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Purpose: To demonstrate feasibility of transceive phase mapping with the PLANET 
method and its application for conductivity reconstruction in the brain.
Methods: Accuracy and precision of transceive phase (ϕ±) estimation with PLANET, 
an ellipse fitting approach to phase‐cycled balanced steady state free precession 
(bSSFP) data, were assessed with simulations and measurements and compared to 
standard bSSFP. Measurements were conducted on a homogeneous phantom and in 
the brain of healthy volunteers at 3 tesla. Conductivity maps were reconstructed with 
Helmholtz‐based electrical properties tomography. In measurements, PLANET was 
also compared to a reference technique for transceive phase mapping, i.e., spin echo.
Results: Accuracy and precision of ϕ± estimated with PLANET depended on the chosen 
flip angle and TR. PLANET‐based ϕ± was less sensitive to perturbations induced by off‐
resonance effects and partial volume (e.g., white matter + myelin) than bSSFP‐based ϕ±. 
For flip angle = 25° and TR = 4.6 ms, PLANET showed an accuracy comparable to that 
of reference spin echo but a higher precision than bSSFP and spin echo (factor of 2 and 3, 
respectively). The acquisition time for PLANET was ~5 min; 2 min faster than spin echo 
and 8 times slower than bSSFP. However, PLANET simultaneously reconstructed T1, 
T2, B0 maps besides mapping ϕ±. In the phantom, PLANET‐based conductivity matched 
the true value and had the smallest spread of the three methods. In vivo, PLANET‐based 
conductivity was similar to spin echo‐based conductivity.
Conclusion: Provided that appropriate sequence parameters are used, PLANET de-
livers accurate and precise ϕ± maps, which can be used to reconstruct brain tissue 
conductivity while simultaneously recovering T1, T2, and B0 maps.
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1  |   INTRODUCTION

In MRI, the transceive phase represents the RF phase con-
tribution to the phase of the MR signal. In principle, the MR 
signal phase effectively corresponds to the transceive phase 
when measuring at TE = 0: at this TE, in fact, the MR sig-
nal phase is not affected by time‐dependent phase terms such 
as spectral shifts, off‐resonance variations, and gradient‐in-
duced eddy currents.1 As the name suggests, the transceive 
phase originates from RF transmission and reception pro-
cesses, which involve both transmit and receive chains of a 
MR system and the imaged sample (e.g., the human body), 
and is defined as the sum of the phases of the effective trans-
mit and receive magnetic fields (B+

1
 and B−

1
, respectively).2,3 

Ideally, the RF transmit magnetic field is circularly polarized 
to obtain maximum power efficiency in creating transverse 
magnetization. For a standard clinical MR scanner, this is typ-
ically realized by a quadrature drive of a 2‐channel birdcage 
body coil. For magnetic fields >1.5T, however, eddy currents 
(leading to RF attenuation) and displacements currents (lead-
ing to wave propagation effects) induced in the human body 
become significant and result in an elliptically polarized net 
transmit field, the amplitude and phase of which are spatially 
inhomogeneous.3-5 Similarly, these currents induced in the 
body during reception modulate the amplitude and phase of 
the RF receive field.3,6-8 The transceive phase, reflecting the 
spatial modulations in the phase of both B+

1
 and B−

1
, is there-

fore characterized by a spatially varying distribution.
The spatial modulation of the transceive phase is primar-

ily induced by the tissue conductivity, as can be derived from 
Helmholtz equation.9-11 This relationship has been validated 
in simulations3,12,13 and experimentally with MR electrical 
properties tomography (EPT).10,11,14-20 The transceive phase 
has been mapped extensively for conductivity reconstruction 
in different body sites (e.g., in brain,14,20-22 breast,23,24 liver,25 
pelvis26), especially because tissue conductivity maps hold 
relevant information for RF safety,17,18 diagnostics,27,28 and 
therapeutic applications.29-31

Besides conductivity mapping, transceive phase maps 
can also be beneficial for correction purposes in phase‐based 
quantitative applications such as QSM and MR thermometry. 
Peters and Henkelmann32 and Salim et al.33 showed that, under 
certain conditions, erroneous temperature measurements can 
occur in proton resonance frequency shift thermometry when 
transceive phase offsets caused by temperature‐dependent 
tissue conductivity are not compensated for. Kim et al.34 and 
Robinson et al.35 demonstrated that more accurate suscepti-
bility maps were obtained when the transceive phase was re-
moved from the phase image used for QSM processing.

Different MR sequences have been proposed for transceive 
phase measurement, generally spurred by EPT research: dual‐
echo gradient echo,19 multi‐echo gradient echo,34 UTE,36 
and zero‐TE (ZTE37), the latter two being more technically 

demanding (e.g. requiring high‐performance RF hardware to 
switch between transmit and receive38). However, spin‐echo 
(SE) is a more frequently used sequence for transceive phase 
mapping.17 SE is available for all clinical scanners and re-
turns accurate transceive phase estimates without the need to 
compensate for B0‐related phase contribution (as in multi‐/
dual‐echo gradient‐echo sequence). SE‐based techniques 
generally have longer acquisition times than short‐repetition‐
time gradient echo techniques. An alternative to SE is the 
balanced steady state free precession (bSSFP) sequence, the 
signal phase of which approximately reflects the transceive 
phase over a large spectral range. bSSFP is characterized 
by relatively high acquisition speed and high SNR, crucial 
for differentiation‐based EPT methods.25,39 Nevertheless, 
its sensitivity to particular off‐resonances results in band-
ing artefacts that compromise both the signal magnitude 
and phase. Methods to compensate these banding artefacts 
include acquiring phase‐cycled bSSFP,40-43 dynamic bSSFP 
with frequency shifts coupled with B0 map acquisition,44 and 
postprocessing methods.45

Recently, we have preliminarily shown a brain transceive 
phase map free from banding artefacts and off‐resonance 
contamination obtained with the PLANET method, a novel 
ellipse‐fitting approach on phase‐cycled bSSFP data.46,47 
Shcherbakova et al.48 originally implemented PLANET to re-
construct T1, T2, off‐resonance (Δf0) maps, and banding‐free 
magnitude image but recognized the potential of the method 
for EPT. In this study, we demonstrate how transceive phase 
maps can be retrieved with PLANET and investigate the at-
tainable accuracy and precision in the human brain. To this 
aim, we performed numerical simulations and MR experi-
ments on a phantom and on healthy volunteers. Moreover, we 
compared the transceive phase map obtained from PLANET 
with those acquired using conventional SE and bSSFP tech-
niques and the conductivity maps reconstructed from these 
transceive phase maps.

2  |   THEORY

2.1  |  The phase‐cycled bSSFP signal
A mathematical expression for bSSFP signal is described in 
the Appendix. Figure 1A,B shows the magnitude and phase 
profiles of a standard bSSFP signal (solid lines). The base 
period, comprised between the null points of the magnitude 
profile, can be defined as [(−2 TR)−1, (2 TR)−1]. Within 
this period, the region where the phase exhibits a plateau  
(i.e., [(−3 TR)−1, (3 TR)−1]) is called pass‐band region; 
the narrow transition band [±(3 TR)−1, ±(2 TR)−1], where 
both magnitude and phase vary rapidly, is normally known 
as stop‐band region. In the stop‐band region, the transverse 
magnetization vanishes, leading to banding artefacts in mag-
nitude and phase images.49
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Henceforth, we call standard bSSFP a bSSFP sequence 
with standard (0,π) RF phase alternation scheme and phase‐
cycled bSSFP a dynamic series of standard bSSFP acqui-
sitions in which each dynamic is acquired with an extra 
different phase increment Δθn added to the standard RF 
phase cycling scheme. The steady state, phase‐cycled signal 
in a voxel is expressed as43:

where Δ�n =
2�n

N
−� with n = {0,1,2 … N – 1} is the user‐ 

controlled nth RF phase increment, and N is the total number of 
RF phase increments. Note that Δθn = −π returns the standard 
bSSFP signal described in Appendix Equation A1. Nonetheless, 
for Δθn ≠ −π both magnitude and phase of the phase‐cycled 
bSSFP signal shift along the off‐resonance spectrum (dashed 
lines in Figure 1A,B). In the complex plane, the phase‐cycled 

bSSFP data lie on an ellipse for a voxel with only a single 
component following a Lorentzian frequency distribution 
(Figure 1C). Right after the RF pulse, this ellipse is rotated 
around the origin by an angle equal to the transceive phase (ϕ±), 
whereas it is rotated by an angle Ω (Equation A5) at the TE. 
For completeness, we mention that the elliptical signal shape 
might not be maintained if multiple components with different 
frequency distributions are present in the voxel.47

