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Abstract

Osteonecrosis of the femoral head (ONFH) is a prevalent orthopedic disorder characterized primarily by compromised
blood supply. This vascular deficit results in cell apoptosis, trabecular bone loss, and structural collapse of the femoral
head at late stage, significantly impairing joint function. While MRl is a highly effective tool for diagnosing ONFH in its
early stages, challenges remain due to the limited availability and high cost of MRI, as well as the absence of routine MRI
screening in asymptomatic patients. . In addition, current therapeutic strategies predominantly only relieve symptoms
while disease-modifying ONFH drugs are still under investigation/development. Considering that blood supply of the
femoral head plays a key role in the pathology of ONFH, angiogenic therapies have been put forward as promising
treatment options. Emerging bioengineering interventions targeting angiogenesis hold promising potential for ONFH
treatment. In this review, we introduce the advances in research into the pathology of ONFH and summarize novel

bioengineering interventions targeting angiogenesis. This review sheds light upon new directions for future research into
ONFH.

Keywords
Osteonecrosis, femoral head, angiogenesis, biomaterial scaffold, delivery system

Date received: 30 September 2024; accepted: 14 December 2024

'Department of Orthopaedics, The Second Xiangya Hospital of Central Corresponding authors:

South University, Changsha, Hunan, China Yuchen He, Department of Orthopaedics, The Second Xiangya
2Musculoskeletal Research Laboratory, Department of Orthopaedics Hospital of Central South University, 139 Renmin Middle Road,
& Traumatology, The Chinese University of Hong Kong, Hong Kong Changsha, Hunan 41001 |, China.

SAR, China Email: heyuchen@csu.edu.cn

3Innovative Orthopaedic Biomaterial and Drug Translational Research
Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese el .
University of Hong Kong, Hong Kong SAR, China Un!versmy of Hong Kong, Shatin, NT, Hong Kong SAR 999077,
“Department of Biomedical Engineering, The Chinese University of Chln‘a. .

Hong Kong, Hong Kong SAR, China Email: alanli@cuhk.edu.hk

5School of Biomedical Sciences, The Chinese University of Hong Kong,

Hong Kong SAR, China
®Institute for Tissue Engineering and Regenerative Medicine, The

Chinese University of Hong Kong, Hong Kong SAR, China
’Key Laboratory of Regenerative Medicine, Ministry of Education,

School of Biomedical Sciences, The Chinese University of Hong Kong,

Hong Kong SAR, China
8Shenzhen Research Institute, The Chinese University of Hong Kong,

Shenzhen, China

Zhong Alan Li, Department of Biomedical Engineering, The Chinese

@ @@ Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons

Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use,
reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open
Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).


https://uk.sagepub.com/en-gb/journals-permissions
https://journals.sagepub.com/home/tej
mailto:heyuchen@csu.edu.cn
mailto:alanli@cuhk.edu.hk

Journal of Tissue Engineering

Graphic abstract

Alcohol

" ¢ / &

Genetic Factors \

Steroids

Trauma

4@ i?c “ Medical Conditions

ONFH

®

Angiogenesis

Dyslipidemia

S

Smoking

Chemotherapy

Hypercoagulable States

Introduction

Osteonecrosis of the femoral head (ONFH), also known
as avascular necrosis of the femoral head, is a common
orthopedic disease caused by the compromised blood sup-
ply to the femoral head. Interruption of blood supply is the
initiation step, followed by the death of bone cells and
subsequent structural collapse of the femoral head, which
eventually results in hip joint dysfunction.! Based on dif-
ferent pathologies, ONFH can be divided into two main
categories: traumatic and non-traumatic. The former is
mainly caused by femoral neck fracture, hip dislocation,
and other hip injuries, while the latter most results from
the use of corticosteroids and alcoholism.? As a debilitat-
ing condition, ONFH is commonly seen in patients aged
between 30 and 65, and often results in the deterioration
of the hip joint, causing pain, limited range of motion, and
functional impairment.’> The etiologies of ONFH vary
depending on the patients’ race, lifestyle, and culture.
Among all the risk factors, corticosteroid use and alcohol
abuse account for more than 80% of all cases.* While the
precise incidence of osteonecrosis is unknown, it is esti-
mated that 20,000-30,000 new patients are diagnosed
with osteonecrosis annually in the United States, account-
ing for approximately 10% of the 250,000 total hip arthro-
plasties performed annually.’ In Asia, 100,000-200,000
new cases are reported in China every year.® Nationwide
surveys from Japan and Korea report more than 10,000
new cases annually.’

