest in 2002 and highest in 2003,

but were intermediate in 2004 and 2005 (Table S1). The fact that

both factors (compartments and dates), but not their interaction,

are significant, means that the trend over time was similar for the

different ecosystem compartments.

On Teuaua Islet, we found the same trends in isotopic values

among dates (d15N values decreased from February 2008 to

November 2009, Table S1) and among ecosystem compartments,

but the interaction between compartments and dates was

significant (F4,50 = 58.66, p,0.001; F2,50 = 47.04, p,0.001; and

F8,50 = 5.65, p,0.001 for compartments, dates and their interac-

tion, respectively, n = 65). The significant interaction was driven by

the lowest compartments (plants and arthropods), which main-

tained more stable values over time (Fig. 3B). While rats and

reptiles can incorporate seabird-derived nitrogen isotopes directly

via predation, browsing or scavenging, plants and herbivorous

arthropods incorporate them only indirectly through soil, which

accounts for the smaller effect. Thus, the slopes of the relationships

between the d15N values of seabirds and those of their marine

prey, reptiles and rats were similar, while the slopes of the

relationship between the d15N values of seabirds and those of

plants and arthropods were smaller but still positive (Fig. 3B). In

fact, if plants and arthropods were removed, the interaction would

cease to be significant (F2,39 = 123.01, p,0.001 for compartments;

F2,39 = 60.16, p,0.001 for dates; and F4,239 = 1.54, p = 0.210 for

the interaction, n = 48).

Seabird values were always close to those of their marine prey

(Fig. 3A, B). Mean seabird d15N values were related to those of

each ecosystem compartment, confirming that the main external

nitrogen input in terrestrial compartments is due to seabirds and

that d15N values of all ecosystem compartments were driven by

seabird d15N values: plant compartments had the lowest mean

d15N values in the terrestrial ecosystem and tended to follow mean

seabird values, especially on Surprise Island; variations in mean

d15N arthropod values followed mean seabird values more closely

than plant values; and below seabird values were rat, mouse and

reptile values, which closely followed seabird values, showing the

same trend as seabirds (Fig. 3A, B).

It is interesting to note that on Teuaua Islet the nitrogen isotopic

values of all ecosystems decreased over time (from Feb. 2008 to

Feb. 2009), while on Surprise Island values first increased (from

2002 to 2003), then decreased (between 2003 and 2004) and finally

increased again (from 2004 to 2005) (see order of survey dates at

the top of Fig. 3A, B). From these results, it is clear that the

influence of seabirds on d15N values varies with time, causing a

greater or lesser general nitrogen enrichment of the ecosystem,

depending on each case, but either increases or decreases the

whole ecosystem’s d15N values.

Discussion

Using a multitrophic level perspective, we highlighted the

potential of using insular ecosystems with varying ecological

Figure 3. Relationships between seabird d15N values and d15N
values of each ecosystem compartment; on (A) Surprise Island and
(B) Teuaua Island. Symbols represent each ecosystem compartment:
plants, seabird prey, arthropods, rats, mice and reptiles. Seabird values
are shown by the upper edge of the grey polygon.
doi:10.1371/journal.pone.0039125.g003
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characteristics to assess the modalities of nutrient transfer by

seabirds into terrestrial ecosystems. Illustrating our study with

multiple site or date sampling on four contrasting islands, we

showed that the input of nutrients by seabirds rapidly and globally

modulates the isotopic values of terrestrial ecosystems. First, our

results confirm that nitrogen enrichment by marine inputs

enriches primary and secondary consumers (i.e., plants, arthro-

pods, reptiles, mice and rats). Second, we showed that the extent of

marine nutrient spill-over into inland areas could be restricted to

very small spatial scales. This could have major implications for

field sampling. Third, we highlighted that temporal changes in

seabird isotopic nitrogen values could induce rapid change in the

rest of the isotopic terrestrial ecosystem. The patterns described

are reinforced by the similarity of our results in geographically

distant islands with different trophic structure, climate conditions

and oceanic influences.

Temporal Variation of Marine and Seabird d15N Values
The effects of seabirds as vectors of marine-derived nutrients to

terrestrial ecosystems have been reported previously, especially

focusing on the effects on soil and plants (see e.g., [25,34–37], but

they have also been studied at higher trophic levels such as

invertebrates [22,24,38], lizards [22,39] and rodents [3,25–27,30]

(see [40] for review). On the whole, however, few studies have

assessed the temporal variation of nitrogen isotopic values derived

from seabird nutrients (e.g. [3,5,24,30]). Seabirds always enrich

the recipient ecosystems with nitrogen, but nitrogen enrichment is

not always necessarily associated with nitrogen isotopic enrich-

ment. Indeed, we show here for the first time that nitrogen isotopic

changes could be in either direction; that is, isotopic values of the

ecosystem could be enriched, impoverished or both, over time,

following the isotopic values of seabirds and their prey. There were

significant variations in the isotopic values of seabirds (and their

prey) from year to year. It is well known that ocean primary

production varies significantly over time [41]. Such variations are

translated to the marine food web and subsequently enter the

terrestrial food webs via the prey of seabirds [14].