2.2  |  Estimation of the transceive phase ϕ± 
with bSSFP and PLANET

2.2.1  |  bSSFP
As shown in Figure 1B, bSSFP signal phase appears almost 
constant within the pass‐band region and shifts vertically by 
a quantity corresponding to ϕ± value. Thus, the transceive 
phase is generally approximated by the phase of bSSFP 

(1)In =KM ⋅e
−

TE

T2 ⋅

1−E2e−i(�0−Δ�n)

1−bcos
(
�0−Δ�n

) ⋅eiΩ,

F I G U R E  1   Schematic representation of bSSFP and phase‐cycled bSSFP signals at the time point equal to TE. A, Magnitude and B, phase of 
standard bSSFP signal (i.e., bSSFP sequence with a (0, π) phase cycling scheme) as a function of off‐resonance frequency (Δf0). The bSSFP signal 
was simulated for FA = 25°, TR = 5 ms, TE = TR/2, and tissue properties of WM at 3T (WM, T1 = 832 ms, and T2 = 80 ms). Two different values 
of transceive phase are considered: ϕ± = 0 rad (black) and ϕ± = −π/3 rad (green). Moreover, two different increments (Δθn) added to the phase 
of the RF pulse are shown: Δθn = −π rad (solid lines) and Δθn = 3π/4 rad (dashed lines). Changing the transceive phase value has no effect on the 
signal magnitude, but it vertically translates the signal phase of a quantity corresponding to ϕ±. When an increment Δθn ≠ −π is added to the phase 
of the RF pulse, the magnitude and phase of bSSFP signal shift with frequency. Note that an increment Δθn = −π rad (solid lines) corresponds to 
the profile of a standard bSSFP signal. C, Phase‐cycled bSSFP signal in the complex plane for a voxel with ϕ± = 0 rad, Δf0 ≠ 0 Hz, and increment 
Δθn = 2nπ/10 − π with n = {0,1,2…9}. Right after the RF pulse excitation, the phase‐cycled data points (coloured dots) lie on the orange ellipse. 
At TE, the elliptical signal (in blue) is rotated by an angle Ω. The geometrical center of the ellipse is indicated by C. bSSFP, balanced steady state 
free precession; FA, flip angle; T, Tesla; WM, white matter
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signal (whereas all other phase contributions in bSSFP phase 
image ∠I0 =∠(1−E2e−i(�0+�)) ⋅eiΩ [Equation A1] are nor-
mally neglected).

2.2.2  |  PLANET
PLANET applies a linear least squares fit, specific to ellipses, 
in the complex plane to steady state phase‐cycled bSSFP data 
using the signal model defined in Equation 1.48 This model 
assumes a Lorentzian single‐component relaxation model. To 
fit the ellipse coefficients in PLANET, at least N = 6 dynam-
ics with different RF phase increments are required.48 The 
PLANET method reconstructs T1, T2, a banding‐free image, 
B0‐related off‐resonances (Δf0) and ϕ± from the shape and 
rotation of the ellipse (Figure 1C).

When B0 drift is assumed negligible and when eddy‐cur-
rent effects are compensated for, the terms ϕdrift and ϕeddy drop 
out from the rotation angle Ω in Equation A5, yielding:

Both Ω and Δf0 in Equation 2 can be independently es-
timated from the fitting procedure (see steps 2 and 4 in ref-
erence 48). Hence, PLANET‐based transceive phase can be 
obtained by subtracting these two terms.

3  |   METHODS

We performed Bloch simulations and MR experiments on 
a phantom and on healthy volunteers to study the accuracy 
and precision of the transceive phase retrieved with PLANET 
method. PLANET performance to map the transceive phase 
was compared to the performance of a standard bSSFP se-
quence. Moreover, the experimental transceive phase maps 
obtained with PLANET, bSSFP and the reference SE were 
compared and used to reconstruct conductivity maps.

3.1  |  Simulations
A phase‐cycled bSSFP sequence with standard (0,π) RF al-
ternation scheme and N = 8 additional RF phase increment 
steps (Δ�n =

2�n

8
−�, with n = {0,1,2…7}), as in reference 47,  

was implemented in MatLab (R2015a, MathWorks, Natick, 
MA) with a Bloch simulator.50 Input parameters for the 
Bloch simulation comprised sequence parameters (flip angle 
[FA], TR) and voxel characteristics (Δf0, ϕ±, T1, and T2). 
Rectangular‐shaped RF pulses and balanced readout gradi-
ents were used. Phase encoding and slice selection gradients 
were not included. The simulation output was a phase‐cy-
cled bSSFP complex signal evaluated at TE after each RF 
pulse. The signal was considered at steady state after 3·T1/TR 
RF pulses. By applying the PLANET method to this simu-
lated phase‐cycled complex signal, the transceive phase for 

PLANET was retrieved. The standard bSSFP signal was ob-
tained from phase‐cycled bSSFP data at Δθn = −π, the phase 
of which returned bSSFP‐based transceive phase.

Five simulation cases were performed to study the perfor-
mance of bSSFP and PLANET in estimating ϕ± (see Table 1).  
Four Monte Carlo simulations (simulations I→ IV) evaluated 
the accuracy and precision of transceive phase values obtained 
with bSSFP and PLANET as a function of sequence settings 
(FA and TR in simulations I and III; N in simulation IV),  
tissue relaxation properties (T1 and T2 in simulation IV),  
and other parameters (Δf0 and ϕ± in simulation II). In 
simulations I, II and III, the relaxation times representing 
white matter (WM) at 3T were used (T1 = 832 ms and T2 =  
80 ms.51). In simulations I, II and IV the transceive phase 
and off‐resonance frequency (fixed parameters) (Table 1) 
were selected based on the representative experimental 
values found at 3T in WM in a central portion of the FOV. 
Simulations I and III differed in the relaxation model used: in 
simulation I, only the single (Lorentzian) frequency distribu-
tion of WM was present in the voxel, whereas simulation III 
included also a second, smaller component—myelin water—
and gives an example of a commonly used, more com-
plex model of human WM tissue47,52-55 (details in Table 1,  
assumed field strength: 3T). For all four cases, Gaussian 
noise was added independently to both real and imaginary 
parts of the simulated phase‐cycled signal (noise SD ς = 10, 
with M0 = 10000), prior to PLANET postprocessing, and the 
total number of Monte Carlo iterations (Z) was 10,000.

Because PLANET method relies on data in the steady state 
regime,48 the effect of RF dummy pulses on the transceive 
phase was investigated in simulation V, where a noiseless 
phase‐cycled bSSFP signal was simulated for a voxel contain-
ing cerebrospinal fluid (CSF) at 3T. Because of its long T1 
and T2, CSF demands the highest number of dummy pulses to 
reach steady state.

3.2  |  Measurements
Phantom and in vivo MR experiments were performed on a 
3T clinical scanner (Ingenia, Philips, Best, The Netherlands) 
with the body coil for transmission and a 15‐channel head 
coil for reception. The vendor‐specific Constant Level of 
Appearance (CLEAR) option was enabled to obtain trans-
ceive phase maps free from the complex receive sensitivity 
of the head coil; this emulates the situation in which the body 
coil was used in quadrature mode for both transmission and 
reception.56 For both phantom and in vivo measurements, we 
used a 3D phase‐cycled bSSFP sequence with the following 
parameters: FOV = 240 × 240 × 60 mm3, voxel size = 2.5 ×  
2.5 × 2.5 mm3, 8 phase increments (Δ�n =

2�n

8
−�, with  

n = {0,1,2…7}), FA = 25°, TE = 2.3 ms, TR = 4.6 ms. To 
minimize transient effects, a series of 2170 dummy pulses 
was applied before each phase‐cycled bSSFP acquisition; 

(2)Ω=2�Δf0TE+�±.
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thus, the scan time increased from 2:46 min to 5:20 min. 
We employed a 2D multi‐slice SE sequence as a reference 
method for transceive phase mapping because it is generally 
recognized to provide accurate ϕ± values.16,17 With the same 
FOV and voxel size, SE settings were: TE/TR = 5.2/1100 
ms (scan time: 7:16 min). Both phase‐cycled bSSFP and SE 
acquisitions were repeated with opposed readout gradient po-
larities to allow compensation of eddy current effects (see 
Postprocessing). A reference Δf0 map was acquired in each 

session with 3D dual‐echo spoiled gradient‐echo sequence 
(FA = 60°, TE1/TE2/TR = 2.3/4.6/30 ms).