ONFH are often asymptomatic in the early stages.® In
the later-stage, pain in the groin, thigh and buttock is a
commonly reported symptom.’ Findings of physical
checks for ONFH are generally nonspecific. Positive signs
include reduced range of joint motion, painful ambulation,

Trendelenburg sign, and/or crepitus.'? Imaging techniques
are important methods for the diagnosis of ONFH.!! In
addition to imaging results, clinical features, physical
examinations, bone biopsy, and pathological manifesta-
tions have been used for the ONF diagnosis. Multiple clas-
sification systems of ONFH have been developed to assist
in the diagnosis and treatment of this potentially debilitat-
ing disorder. Among them, Ficat and Arlet,'? University of
Pennsylvania,'® Association Research Circulation Osseous
(ARCO),'* and Japanese Orthopedic Association'® are the
most commonly used systems. An analysis of patients can
be made with any of the four major systems based on the
findings of MRI and various radiographic tests.!® While
MRI is a highly effective tool for diagnosing ONFH at an
early stage, early diagnosis remains challenging in clinical
practice due to the subtle nature of symptoms, limited
accessibility to advanced imaging modalities in some set-
tings, and the lack of definitive clinical or biochemical
markers to guide early screening. Besides, the unclear
pathological mechanisms add to the challenges facing
ONFH treatment.

Compromised blood flow is considered a core feature
of ONFH, which can be triggered by various factors such
as trauma, corticosteroid therapy, alcohol use, HIV, lym-
phoma/leukemia, blood dyscrasias, chemotherapy, radia-
tion therapy, Gaucher disease, and Caisson disease.!” The
mechanisms by which these factors diminish femoral per-
fusion remain unclear. Possible mechanisms include vas-
cular endothelial damage, intramedullary adipogenesis,
and microvascular thrombosis formation, which increase
the intraosseous pressure and lead to venous stasis and
arterial obstruction.'®2° The limited understanding of the
precise pathophysiological mechanisms underlying ONFH
presents a significant challenge in the development of
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targeted therapeutic strategies. Current treatments are
mostly palliative, providing temporary alleviation of joint
symptoms but failing to prevent ONFH or halt/reverse its
progression. Researchers are working on unraveling the
intricate factors contributing to ONFH and its treatment,
with a particular focus on vascular abnormalities.

ONFH management presents significant challenges due
to the singular mode of blood supply to the femoral head
and the structural damage caused by vascular injury.”!
Certain areas of the body are characterized by no signifi-
cant capillary network and depend exclusively on terminal
arteries for blood supply. The femoral head is a notable
example.”? Because of this unique vascular arrangement,
regions like the femoral head are especially susceptible to
ischemia and injury. Any interruption in their blood flow
can rapidly lead to irreversible pathological changes. The
femoral head receives its primary blood supply from the
medial and lateral circumflex arteries, especially the reti-
nacular arteries, which traverse the femoral neck and sup-
ply blood to the superior portion of the femoral head.?!
Consequently, any disruption to the circumflex arteries,
such as in femoral neck fractures or hip dislocations, can
severely compromise blood flow to the femoral head and
lead to ischemia and subsequent complications like
ONFH.? Clinical strategies such as core decompression
and intraosseous drilling aim to address this challenge by
by reducing venous congestion and bone marrow pressure
and creating channels that enhance blood supply to the epi-
physis.?* Bioengineering approaches, including scaffold
implantation and growth factor delivery, have been devel-
oped to complement these techniques by promoting tissue
regeneration.”> For example, bioengineered scaffolds
seeded with mesenchymal stem cells (MSCs) or coated
with osteoinductive growth factors like bone morphoge-
netic proteins (BMPs) have shown promise in stimulating
bone repair and angiogenesis in preclinical and clinical
studies. These scaffolds provide a supportive structure for
new tissue growth while promoting the recruitment of pro-
genitor cells and the formation of new blood vessels.??
These advanced therapies, aiming to achieve long-lasting
restoration of joint functionality, promise to improve the
prognosis for patients with ONFH.