Moreover, values changed within a few months, between the

arrival of seabirds and the sampling time, when all compartments

were active before the dry season. The time it takes for the isotopic

values of a prey to be incorporated into the tissues of the consumer

- i.e., the isotopic turnover – usually ranges from a week to several

months, depending on the species (for the tissues with a high

turnover rate, [15]). Similarly, from a multitrophic point of view,

we showed a d15N turnover of the ecosystem, that is, the time it

took for biovector-derived nutrients to be incorporated across the

entire trophic web (e.g. [42]). The ecosystem turnover found in our

study was unexpectedly rapid (e.g. a few months on Teuaua). It

should be noted that climate very likely influences the speed and

pathways of 15N’s transfer from guano to plants and/or soil. The

ecosystem turnover would, therefore, appear to depend not only

on trophic web length and complexity, but also on other

biogeographic factors, such as climate and substrate.

The Importance of the Spatial Scale
It should be taken into account that the mobility of biotic

vectors also affects the spatial influence of nutrient transport [6].

Indeed, the effects of nutrient input from seabirds may operate on

much larger spatial scales than that from animals with low within-

island mobility (e.g., marine turtles [8] and penguins [43]). Because

ammonia can be volatilized into the atmosphere from seabird

colonies and deposited at sites far removed from colonies, guano

deposition has been shown to have far-reaching effects [43,44]. In

contrast, our results showed the markedly localized effect of

isotopic enrichment by birds on Bagaud Island, where highly

significant differences in isotopic nitrogen values were recorded in

areas only 50–200 m apart (e.g., plants ,8%, Fig. 2). Most

previous studies considered the effects of seabirds at relatively

small spatial scales (i.e., within a colony or in an adjacent area) or

generalized enrichment patterns at the island scale, comparing

islands with and without seabirds (e.g. [25]). However, a few studies

suggest that examining larger scales within islands may reveal very

different patterns [21]. Our results demonstrate the importance of

the spatial scale, as well as the temporal scale, especially regarding

sampling selection, when defining the impact of seabirds on the

trophic web through stable isotopes.

Ecological Implications
The fact that seabirds modulatemultiple ecosystemcompartments

indirectly showsthat seabird-derivednutrientsplayamajorrole inthe

structure,dynamicsandabundanceof species.Forexample,asguano

increases plant and animal biomass and changes species composition

[18–21,45,46], itmightaffect high trophic levels (e.g., thecomposition

anddynamicsofanimalcommunities). Intheirreview,Kolbetal. [40]

revealed how the bottom-up effects of seabirds propagate up trophic

chains to increase populations of a variety of island consumers under

different environmental conditions. Thus, any fluctuation in the

populations of seabirds, or even in their marine prey, can lead to

important chain reactions in the overall functioning of the terrestrial

ecosystem. Much recent progress has been made regarding the

potential consequences of the widespread disappearance of seabirds,

especially as a result of the introduction of alien predators [13,47,48].

Fukami et al. [25], Wardle et al. [26] and then Mulder et al. [27]

showed how the presence or absence of seabirds, due to alien invasive

rodents, can alter entire communities and even favor the establish-

ment of new alien plants. In this context, there is an urgent need to

further investigate how current declines in seabird populations might

affect nutrient deposition or even have unanticipated top-down or

bottom-up consequences as a result of trophic cascades. Conversely,

large-scale demographic explosions, as in some seagull species [49],

can trigger substantial changes in the composition of island biotic

communities, for example by favoring the establishment of invasive

plants [49–53] or improving the survival of invasive rodents.

Knowledge on isotopic variations over time and space due to seabird

nutrient input will contribute to the interpretation of the seabirds’

potential role in ecosystem communities.

In the present study, using nitrogen isotope tracers, we

confirmed that the input of seabird-derived marine nutrients is

central to the dynamics of nitrogen isotopic values of the above-

ground trophic web. We have also shown that this influence is

detectable and variable at very small spatial and temporal scales.

Seabirds are only a biovector transferring nutrients from marine to

terrestrial ecosystems, so that changes in the latter depend on

changes in the former [24]. Further studies are needed to

understand the modalities of such isotopic transfers according to

biogeography and community characteristics. In this context,

islands can serve as potent tools towards a better understanding of

this key process.
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