Phantom experiments involved a cylindrical phantom 
(diameter and length: 12 cm) filled with water, 5.1g/L NaCl, 
and agar (2% w/v). The resulting homogeneous composi-
tion had a conductivity value within the physiologic range 
for the whole brain,57 σ = 0.85S/m, which was measured 
with a dielectric probe (85070E, Agilent Technologies, 
Santa Clara, CA).

T A B L E  1   Overview of simulation cases performed

Name of Simulation Type of Simulation Fixed Parameters Variable Parameters Figurea Purpose

Simulation I Monte Carlo T1 = 832 ms Δf0 = [0; 15; 30] Hz 2, 3, S1, S2 Evaluate e�± and ��± as a 
function of FA and TR for 
a single component voxel 
in on‐resonance and off‐
resonance conditions

T2 = 80 ms FA = [0 → 90]°

ϕ± = ‐π/3 rad TR = [3 → 33] ms

N = 8

Simulation II Monte Carlo T1 = 832 ms Δf0 = [‐100 →100] Hz 2 Evaluate e�± and ��± as a 
function of Δf0 and ϕ± for 
a single component voxel

T2 = 80 ms ϕ± = [‐π/2 → π/2] rad

FA = 25 °

TR = 4.6 ms

N = 8

Simulation III Monte Carlo N = 8 Δf0,1 = [0; 15] Hz 2, 3, S1, S2 Evaluate e�± and ��± as a 
function of FA and TR 
for a 2‐component voxel 
in on‐resonance and off‐
resonance conditions. The 
2 components considered 
were WM (1st component, 
with WM fraction w1) and 
myelin (2nd component, 
with myelin fraction w2)

1st component Δf0,2 = [20; 35] Hz

T1,1 = 832 ms FA = [0 → 90]°

T2,1 = 80 ms TR = [3 → 33] ms

ϕ±
1 = ‐π/3 rad (Δf0,2 = Δf0,1 + CS)

w1 = 0.88

2nd component

T1,2 = 400 ms

T2,2 = 20 ms

ϕ±
2 = ‐π/3 rad

CS = 20 Hz

w2 = 0.12 = (1 ‐ w1)

Simulation IV Monte Carlo Δf0 = 0 Hz T1 = [100 → 4000] ms 4 Calculate C�± as a function 
of T1 and T2 and as a 
function of N

ϕ± = ‐π/3 rad T2 = [20 → 500] ms

FA = 25° N = [6→10]

TR = 4.6 ms

Simulation V Simple (noise‐free, 
1 iteration)

T1 = 3858 ms #RF = [500→2500] S3 Evaluate e�± as a function 
of #RFT2 = 500 ms #RF: number of RF 

dummy pulsesΔf0 = 15 Hz

ϕ± = ‐π/3 rad

FA = 25°

TR = 4.6 ms

N = 8

Note: All parameters values are at 3T.
FA = flip angle; T = tesla; S, supporting information figure; WM = white matter.
aSupporting Information Figures S1 and S2 present results for simulation I for the cases of Δf0 = 0 Hz and Δf0 = 30 Hz, as well as the results for simulation III for the 
case of Δf0,1 = 0 Hz (and Δf0,2 = 20 Hz). 



      |  595GAVAZZI et al.

Two independent phantom experiments were conducted 
by changing the B0 shimming options to prove the robustness 
of PLANET‐based transceive phase estimation against off‐ 
resonance effects. In the first experiment (experiment I), a vol-
umetric B0 shimming within the FOV was guaranteed; in the 
second experiment (experiment II), a first‐order field varia-
tion was enforced by activating the y‐shimming gradient (with 
intensity of 0.3 mT/m). A third experiment (experiment III)  
investigated the effect of different RF phase increment steps 
(N = 6,8,10) on the transceive phase and conductivity.

In vivo brain measurements were approved by the local 
institutional review board. Images were obtained from 3 
healthy volunteers whose written informed consent was ob-
tained beforehand.

3.3  |  Postprocessing
Several postprocessing steps were performed in MatLab on 
the acquired phase‐cycled bSSFP and SE signals to obtain 
transceive phase and conductivity maps. First, a method 
based on local subvoxel shifts was employed to correct each 
signal for Gibbs ringing.58 Then, the phase images from the 
two signals acquired with opposed readout gradient polar-
ity were averaged to minimize the phase contribution due to 
eddy currents (ϕeddy) (see Equation A5). At this point, SE‐ 
and bSSFP‐based transceive phase maps were obtained. To 
retrieve PLANET‐based transceive phase map, the PLANET 
method was applied to both phase‐cycled bSSFP acquisi-
tions, and the resulting transceive phase maps were then av-
eraged. If phase wraps appeared, the transceive phase maps 
were unwrapped by adding a 2π‐offset to phase wraps with 
an in‐house region‐growing algorithm. Finally, the trans-
ceive phase mean value, calculated in the central slice, was 
subtracted from the transceive phase map for each method 
to exclude potential global phase constant offsets deriv-
ing arbitrarily from the scanner’s data acquisition chain. 
Subtracting the mean value will not influence the conductiv-
ity reconstruction, the latter being a derivative‐based method 
that neglects any global offset. For brain data, all phase‐cy-
cled images were rigidly registered to SE images after Gibbs 
ringing correction to reduce the impact of potential interscan 
head motion during the scan session.

Conductivity maps were reconstructed based on these ex-
perimental transceive phase maps. For conductivity recon-
struction, a conventional Helmholtz‐based, phase‐only EPT 
method was applied (Laplacian operator: noise‐robust kernel 
of 7 × 7 × 3 voxels19,59), and the transceive phase assumption 
was used.15,16,18,19

3.4  |  Accuracy
We define accuracy as the error between the estimate of the 
transceive phase and the true (or reference) transceive phase. 

For all Monte Carlo simulations (simulations I→IV), the ac-
curacy was calculated as the difference (e�±) between bSSFP‐ 
or PLANET‐based transceive phase estimate averaged over 
all Z iterations (𝜙± =

1

Z

∑Z

i=1
𝜙±

i
) and the true value �±

true
 (e�± 

effectively corresponds to a systematic error60):

In measurements, knowledge on the true value is lack-
ing. Thus, the accuracy was assessed by the difference Δ�± 
between bSSFP‐ or PLANET‐based transceive phase and 
the transceive phase acquired with SE, which is commonly 
recognized as a reference sequence for transceive phase 
mapping.16

3.5  |  Precision
We define precision as the inverse of the uncertainty of the 
estimated transceive phase. The uncertainty of the transceive 
phase is represented by its SD. We denote the uncertainty  
(or SD) of the transceive phase with ��± to avoid confusion 
with the conductivity symbol σ.

In simulations I→IV, the uncertainty ��± was calculated 
as the SD of the transceive phase estimated with bSSFP or 
PLANET over all Z iterations (��± corresponds to a random 
error):

Typically, in experiments the uncertainty of a phase 
image Φ is approximated with �Φ ≅SNR−1

magnitude
. Such 

approximation holds for phase images that are directly 
acquired with any sequence and for noise levels significantly 
smaller than the signal magnitude.61 Hence, it could be appli-
cable for bSSFP‐based transceive phase but not for PLANET 
because of the fitting procedure on the acquired signals used 
to retrieve ϕ±. Assessing analytically the noise propagation 
related to PLANET fitting is difficult; thus, we followed an 
empirical approach that ultimately leads to determining the 
experimental ��±. For this purpose, we performed Monte 
Carlo simulation IV (Table 1), where we related the “true” 
transceive phase uncertainty calculated with Equation 4, 
which can only be assessed in simulation, to the “theoretical 
uncertainty 𝜍̃𝜙± ,” which was based on the aforementioned 
approximation by Gudbjartsson and Patz61 and can be 
assessed in both simulations and measurements. The theoret-
ical uncertainty was defined as:

where √2 accounts for the averaging operation performed 
to retrieve an eddy‐current–free transceive phase map  

(3)e𝜙± = ||𝜙±−𝜙±
true

|| .

(4)𝜍𝜙± =

�∑Z

i=1

�
𝜙±

i
−𝜙±

�2

Z
.