In recent years, significant advancements have been
achieved in the treatment of ONFH via using biomaterials
and tissue engineering techniques. Several reviews sum-
marized the research progress of this field, providing an
overview of past and current strategies.”>?%3! However,
most previous reviews lacked an in-depth discussion of the
critical role of angiogenesis in ONFH, and few compre-
hensively summarized ongoing and completed relevant
clinical trials. In this review, we examine the pathology
and therapies for ONFH by highlighting the critical role of
angiogenesis. In addition, we summarize recent advances
in regenerative medicine and bioengineering techniques
that target angiogenesis in the prevention and treatment of

ONFH. Besides, completed, ongoing, and suspended clini-
cal trials aiming at improving angiogenesis for ONFH
therapy are screened. Uncompleted registered clinical tri-
als are also analyzed to guide future research. The goal of
this review is to reveal ONFH pathology and explore
potential therapies, paving the way for future clinical man-
agement with improved efficacy.

The pathology of ONFH

The classification of ONFH is crucial for understanding its
pathology and choosing appropriate therapeutic strategies.
Based on different classification methods, ONFH can be
categorized into various types. Traumatic ONFH results
from direct hip joint injury, while non-traumatic ONFH is
associated with factors that affect blood flow, such as cor-
ticosteroid use, excessive alcohol consumption, systemic
diseases, and vascular diseases. Although the etiology of
ONFH varies, with traumatic and non-traumatic causes,
the pathologies converge on a common final pathway: dis-
ruption of blood flow leading to massive bone and marrow
cell death. This review will primarily focus on non-trau-
matic ONFH, as it represents the majority of cases and
involves distinct etiological factors frrom traumatic
ONFH.

Glucocorticoid-induced ONFH (GONFH)

Glucocorticoids are prescribed to suppress inflammation
or the immune system for various medical conditions.??
At present, approximately 2%—-3% of the population is
receiving systemic or local glucocorticoid treatment.*?
High doses and/or long-term use of glucocorticoids are
associated with an increased risk of ONFH, which is
known as GONFH or steroid-induced osteonecrosis of the
femoral head (SONFH).* It is estimated that 100,000
Chinese and more than 20,000 Americans are disabled
due to GONFH annually.>* The effect of corticosteroid
doses on the incidence of hip osteonecrosis remains
unclear. A meta-analysis conducted by Mont et al. revealed
that the incidence rate of hip osteonecrosis is positively
correlated with the dosage of corticosteroid used.
Osteonecrosis incidence was 6.7% with corticosteroid
treatment of >2g (prednisone-equivalent). Each 10mg/
day increase was associated with a 3.6% increase in oste-
onecrosis rate, and >20mg/day resulted in a higher oste-
onecrosis incidence.>