(5)𝜍̃𝜙± =
�√

2 ⋅ SNRmagnitude

�
,−1
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(see Postprocessing section). The SNRmagnitude was calculated 
according to the definition of Björk et al.41:

where |In(Δθn)| is the magnitude of the nth phase‐cycled bSSFP 
signal, ς is the SD of the Gaussian noise level (ς =10) and N is 
the number of phase‐cycled bSSFP acquisitions (N = 8).

The simulated true and theoretical uncertainties were 
compared by computing their ratio C±

𝜙
=

𝜍±
𝜙

𝜍̃±
𝜙

. C�± accounts for 

the increase/reduction in the transceive phase noise level oc-
curring during postprocessing (e.g., PLANET fitting) since 
the noise propagation attributed to the acquisition is already 
considered in 𝜍̃𝜙± (for which case, C�± =1). For minimum un-
certainty, C�± →0.

Based on the values for C�± found in this simulation, we 
assessed the uncertainty ��± in experiments with Equation 7:

The experimental SNRmagnitude in Equation 7 was calcu-
lated by averaging the SNR maps relative to all phase‐cy-
cled images, which conceptually corresponds to Equation 6. 
These SNR maps were obtained with Kellman and McVeigh’s 
method.62

4  |   RESULTS

4.1  |  Simulation results

4.1.1  |  Simulations I and II
The accuracy of the transceive phase, identified by the error 
e�±, estimated with bSSFP and PLANET in a voxel contain-
ing WM tissue, is illustrated in Figure 2 and in Supporting 
Information Figure S1. In bSSFP, the error e�± was 0 on‐
resonance (Δf0 = 0 Hz) (Supporting Information Figure S1) 
and was independent from FA. Nevertheless, it varied de-
pending on the combination of Δf0 and TR: for example, e�± 
≈ 0.11 rad (i.e., ~10.5% of �±

true
 = −π/3 rad) was obtained at 

TR = 17 ms ( 1

4Δf 0

, thus within the pass‐band region) (Figure 2) 

for Δf0 = 15 Hz and at TR = 11 ms ( 1

3Δf 0

, i.e., the cutoff for 

stop‐band) (Supporting Information Figure S1) for Δf0 =  
30 Hz. In general, the error rapidly increased following a 
sigmoidal curve for TRs > 1

4Δf 0

. Differently, in PLANET the 

error was 0 for any TR < 1

2Δf 0

 and any FA > FAErnst, where 

FAErnst = arccos
(
exp

(
−TR∕T1

))
 is the minimum FA for 

which the ellipse does not collapse,40 thus hindering 
PLANET fitting approach (Figure 2 and Supporting 
Information Figure S1). For TRs ≈ 1

2Δf 0

, the error exceeded 

0.50 rad for FA > 50° (e.g., at TR ≈ 17 ms for Δf0 = 30 Hz) 
(Supporting Information Figure S1). For the fixed parame-
ters used in MR experiments (i.e., FA = 25° and TR = 4.6 
ms, simulation II), the following errors were obtained: e�± ≤ 
0.03 rad for Δf0 < 1

4TR
= 50 Hz and e�±> 0.05 rad for  

Δf0 > 1

3TR
 ≈ 73 Hz for bSSFP, whereas no error was ob-

served for any Δf0 in PLANET.
The uncertainty of the transceive phase (��±) estimated 

with bSSFP and PLANET is shown in Figure 3 and 
Supporting Information Figure S2. Because of their inverse 
relationship, ��± and SNR shared similar patterns for both 
methods. The uncertainty ��± in bSSFP presented a 
TR‐invariant distribution at Δf0 = 0 Hz, with lowest values 
for FA = [25‐45]°. A pronounced TR‐dependence was 
observed for increasing values of Δf0, which reflected the 
transition of the signal magnitude from pass‐band to stop‐
band region. Approaching TR ≈ 1

2Δf 0

 reduced the range of 

FAs generating lowest ��± values (Figure 3 and Supporting 
Information Figure S2). In PLANET, an almost TR‐invariant 
��± was observed for any Δf0, and the highest precision  
(i.e., lowest ��±) was found for FA = [18‐30]°. In this FA 
range, the uncertainty ��± in PLANET was approximately 
half the uncertainty in bSSFP.

4.1.2  |  Simulation III
The accuracy and precision of transceive phase estimation 
can change when a voxel contains multiple components 
with different relaxation times and frequency distributions. 
Results are presented for a voxel including WM as the domi-
nant component and myelin water as the second component, 
in an often used ratio to model human WM tissue.47,52-55 
With respect to the case of single WM component, the uncer-
tainty patterns were mildly affected (Figure 3 and Supporting 
Information Figure S2), but the error distribution varied 
(Figure 2 and Supporting Information Figure S1). For this 
specific example case, e�± increased for longer TRs in both 
bSSFP and PLANET and slightly increased for smaller FAs 
in bSSFP. For FA = 25° and TR = 4.6 ms (used in experi-
ments), bSSFP was more sensitive than PLANET to myelin 
presence when Δf0,1 = 15 Hz (e�±= 1.4∙10−2 rad vs. e�±= 
5.8∙10−3 rad) (Figure 2), but was less sensitive when Δf0,1 = 
0 Hz (e�± = 3.8∙10−3 rad vs. e�±= 5.5∙10−3 rad) (Supporting 
Information Figure S1).

4.1.3  |  Simulation IV
Figure 4 depicts the constant C�±, used in Equation 7 to es-
timate ��± experimentally, as a function of relaxation times. 
Ideally, C�± →0 to minimize the uncertainty in ϕ±. Figure 4 
shows that C�±=1 for bSSFP, meaning that all the noise 
propagation in bSSFP transceive phase was explained by the 

(6)SNRmagnitude =

∑N−1

n=0
�In

�
Δ�n

�
�

N ⋅�
,

(7)𝜍𝜙± =C𝜙± ⋅ 𝜍̃𝜙± =C𝜙± ⋅

�√
2 ⋅SNRmagnitude

�−1

.
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theoretical uncertainty (Equation 5). This theoretical uncer-
tainty holds true for phase images directly acquired from any 
sequence1,61: a requirement fulfilled by bSSFP transceive 
phase. Differently, C�± varied as a function of T1 and T2 in 
PLANET (0.42 ≤C�± ≤0.44 for T1 and T2 of brain tissues 
at 3T, with FA = 25°, TR = 4.6 ms, and N = 8) and under-
lines that during PLANET processing the impact of noise on 
the transceive phase is approximately halved with respect to 
standard bSSFP. This agrees with the abovementioned ��± 

results found in simulation I. Based on these results, C�±=1 
for bSSFP and C�±= 0.43 for PLANET were used to calculate 
the experimental uncertainty ��± (Equation 7). Figure 4 also 
illustrates that the constant C�± for PLANET decreased for all 
three brain tissues when the number of RF phase increments 
was increased, showing larger values and variability for N < 8.  
On average, 0.39≤C�± ≤0.50 for 6≤N ≤10 with FA = 25° 
and TR = 4.6 ms. Changing N did not affect PLANET accu-
racy (e�± ≤ 2∙10−4 rad for any N, not shown).

F I G U R E  2   Accuracy of transceive 
phase estimation for bSSFP (first column) 
and PLANET (second column): results from 
simulations I (first row), II (second row), 
and III (third row). Simulation I: e�± as a 
function of FA and TR; input Δf0 = 15 Hz 
and ϕ± = −π/3 rad. Simulation II: e�± as a 
function of Δf0 and ϕ±; FA = 25° and TR = 
4.6 ms. For both simulations I and II: single 
component with T1 = 832 ms and T2 =  
80 ms. Simulation III: e�± as a function of 
FA and TR for a 2‐component voxel. First 
component: WM, input Δf0,1 = 15 Hz,  
ϕ±

1 = −π/3 rad, T1,1 = 832 ms, T2,1 =  
80 ms, and w1 = 0.88. Second component: 
myelin, input Δf0,2 = 35 Hz (CS = 20 Hz), 
ϕ±

2 = −π/3 rad, T1,2 = 400 ms, T2,2 =  
20 ms, and w2 = 0.12. CS, chemical shift

F I G U R E  3   Precision of transceive phase estimation for bSSFP (left) and PLANET (right): results from simulations I (first row) and III 
(second row). Image SNR (as calculated in Equation 6) and the transceive phase uncertainty ��± (as calculated in Equation 4) are shown as a 
function of FA and TR. The input parameters used for both simulation cases coincide with the ones reported in caption of Figure 2
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4.1.4  |  Simulation V
Because transient effects can compromise the accuracy of 
ϕ±, predominantly in tissues with long relaxation times such 
as CSF, the number of RF dummy pulses should be taken into 
account in bSSFP and PLANET. Supporting Information 
Figure S3 shows that the rotation (and shape) of the fitted 
ellipse changed with respect to the steady state case (2500 
pulses) when the number of dummy pulses was low. For 
our experimental settings, minimal variations in the ellipses 
were observed beyond 1250 dummy pulses. The transceive 
phase error right after 1250 dummy pulses was 3∙10−3 rad for 
PLANET and 1∙10−3 rad for bSSFP (Supporting Information 
Figure S3B). This error remained stable for bSSFP, whereas 
it decreased to 2∙10−4 rad for PLANET after 2500 pulses.

4.2  |  Measurement results

4.2.1  |  Phantom experiments
Phantom transceive phase maps are shown in Figure 5 for 
experiments I and II. In experiment I, a peripheral band-
ing artefact occurred in bSSFP‐based transceive phase 
map in the region where Δf0 > 80 Hz (Figure 5A,L). The 
corresponding Δ�± map displayed a spatially varying dis-
tribution, with a 0.10 rad underestimation at the phantom 
periphery (Figure 5J). The ϕ± profiles in Figure 5E,L,N 
show that in the banding‐free part of the phantom the trans-
ceive phase curvature in bSSFP was slightly smaller than 
in SE and PLANET, which resulted from a spurious phase 
contamination induced by Δf0 (in the order of ~0.02 rad), 
as already predicted in simulation II (Figure 2). PLANET‐
based transceive phase map slightly underestimated 
the reference SE ϕ± distribution by on average 0.03 rad  
(Figure 5B,K,L). A similar transceive phase map was 
obtained with PLANET when a linear Δf0 variation 

was enforced using the shim gradient (experiment II) 
(Figure 5G,M), which demonstrated the robustness of 
PLANET against off‐resonance effects. Differently, 
bSSFP‐based transceive phase map (after unwrapping) dis-
played banding artefacts in correspondence of stop‐band 
transition regions. These artefacts could not be resolved 
by the unwrapping procedure (Figure 5F,M). Furthermore, 
both bSSFP‐ and PLANET‐based transceive phase maps 
suffered from an offset (Figure 5J,K) caused by residual 
eddy current effects that were not fully compensated for by 
averaging two acquisitions with opposed readout polarity. 
In fact, as depicted in Supporting Information Figure S4, the 
linear phase accrual (along the readout direction) induced 
by eddy current effects in one acquisition was slightly 
asymmetric with respect to the phase gradient appearing 
in the acquisition with reversed gradient polarity. Possible 
reasons for this asymmetric behaviour could be small 
variations of Δf0 occurring between the two acquisitions  
(~5 min apart) or slight changes in the preparatory calibra-
tion steps performed before each acquisition.

Results from experiment III, illustrated in Supporting 
Information Figure S5, showed that the accuracy of PLANET‐
based transceive phase was unaffected by the number of 
RF phase increments, N. In experiment III, a banding‐free 
bSSFP transceive phase map was obtained. The correspond-
ing Δf0 map resembled the Δf0 distribution of experiment I 
but showed a less‐pronounced variation at the phantom pe-
riphery. Nevertheless, Supporting Information Figure S5K 
confirms that the transceive phase curvature in bSSFP was 
smaller than in SE, as already observed in Figure 5E,N.

The transceive phase uncertainty in PLANET was ap-
proximately half the uncertainty in bSSFP for both phantom 
and in vivo WM (Figure 6A). In Figure 6A, also the trans-
ceive phase uncertainty for SE is reported, which was 3 and 
1.5 times higher than bSSFP uncertainty for phantom and 
WM, respectively. Figure 6B shows that the acquisition time 

F I G U R E  4   Factor C�±: results from simulation IV. C�± maps for bSSFP (left) and PLANET (center) as a function of T1 and T2. Factor C�± for 
PLANET (right) as a function of N phase increment steps for CSF, GM, WM (CSF T1/T2 = 3858/500ms, GM T1/T2 = 1331/110 ms, WM T1/T2 = 
832/80 ms51) and an average among these three tissues. Simulation IV: input Δf0 = 0Hz, ϕ± = −π/3 rad, FA = 25°, TR = 4.6 ms, and Δθn = 2nπ/N –  
π with n = {0,1,2…N–1}. C�± maps were obtained with N = 8 phase increment steps. CSF, cerebrospinal fluid; GM, gray matter
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of phase‐cycled bSSFP needed for PLANET was longer than 
bSSFP of a factor N (in this case, N = 8). Still, this time was 
2 min faster than SE acquisition. Using the ��± reported in 
Figure 6A for WM and the scan time in Figure 6B, we calcu-
lated the precision‐per‐unit‐time ( 

((
��± ⋅ t

)−1
)
) shown in 

Figure 6C: the precision‐per‐unit‐time for PLANET was 4 
times lower than for bSSFP and 8.5 times higher than for SE.

The ��± trends in the phantom (Figure 6A) were also reflected 
in the conductivity maps presented in Figures 7 and S5: SE‐
based conductivity map was visually noisier than bSSFP‐based 
and PLANET‐based conductivity maps, whereas PLANET‐
based conductivity appeared least noisy. Quantitatively, the 
lowest conductivity SD was found in PLANET, although  
the conductivity SD values were of the same order of mag-
nitude in all methods. Similarly, a rather mild decrease of 
conductivity SD with increasing N was found in Supporting 
Information Figure S5, which is line with the simulated trend of 
C�± portrayed in Figure 4. Moreover, in all conductivity maps, 
the effect of Gibbs ringing at phantom periphery was ampli-
fied. In both Figure 7 and Supporting Information Figure S5, 
the median values (reported in the boxplot) for both PLANET‐
based and SE‐based conductivity were close to the true value. 
In bSSFP, the median conductivity was underestimated in both 
experiments I and III, which was caused by the aforementioned 
smaller curvature of the observed transceive phase.

4.2.2  |  In vivo brain experiments
Transceive phase and conductivity results for volun-
teer 1 are presented in Figures 8 and 9, and Supporting 
Information Figure S6. Figure 8 highlights that PLANET 
reconstructed T1, T2, and Δf0 maps, besides ϕ±. The trans-
ceive phase maps from bSSFP and PLANET globally re-
sembled the reference SE map (Figure 8). Maps for ��± 
showed larger uncertainty in SE, which agreed with the 
phantom data (Figure 6). The Δ�± maps in Figure 9 did 
reveal a smoother distribution in PLANET than in bSSFP. 
In particular, perturbations in bSSFP were observed, for 
example, near the genu of corpus callosum in the frontal 
lobe (Δ�± > 0.04 rad) and in the posterior lobe. The error 
in proximity of the corpus callosum could be associated 
with Δf0, which rapidly exceeded 50 Hz (≈ 1

4TR
), and car-

diac pulsation transferred to the neighbouring CSF.63 The 
origin of the slight artefact in the right posterior lobe is 
unclear; this artefact, nevertheless, was absent in PLANET 
(Figure 8D). Moreover, in both methods a residual phase 
accumulation (with a peak value of ~0.06 rad) was found 
in the left side of the frontal lobe (Figure 9). Similarly to 
the phantom case, this residual phase appeared because the 
asymmetric linear phase gradients induced by eddy cur-
rents in both acquisitions did not completely cancel out 
when averaging was performed (Supporting Information 

F I G U R E  5   Accuracy of transceive phase estimation for bSSFP and PLANET. Results from phantom MR experiments are shown. 
Experiment I: volume‐based shimming (A‐E, J‐L, N); Experiment II: linear shimming of y‐gradient (F‐I, M). Isotropic voxel size: 2.5 mm. 
Transceive phase maps (ϕ±) obtained from: (A,F) bSSFP, (B,G) PLANET, and (C,H) SE (reference method) after unwrapping. (D,I) Δf0 maps. 
(E) Transceive phase profiles of bSSFP (blue), PLANET (red), and SE (black), calculated on the central horizontal line (dashed line in (D)) 
for experiment I. (J) Δ�± for bSSFP, defined as �±

bSSFP
−�±

SE
, based on transceive phase maps (A) and (C). (K) Δ�± for PLANET, defined as 

�±
PLANET

−�±
SE

, based on transceive phase maps (B) and (C). (L) Transceive phase profiles, calculated on the central horizontal line (dashed line 
in (D)), as a function of Δf0 for experiment I (A‐D). (M) Transceive phase profiles, calculated on the central vertical line (dashed line in (I)), as a 
function of Δf0 for experiment II (F‐I). The legend is the same as in (L). (N) Δ�± profiles for Δ�± bSSFP (blue) and Δ�± PLANET (red) calculated on 
the central horizontal line (dashed line in (D)) for experiment I. SE, spin echo



600  |      GAVAZZI et al.