The exact pathogenesis of GONFH remains largely
unknown. Nonokawa et al.3” proposed that the pathogenesis
of GONFH involves a cascade initiated by glucocorticoid-
induced platelet activation and neutrophil extracellular trap
formation, which results in small vessel occlusion, ischemia,
and subsequent osteocyte death in the femoral head. Zhu
et al. revealed that pathological exosomes (ONFH-exos)
from necrotic bone tissues disrupt key pathways required
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for osteogenic differentiation and osteoblast?’MSC? migra-
tion. Restoring CD41 levels via exosome engineering or
targeting its signaling pathway may provide a promising
approach to the diagnosis and treatment of ONFH.*
Inflammation is also involved in the pathogenesis of ONFH.
Hyperactivation of TLR4/NF-«B pathway induced by glu-
cocorticoid was found to trigger the overproduction of
inflammatory cytokines, which exacerbated tissue damage,
impaired bone remodeling, and contributed to osteonecrosis
in rats.*® Sympathetic nerves are known to regulate bone
homeostasis. A recent study by Shao et al. revealed that glu-
cocorticoids lower sympathetic tone by disrupting the bal-
ance of glucocorticoid receptors and mineralocorticoid
receptors in neurons of the hypothalamic paraventricular
nucleus. The decreased sympathetic tone triggers endothe-
lial cell apoptosis and reduces H-type vessels in the femoral
head, inhibiting angiogenesis and osteogenesis in the femo-
ral head.*’ Besides, the recruitment and hyperactivation of
osteoclasts are believed to contribute to the loss of bone
structural integrity and subchondral fracture in GONFH.>*
Glucocorticoid administration was found to increase serum
levels of sclerostin, a key regulator of bone homeostasis and
skeletal integrity. Histological analysis of GA-ONFH
patient samples revealed high concentrations of sclerostin in
the necrotic regions of the femoral head, which disrupted
the balance of bone remodeling and vascular repair, acceler-
ating osteonecrosis progression via suppressing Wnt signal-
ing pathway.*! Abnormal lipid metabolism, increased cell
apoptosis, and disturbed BMSC differentiation caused by
[B-catenin inhibition have been reported to underlie GONFH
pathology.*> Recently, Chen et al.¥ found that gut bacteria
loss also participated in GONFH. Glucocorticoid-induced
loss of beneficial gut bacteria, Lactobacillus animalis, and
extracellular vesicles from L. animalis (L. animalis-EVs)
were associated with the pathogenesis and development of
GONFH. Oral supplementation of L. animalis mitigates
GONFH by increasing angiogenesis, augmenting osteogen-
esis, and reducing cell apoptosis.*® In addition, LncRNAs
have been found to regulate the nuclear location of 3-catenin
that influences the differentiation of BMSCs and the pro-
gression of GONFH.#

Treatments targeting these potential pathogenic mecha-
nisms have received promising results in tackling GONFH.
For example, vitamin K2 effectively promotes angiogene-
sis and protects vascular integrity in the femoral head via
enhancing endothelial cell migration and tube formation.*
Calycosin ameliorates GC-induced ONFH by inhibiting
the TLR4/NF-kB pathway, reducing inflammation, and
promoting osteogenic differentiation and bone forma-
tion.** The activation of Keap1/Nrf2 pathway by inhibiting
monoacylglycerol lipase attenuated GC-induced ONFH in
rats.*® Exosomes derived from synovial-derived MSCs and
human CD34* stem cells have been shown to protect
against GC-induced ONFH in animal models by enhanc-
ing cell proliferation and reducing cell apoptosis in rats.*’*

Extracellular vesicles secreted by human urine-derived
stem cells protected against GC-induced ONFH by enhanc-
ing angiogenesis and reducing apoptosis of MSCs apopto-
sis via the delivery of bioactive molecules like DMBT1
and TIMP1.* Restoring sympathetic tone and targeting
downstream endothelial glycolytic pathways, such as
PFKFB3 activation via Adrb2 signaling, represent promis-
ing therapeutic strategies for mitigating GC-induced
ONFH.* Targeting sclerostin, through strategies such as
SOST inhibitor use or genetic knockout, represents a
potential therapeutic approach to mitigating GA-ONFH
and improving bone and vascular outcomes in rats.*! The
proliferation and differentiation of MSC can be enhanced
by lithium chloride to protect rats from GC-induced
ONFH.*° Although these studies have demonstrated prom-
ising effects, challenges remain in their clinical applica-
tions. For instance, it is difficult to effectively deliver
drugs to targeted sites and maintain their therapeutic effi-
cacy in the human body. Innovative drug delivery systems,
such as nanoparticles, hydrogels, and other controlled-
release platforms, provide new directions for overcoming
these hurdles.