F I G U R E  6   Precision, acquisition time, and precision‐per‐unit‐time of transceive phase estimation for bSSFP PLANET and SE. A, 
Transceive phase precision: mean values of transceive phase uncertainty ��± are reported along with the SD (error bars). Isotropic voxel size: 2.5 
mm. The transceive phase uncertainty ��± was calculated with Equation 7 in the phantom (empty square) and in WM (full square) of volunteer 3 
(C�±= 1 for bSSFP and SE, C�±= 0.43 for PLANET). WM was segmented using MICO segmentation method.70 Voxels of the central slice were 
used for ��± calculation in both cases. B, Total acquisition time for the three methods (i.e., including both acquisitions with opposite readout 
gradient polarity). In bSSFP and PLANET, the time spent for both the dummy pulses and the actual acquisition is shown (a series of ~2170 dummy 
RF pulses, corresponding to ~10 s, was added before each phase‐cycled bSSFP acquisition). C, Precision‐per‐unit‐time for the three methods, 
calculated as 

(
��± ⋅ t

)−1, by using ��± values for WM in (A) and the total time t in (B). MICO, multiplicative intrinsic component optimization; pput, 
precision‐per‐unit‐time

F I G U R E  7   Phantom conductivity based on bSSFP, PLANET, and SE (reference) methods from experiment I. Conductivity maps 
reconstructed from transceive phase maps estimated with A, bSSFP, B, PLANET, and C, SE in experiment I. The transceive phase maps used 
for conductivity reconstruction are shown in Figure 5 (A‐C). D, Boxplot of conductivity values, evaluated in the circular ROI (shown in magenta 
color in (C)) in the central slice of the phantom. The ROI was based on thresholding on SE magnitude image followed by erosion to exclude EPT 
boundary errors. The true conductivity value, as measured by the dielectric probe, is shown with a black dashed line. EPT, electrical properties 
tomography; ROI, region of interest
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Figure S6). Supporting Information Figure S6 also shows 
that Helmholtz‐based conductivity maps reconstructed on 
the single acquisition with one gradient polarity differed 
slightly from the conductivity map retrieved from their 
average (as already observed in the phantom, Supporting 
Information Figure S4). However, for all methods the 
conductivity maps had comparable quality and enhanced 
the errors present in the corresponding transceive phase 
maps, as expected. Distortions in bSSFP conductivity were 
found in correspondence of the abovementioned locations 
(Figure 8I and Δ� in Figure 9). The SE‐based conductiv-
ity exhibited errors in proximity of vessels, attributed to 
inflow artefacts appearing in its underlying transceive 
phase map (due to SE 2D spatial encoding). All conductiv-
ity maps showed errors in CSF; these were more prominent 
for bSSFP and PLANET, likely because of mild phase dis-
turbances caused by CSF pulsation.63 Similar results were 

observed for the other volunteers (Supporting Information 
Figure S7). In volunteer 2, nonetheless, bSSFP‐ and 
PLANET‐based conductivity maps were almost alike 
(Supporting Information Figure S7E,F). Interestingly, less 
spatial fluctuations were found in bSSFP‐based ϕ± and 
Δ�± maps, and a smooth Δf0 map was acquired, the val-
ues of which were within the pass‐band region (Supporting 
Information Figure S7H).

5  |   DISCUSSION

In this study, we introduced a novel technique to map the 
transceive phase ϕ±, the PLANET method, an ellipse fitting 
approach to phase‐cycled bSSFP data. We studied accuracy 
and precision of its ϕ± estimates in brain with simulations 
and MR measurements and compared these to ϕ± acquired 

F I G U R E  8   In vivo brain results for volunteer 1, obtained with bSSFP (first column), PLANET (second column), and SE (reference, 
third column) methods. Isotropic voxel size: 2.5 mm. Transceive phase maps (ϕ±) obtained from (A) bSSFP, (B) PLANET, and (C) SE after 
unwrapping. (D) Δf0 map obtained with PLANET. Maps of the transceive phase uncertainty (��±) for (E) bSSFP, (F) PLANET, and (G) SE. The 
��± for SE was calculated with Equation 7, C�±= 1, being SE‐based ϕ±‐map directly acquired. Note the different colorbar in (G) with respect to 
(E) and (F). (H) T1 map obtained with PLANET. Conductivity maps based on (I) bSSFP, (J) PLANET, and (K) SE, reconstructed from transceive 
phase maps shown in (A‐C) respectively. (L) T2 map obtained with PLANET. Note that T1 and T2 maps are expected to suffer a ~20% to 25% bias 
because the TR used in this study (4.6 ms) was specifically chosen for transceive phase mapping but was suboptimal for T1 and T2 mapping47
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with standardly used transceive phase mapping sequences 
(bSSFP and SE). To the best of the authors’ knowledge, this 
is the first study comparing transceive phase mapping meth-
ods. Furthermore, based on experimental ϕ± maps, we recon-
structed Helmholtz‐based conductivity maps to provide an 
example of an application that depends on transceive phase 
information. Our analysis demonstrated that PLANET can 
reconstruct accurate and precise transceive phase maps in the 
brain, therefore allowing reliable reconstruction of brain tis-
sue conductivity.

A fundamental benefit offered by the PLANET method 
is that it retrieves transceive phase maps free from off‐reso-
nance effects that generally contaminate the transceive phase 
acquired with bSSFP. The superior robustness of PLANET 
against off‐resonance variations was proven in both sim-
ulations (Figure 2 and Supporting Information Figure S1) 
and phantom measurements (Figure 5 and Supporting 
Information Figure S5) and is particularly advantageous 
for large off‐resonances, which result in banding artefacts 
in bSSFP‐based transceive phase (see, for example, experi-
ment II, when a linear field variation was artificially induced) 
(Figure 5F‐I). This different robustness against off‐resonance 
effects depends on how both methods estimate ϕ±: as detailed 
in the Theory section, in standard bSSFP the signal phase is 
commonly associated with the transceive phase. Considering 
that the signal phase ∠I0 =∠(1−E2e−i(�0+�)) ⋅eiΩ) is mainly 
influenced by the transceive phase (in Ω), the off‐resonance 
(in Ω and θ0), and T2 (in E2), the equivalence ϕ± = signal 
phase is a suitable approximation when all other phase con-
tributions are negligible. Banding artefacts and T2 effects, for 
instance, occur when |Δf0|>(3 TR)−1.44 Ideally, these effects 
could be eliminated by combining appropriate B0 shimming 

with short TRs, two options that depend on the available MR 
system’s hardware and software tools and the imaged ob-
ject. Within the pass‐band region, however, bSSFP‐based ϕ± 
can still be contaminated by Δf0‐induced “phase leakage,” 
which can mildly modify ϕ± curvature (e.g., Figure 5E,J,N 
and Supporting Information Figure S5K). Differently, in 
PLANET the transceive phase is intrinsically corrected for 
Δf0 (and T2) effects because it results directly from the differ-
ence between the off‐resonance‐driven phase and the rotation 
angle Ω (Equation 2), and these two parameters are estimated 
independently from the shape of the ellipse.

Besides PLANET, other techniques have been proposed 
specifically to remove bandings from bSSFP transceive 
phase. A postprocessing pipeline for 2D phase unbanding 
was reported by Kim et al.45 The recent correction technique 
by Ozdemir and Ider44 relies on two bSSFP dynamics with 
a (2 TR)‒1 frequency shift, which is conceptually similar to 
employing a phase‐cycling scheme. Their methodology does 
require extra Δf0 and T2 measurements to correct bSSFP‐
based ϕ± for the abovementioned effects, thus elongating 
the total scanning time to > 15 min. Compared with this last 
technique, PLANET bypasses the need for additional acqui-
sitions because it estimates simultaneously ϕ±, Δf0, T2, and 
T1 within shorter times48 (Figure 8).

Shcherbakova et al.47 have already shown that accuracy 
and precision in T1 and T2 in WM estimated with PLANET 
depend on appropriate selection of sequence settings. 
Similarly, our simulation results demonstrated that the choice 
of FA, TR, and N (number of RF phase increments) influence 
the accuracy and precision of PLANET transceive phase esti-
mates. Unsurprisingly, increasing N benefitted the transceive 
phase precision (Figure 4) at the cost of longer acquisition 

F I G U R E  9   Transceive phase 
difference maps (Δ�±, top) and conductivity 
difference maps (Δ�, bottom) for both 
bSSFP (left) and PLANET (right) for 
volunteer 1. Difference maps were 
performed with respect to SE‐based ϕ± 
and σ ( Δ�±

bSSFP∕PLANET
=�±

bSSFP∕PLANET
−�±

SE
 

and Δ�
bSSFP∕PLANET

=�
bSSFP∕PLANET

−�
SE

). 
Transceive phase and conductivity maps are 
shown in Figure 8. Mean ± SD Δ� values in 
WM are reported below the corresponding 
map. WM segmentation was performed with 
MICO segmentation method70 and is shown 
in red on the banding‐free magnitude image 
obtained with PLANET method



      |  603GAVAZZI et al.

times. Unlike when optimizing T1 and T2 accuracy,47 using 
TR < 10 ms was beneficial for transceive phase accuracy in 
PLANET, but mostly in bSSFP, especially when a second 
component such as myelin was present in the voxel (Figure 2 
and Supporting Information Figure S1). The FA choice was 
relevant for the precision: in both PLANET and bSSFP, the 
lowest uncertainty (��±) was found for FA = [20‐30]° (Figure 3 
and Supporting Information Figure S2). Hence, FA and TR 
should be carefully selected in voxels with mixed content.

Based on all simulation predictions for ϕ±, we selected 
FA = 25°, TR = 4.6 ms, and N = 8 for all our MR mea-
surements. We also acquired and averaged 2 phase maps ob-
tained with identical settings but reversed readout gradient 
polarity in order to reduce the impact of eddy currents on the 
transceive phase. In the volunteer study, both PLANET and 
bSSFP showed similar Δ�± spatial distributions, with mild 
perturbations in WM. Besides residual errors caused by eddy 
currents effects in both methods and by off‐resonance effects 
in bSSFP (which we have already discussed), we hypothesize 
that bias in WM, albeit small, could originate from partial vol-
ume that is likely to occur for the voxel size chosen (2.5 mm 
isotropic). This is supported by the fact that multiple species 
with different susceptibilities or chemical shifts are present 
in human WM (e.g., myelin, proteins, lypids, iron, deoxyhe-
moglobin).52,64 Characterizing the effect of such species in 
the transceive phase estimated with PLANET or bSSFP was 
beyond the scope of this study, but the example of a common 
2‐component relaxation model for human brain (i.e., WM 
as dominant component and myelin as second component) 
reported in Figure 2 and Supporting Information Figure S1 
already demonstrated that myelin properties caused errors in 
both methods, with bSSFP being increasingly more sensitive 
than PLANET to myelin presence when the dominant com-
ponent was no longer on resonance. These errors, as already 
explained by, for example, Miller65 and Miller et al.,52 arise 
because multiple components with different frequency distri-
bution within the same voxel distort the symmetry of bSSFP 
profile. As a result, in phase‐cycled bSSFP data these asym-
metries can modify rotation and shape of the ellipse corre-
sponding to the main signal (dominant WM component) on 
which PLANET fitting is applied.47

Besides the aforementioned lower sensitivity to off‐
resonance effects and partial volume, we observed a lower 
��± for PLANET than for bSSFP and SE (of a factor 2 and 3,  
respectively, for our sequence settings) (Figure 6A). 
Nonetheless, the acquisition of phase‐cycled bSSFP data 
needed for PLANET was 8 times slower than the standard 
bSSFP acquisition (because N = 8). Thus, the precision‐
per‐unit‐time was higher for bSSFP than for PLANET: 
overall, bSSFP was 4 times more efficient than PLANET 
(Figure 6C). Note also that if precision in the transceive 
phase were of primary importance rather than accuracy, 
averaging 8 standard bSSFP acquisitions would produce 

a 2√2 precision increase in ϕ±, which is √2 times higher 
than the precision gain obtained in PLANET‐based trans-
ceive phase with respect to single bSSFP‐based transceive 
phase. In brain experiments, however, acquiring two phase‐
cycled bSSFP scans with opposed gradient polarity was 2 
min faster than the conventional SE and took in total 5 
min, a duration we deemed (already) clinically acceptable, 
especially in light of the simultaneous reconstruction of 
T1, T2, Δf0. Although we did not consider accelerating the 
acquisition in this work, decreasing the number of dummy 
pulses and the number of RF phase increments N might 
serve this purpose. For example, decreasing the number 
of dummy pulses from ~2100 to ~1300 would save ~1 min 
for our sequence settings, at the cost of reduced accuracy 
in all parameters reconstructed with PLANET.47 However, 
the resulting transceive phase error would be rather small 
(e�± ≈ 2.7∙10−3 rad) (Supporting Information Figure S3). 
Reducing N to the minimum (N = 6) would addition-
ally shorten the acquisition by 1:20 min (corresponding  
to −25% of the total time reported in Figure 6B) and a ~15%  
reduction in transceive phase precision would be paid 
(Figure 4). Furthermore, using acceleration techniques 
such as parallel imaging (e.g., SENSE66) or compressed 
sensing (e.g., ref. 67) would also be recommendable, but 
their effect on transceive phase reconstruction should be 
critically evaluated.

An example of an application for which accurate trans-
ceive phase maps are important is conductivity mapping with 
EPT, and precise maps are especially indicated for differenti-
ation‐based EPT methods, which are typically more sensitive 
to noise than integration‐based methods.16 Although multiple 
EPT reconstruction methods to map brain conductivity have 
been proposed previously (e.g., references 11,14,15,19,22), 
here we employed the conventional (phase‐only) Helmholtz‐
based approach because of its known linear noise propagation 
from transceive phase to conductivity68 that allows compar-
ison of ϕ± mapping methods. In the homogeneous phantom, 
the conductivity SD was on the same order of magnitude for 
all methods, despite their different ��±. This reveals a low lin-
ear coefficient (or slope) in the abovementioned noise propa-
gation relationship of this EPT method and is in line with the 
theoretical model by Lee et al.68 PLANET and SE had com-
parable median conductivity values, whereas bSSFP under-
estimated the conductivity because of a slightly altered shape 
of its transceive phase (Figure 7 and Supporting Information 
Figure S5). Our conductivity findings also suggest that the 
acquisition duration could be more than halved in PLANET 
(from ~05:20 min with the settings used in this study to 02:03 
min) if conductivity retrieval alone were of interest, because 
mapping ϕ± from a single polarity acquisition (Supporting 
Information Figures S4 and S6, both PLANET and bSSFP) 
and reducing N to 6 for PLANET (Supporting Information 
Figure S5) had little impact on the accuracy and precision 
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of Helmholtz‐based conductivity. Nonetheless, whether this 
impact remains little for conductivity maps obtained with 
other EPT methods should be verified. In vivo, the small 
disturbances present in transceive phase maps of PLANET, 
bSSFP and also SE were unsurprisingly enhanced in the 
corresponding conductivity maps. Overall, PLANET‐based 
conductivity qualitatively resembled the reference SE‐based 
conductivity for all volunteers (Figure 8 and Supporting 
Information Figure S7). Thus, we expect that using any other 
EPT reconstruction algorithms on PLANET‐based transceive 
phase map would produce conductivity maps at least compa-
rable to the conductivity maps reconstructed with presently 
used sequences.

6  |   CONCLUSION

The newly introduced PLANET method reconstructs 
accurate and precise transceive phase maps when appro-
priate sequence settings are chosen and is therefore a valid 
technique to map brain transceive phase and conductivity. 
PLANET retrieves transceive phase maps free from off‐
resonances effects, which typically corrupt bSSFP maps. 
This renders PLANET suitable for situations in which 
stronger B0 inhomogeneity comes into play (e.g., for field 
strengths >1.5 T) and/or with limited B0 shimming con-
trol. Furthermore, sensitivity to partial volume effects is 
better attenuated in PLANET than in bSSFP. Despite its 
longer acquisition time and lower time‐efficiency than 
bSSFP, PLANET simultaneously retrieves banding‐free 
magnitude image, T1, T2, Δf0,48 and transceive phase and 
can be exploited for reconstruction of conductivity and 
magnetization transfer parameters69 within clinically fea-
sible times, which could be useful for quantitative brain 
tissue characterization.
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SUPPORTING INFORMATION

Additional supporting information may be found online in 
the Supporting Information section at the end of the article.