Alcohol-associated ONFH (AONFH)

AONFH is closely related to alcohol consumption. Alcohol
intake, especially in daily drinkers, significantly increases
the risk of ONFH. A meta-analysis study of the Japanese
population revealed that the alcohol dose-dependent risk
of ONFH was increased by 35.3% for every 100 g/week
(95% confidence interval [CI], 1.24-1.47; p<0.001) and
by 44.1% for every 500g drink-years (95% CI, 1.295—
1.601; p<0.001).° The microarchitectural disruptions
and histopathological features in the necrotic region of
AONFH are similar to those of GONFH.*! The exact
mechanism by which alcohol induces ONFH remains
unclear. However, the detrimental effects of alcohol on
blood vessels are believed to contribute to the pathology of
AONFH.? Chronic alcohol intake is known to cause vas-
cular constriction and endothelial dysfunction, resulting in
reduced blood flow to the femoral head. This compro-
mised blood supply deprives bone tissue of essential nutri-
ents and oxygen, resulting in cellular damage and
ultimately necrosis.”> Additionally, alcohol metabolism
generates toxic cellular byproducts that can disrupt the
function of mitochondrion and lysosome, further exacer-
bating tissue injury and inflammation within the hip
joint.33* Pre-clinical studies revealed several possible
regulating pathways. For example, disturbed osteogenic-
adipogenic differentiation of stromal cells and altered reg-
ulons such as myocyte enhancer factor 2C (MEF2C) and
Jun protein D are related to AONFH.> Additionally, a sub-
set of endothelial cells expressing atypical chemokine
receptor 1 (ACKR1) exhibited enhanced chemotaxis but
weakened angiogenic ability. These endothelial cells
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Table |. Previous studies on the relationship between corticoid use for COVID-19 treatment and the onset of ONFH.

Author No. of  Total cumulative GC use  Average duration Time to first diagnose Ref.

patients  (Methylprednisolone of GC use ONFH

equivalent in mg) (Days) (months)

Agarwala et al. 3 618 (range 355-1000) 18 1.9 (range 1.5-2.2) Agarwala et al.”'
Agarwala et al. 48 673 (range 80-2600) Unknown 6.0 (range 2.0-15.3) Agarwala et al.””
Annam et al. 2 344, 832 17, 21 05,2 Annam et al.”*
Dhanasekararaja et al. 22 811 (range 200-2100) 20 7.5 (range 3.0-11.0) Dhanasekararaja et al.”
Kingma et al. | Unknown Unknown 3 Kingma et al.”?
Koutalos et al. I 2720 Unknown 8 Koutalos et al.”®
Maharjan et al. I Unknown 42 3 Maharjan et al.”®
Veizi et al. 236 1193.5 (range 40-16,540) 6.8 4.1 6.0 (range 6.0-24.0) Veizi et al.%

potentially regulate the differentiation of stromal cells via
nicotinamide phosphoribosyl transferase (NAMPT)- and
E-Selectin-related pathways.> Genetic factors also con-
tribute to the onset of AONFH. For example, rs62030917
in RAB40C gene, PFKP 1s10903966, GPC6 1s9523981,
L3MBTL3/PTPNY gene polymorphism, CARMEN (car-
diac mesoderm enhancer-associated non-coding RNA)
polymorphism, RETN genetic polymorphisms, OPG and
RANKL polymorphisms are found to increase the suscepti-
bility to AONFH in the Chinese Han ethnic group.’® !
Unique long non-coding RNA (IncRNA) expression pro-
files were found to distinguish AONFH from other types
of ONFH, suggesting their potential as biomarkers for
AONFH diagnosis and targeted treatment.®? In addition,
alcohol consumption can contribute to the progression of
ONFH by influencing gut microbiota composition by, for
example, increasing Lactobacillus and Roseburia and
shifting fecal metabolites.®