FIGURE S1 Accuracy of transceive phase estimation for bSSFP 
(first column) and PLANET (second column): results from simu-
lation I and III. Simulation I: e�±as a function of FA and TR for a 
single‐component voxel at Δf0 = 0 Hz (first row) and at Δf0 = 30 
Hz (second row). WM: T1 = 832 ms, T2 = 80ms and ϕ± = ‒π/3 
rad. Simulation III: e�± as a function of FA and TR for a 2‐com-
ponent voxel (third row). First component: WM, input Δf0,1 = 0 
Hz, ϕ±

1 = ‒π/3 rad, T1,1 = 832 ms,T2,1 = 80 ms and w1 = 0.88. 
Second component: myelin, input Δf0,2 = 35Hz (CS = 20 Hz), 
ϕ±

2 = ‒π/3 rad, T1,2 = 400 ms, T2,2 = 20 ms, w2 = 0.12
FIGURE S2 Precision of transceive phase estimation for 
bSSFP (left) and PLANET (right): results from simulation I 
and III. Image SNR (as calculated in Equation 6) and the trans-
ceive phase uncertainty ��± (as calculated in Equation 4) are 
shown as a function of FA and TR. Simulation I: image SNR 

and ��± for a single‐component voxel at Δf0 = 0 Hz (first row) 
and at Δf0 = 30 Hz (second row). Simulation III: image SNR 
and ��±for a 2‐component voxel at Δf0,1 = 0 Hz (third row)
FIGURE S3 Effect of the number of RF dummy pulses. (A) 
Complex phase‐cycled bSSFP signal sampled at different num-
bers of RF dummy pulses (# RF dummy pulses: 250, 500, 750, 
1250 and 2500). The phase‐cycled signal was simulated for 
one voxel with the following parameters (Simulation V): T1 =  
3858 ms and T2 = 500 ms (representing maximum values 
found in CSF from T1 and T2 maps obtained with PLANET); 
Δf0 = 15 Hz and ϕ± = ‐π/3 rad. MR parameters settings were:  
FA = 25°, TR = 4.6 ms, TR = TE/2 and Δθn = 2nπ/8 ‐ π with 
n = {0,1,2…7}. The ‘*’ represents the phase‐cycled data cor-
responding to a certain Δθn. The ‘*’ encircled in a red circle 
represents the bSSFP data with Δθn = ‒π rad, i.e. the standard 
bSSFP. Solid lines indicate the fitted ellipses during PLANET 
post‐processing. (B) Transceive phase error Δϕ± as a function 
of RF dummy pulses. The transceive phase error was calcu-
lated as the difference between the transceive phase estimated 
at a certain dummy pulse (ϕ±

#RF) and the true transceive phase 
(ϕ±

true = ‒π/3 rad) for both bSSFP and PLANET
FIGURE S4 Effect of eddy‐current‐induced phase accumula-
tion on the phantom transceive phase and conductivity for 
bSSFP (left) and PLANET (right). The effect on the transceive 
phase is shown with a difference map calculated as 
Δ�±

bSSFP∕PLANET
=�±

(+∕−)bSSFP∕PLANET
−�±

SE
 where the sub-

scripts “(+/‐)” refer to the single acquisition with either positive 
“(+)” or negative “(‐)” gradient polarity G. A linear phase gra-
dient with reverse direction is visible along the readout direc-
tion (anterior‐posterior in this case) according to the gradient 
polarity considered. Results are displayed for Experiment I and 
can be compared with maps shown in Figures 5 and 7
FIGURE S5 Phantom transceive phase and conductivity 
for all methods from Experiment III, where volume‐based 
shimming was performed. For PLANET, the effect of using 
different N phase step increments on the transceive phase 
and conductivity is shown. Transceive phase maps for: 
(A) bSSFP; (B) PLANET with N = 6 (scan time: 04:04 
min); (C) PLANET with N = 8 (scan time: 05:20 min); 
(D) PLANET with N = 10 (scan time: 06:47 min); (E) SE 
(reference method), after unwrapping. Conductivity maps 
reconstructed from transceive phase maps estimated with 
(F) bSSFP; (G) PLANET with N = 6; (H) PLANET with 
N = 8; (I) PLANET with N = 10; (J) SE. Conductivity 
(mean ± SD) values are reported above the maps. Mean 
and SD were calculated within the circular ROI (shown in 
magenta color in (J)) in the central slice of the phantom. 
(K) Transceive phase profiles of bSSFP, PLANET (with 
the 3 different N) and SE, calculated on the central hori-
zontal line (dashed line in (E)). (L) Boxplot of conductivity 
values, evaluated in the circular ROI. The true conductivity 
value, as measured by the dielectric probe, is shown with a 
black dashed line
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FIGURE S6 Effect of eddy current‐induced phase accumula-
tion on the transceive phase and the conductivity for bSSFP 
(left) and PLANET (right). Results are displayed for volunteer 1 
and can be compared with maps shown in Figures 8 and 9. The 
effect on the transceive phase is shown with a difference map 
calculated as Δ�±

bSSFP∕PLANET
=�±

(+∕−)bSSFP∕PLANET
−�±

SE
 

where the subscripts “(+/‐)” refer to the single acquisition with 
either positive “(+)” or negative “(‐)” gradient polarity G. 
Reversed linear phase gradients occur along the readout direc-
tion (anterior‐posterior in this case) according to the gradient 
polarity considered; these gradients, however, were not perfectly 
“mirrored” thus a residual eddy‐current‐induced phase remains 
visible when the two phase images are averaged to obtain the 
transceive phase (e.g., on the left side of frontal lobe, Figure 9)
FIGURE S7 In vivo brain results for volunteer 2 (A‐H) and 3 
(I‐P), obtained with bSSFP (first column), PLANET (second 
column) and SE (reference, third column) methods. Isotropic 
voxel size: 2.5 mm. Transceive phase maps (ϕ±) obtained from 
(A,I) bSSFP; (B,J) PLANET and (C,K) SE after unwrapping. 
(D,L). Banding‐free magnitude image obtained with PLANET 
method. Conductivity maps based on (E,M) bSSFP; (F,N) 
PLANET and (G,O) SE, reconstructed from transceive phase 
maps shown in (A‐C, I‐K) respectively. (H,P) Δf0 map

How to cite this article: Gavazzi S, Shcherbakova Y, 
Bartels LW, et al. Transceive phase mapping using the 
PLANET method and its application for conductivity 
mapping in the brain. Magn Reson Med. 2020;83: 
590–607. https​://doi.org/10.1002/mrm.27958​

APPENDIX 

THE BSSFP SIGNAL
The complex bSSFP signal inside a voxel in the steady state 
regime is expressed as43

where K is a proportionality constant which includes the mag-
nitude of the receive coil sensitivity. Definition of M and b is 
as follows:

which both depend on TR, relaxation times T1 and T2 
through E1,2 = e

−
TR

T1,2 and FA. The phase components �0 and Ω 
depend on: chemical shift (CS, in Hz), off‐resonance caused 
by B0 field variations (Δf0, in Hz), transceive phase (ϕ±), 
eddy currents due to ramping of readout gradient G (ϕeddy), 
the gradient polarity (sign(G)) and B0 drift (ϕdrift):

(A1)I0 =KM ⋅e
−

TE

T2 ⋅

1−E2e−i(�0+�)

1−bcos
(
�0+�

) ⋅eiΩ, for E1,2 = e
−

TR

T1,2

(A2)M=
M0

(
1−E1

)
sin (FA)

1−E1cos (FA)−E2
2

(
E1−cos (FA)

)

(A3)b=
E2

(
1−E1

)
(1+cos (FA))

1−E1cos (FA)−E2
2

(
E1−cos (FA)

)

(A4)�0 =2�
(
CS+Δf 0

)
TR

(A5)Ω=2�
(
CS+Δf0

)
TE+�±+�drift +sign (G) ⋅�eddy.
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