Considerable research efforts are underway to elucidate
the underlying mechanisms for and improve the manage-
ment of AONFH. Researchers found that betaine played a
protective role and suppressed the progression of AONFH
via the mammalian target of rapamycin (mTOR) path-
way.* Furthermore, inhibiting Dickkopf-1 (DKK1) acti-
vates Wnt/B-catenin signaling and the nuclear translocation
of B-catenin, thereby promoting osteogenesis and inhibit-
ing adipogenesis of bone marrow-derived mesenchymal
stem cells (BMSCs).®® For the treatment, Fu and co-work-
ers developed a heat-sensitive nanocomposite hydrogel
system to provide long-term gene regulation in lesion cells
in ONFH. The hydrogel, injectable at room temperature,
solidifies in the body under body heat, releasing secondary
nanostructures carrying gene-regulating plasmids and
siRNA.% This system restored physiological activity in
stem cells in the ONFH area, promoting repair and bone
reconstruction via upregulating the expression of B-cell
lymphoma 2 and inhibiting the secretion of peroxisome
proliferators-activated receptors y. In vivo experiments
demonstrated its long-term efficacy, offering a promising
treatment option for AONFH and potentially other gene
therapy applications.®®

COVID-related ONFH

COVID-19 induces a hypercoagulable state and increases
the risk of thrombosis and ONFH, which are known as
symptoms of “Long COVID.”®” Vascular damage caused
by COVID-19 is believed to be achieved through a process
known as immunothrombosis.®® In this process, activated
neutrophils and monocytes interact with platelets and acti-
vate the coagulation cascade, leading to the formation of
intravascular clots in both small and larger vessels. These
microthrombotic complications contribute to the reduction
of blood flow within the vessels, which can exacerbate
the progression of ONFH.® In addition, COVID-19 vac-
cine-related thrombosis and high-dose steroid therapy
used in the treatment of COVID-19 also increase the risk
of ONFH.”® Several studies have reported ONFH diagno-
sis in patients who recovered from COVID-19 disease
(Table 1). Agarwala et al. first reported three such cases.
The mean dose of prednisolone used in these cases was
758 mg (400-1250 mg). The mean time to diagnose ONFH
was 58days after COVID-19 diagnosis. Their study
emphasized that COVID-19 infection lowers the threshold
of glucocorticoid use for the development of ONFH and
greatly accelerates the progression of this disease.”!
Dhanasekararaja et al. reported 22 patients (39 hips) who
had an aggressive presentation and rapid progression of
ONFH after COVID-19. In their study, the average cumu-
lative dose of methylprednisolone equivalent was 811 mg
(range 200-2100mg) and the average duration of steroid
intake was 2.8 weeks. This low cumulative dose of steroids
suggested that COVID-19-associated vasculitis may play a
role in the pathogenesis of ONFH. The mean time to diag-
nose ONFH was 39.3 days (in the range of 10-90days).
The average duration from COVID-19 infection to the
onset of hip symptoms was 7.5months (in the range of
3—11 months).” Particularly, patients resented with ele-
vated serological markers and extensive periarticular bone
and soft tissue edema exhibited an acute and aggressive
onset and rapid femoral head destruction.” Several single
case reports also support the finding that after COVID-19
infection, glucocorticoid use is highly related to the
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increased risk of ONFH.”>"”7 In addition to ONFH, septic
arthritis with avascular necrosis due to COVID-19 infec-
tion should also be taken into serious consideration.”® In
patients with a history of COVID-19 infection, especially
those treated with corticosteroids, any joint symptom
should draw our attention to the diagnosis of ONFH. Low
therapeutic doses of corticosteroids with minimal effective
duration remain the key to halting its occurrence. A retro-
spective evaluation conducted by Agarwala et al. evalu-
ated the effects of bisphosphonates for the treatment of
post-COVID ONFH. Forty-eight patients (88 hips) who
were diagnosed with ONFH after COVID-19 infection
received intravenous zoledronic acid (5Smg) at the initia-
tion of therapy and oral alendronate (35 mg) twice weekly.
At a mean follow-up of 10 months, 84 (95.5%) of the hips
showed good clinical outcomes, and only 4 (4.5%) of the
hips required surgical intervention. Their results high-
lighted the effectiveness of bisphosphonates in ONFH
therapy.”® For patients with end-stage ONFH, timely diag-
nosis and surgery are important for preserving their hip
joints. A prospective study conducted by Veizi et al.* eval-
uated the incidence of osteonecrosis in COVID-19 patients
who received or did not receive corticosteroid treatment.
Their results showed that corticosteroid use significantly
increased the number of painful joints. At 2years, 11.9%
(corticosteroid group) and 5.1% (non-corticosteroid group)
of patients complained of at least one painful joint, respec-
tively. Eight patients who received corticosteroid treat-
ment developed osteonecrosis. This study emphasized the
importance of paying attention to ONFH in COVID-19
patients who received corticosteroid treatment. With the
the increased incidence of COVID-related ONFH, the
number of patients seeking medical support are expected
to increase in the following years. Accompanying this
growing medical demand are additional challenges facing
orthopedic surgeons, such as increased proportion of
elderly patients and patients with complex disease histo-
ries and/or poor physical conditions.

Legg-Calvé-Perthes disease (LCPD)-associated
ONFH

LCPD is a pediatric orthopedic disorder characterized by a
temporary disruption of blood supply to the femoral head.
Impaired blood supply further leads to chronic hip synovi-
tis, irreversible deformity of the femoral head, and prema-
ture osteoarthritis.3! LCPD is considered a self-limiting,
self-healing, and non-systemic disease that occurs typi-
cally in children aged between 4 and 10. It primarily affects
boys and often presents unilaterally.> The prevalence of
LCPD varies geographically, with incidence rates ranging
from 0.4 to 29.0 cases per 100,000 children.®? Despite its
relative rarity, LCPD poses a significant orthopedic chal-
lenge because of severe long-term outcomes such as per-
sistent hip pain, limping, leg length discrepancy, and the
early onset of osteoarthritis.®® Therefore, early detection

and intervention are important to mitigate the above
adverse effects and preserve hip function. This highlights
the need for an efficient and effective approach to the diag-
nosis and treatment of the complex condition of LCPD.

Although the precise etiology of LCPD is not fully
understood, it is generally accepted that factors such as
genetic  predisposition, vascular abnormalities, and
mechanical stress on the hip joint play integral roles in its
progression.® These factors contribute to the temporary
disruption of blood supply to the femoral head, leading to
the characteristic manifestations of the disease.3 Treatment
strategies for LCPD aim to preserve the shape of the femo-
ral head, maintain hip function, and prevent long-term
complications. Non-surgical approaches may include
activity modification, physical therapy, bracing, and anti-
inflammatory medications to alleviate symptoms and pro-
mote healing. In cases where conservative measures fail to
halt disease progression,® surgical interventions such as
osteotomy, femoral or pelvic realignment procedures, and
hip arthroplasty may be considered to restore hip joint
integrity and function.

Regulatory mechanism for
angiogenesis

Angiogenesis is defined as a process in which new blood
vessels form from pre-existing vessels (Figure 1). This
process is critical in maintaining normal body functions
such as growth and wound healing. It is also involved in
pathological conditions like cancer, diabetic retinopathy,
and LCPD.¥"#8 Generally, angiogenesis starts with the vas-
odilation of existing vessels. Then the basement membrane
degrades to allow the migration of endothelial cells toward
the angiogenic stimulus.®® Tip cells are specialized
endothelial cells located at the leading edge of a growing
blood vessel during the process of angiogenesis. They
extend numerous filopodia, which are thin, actin-rich pro-
jections that explore the extracellular environment. These
filopodia sense and respond to guidance cues, directing the
sprouting vessel toward areas of high angiogenic factor
(such as vascular endothelial growth factor, VEGF) con-
centration.®® Tip cells direct the proliferation and migra-
tion of endothelial cells toward the leading front of
migrating cells and form new capillary loops. Finally, peri-
cytes are recruited and new basement membranes are
deposited to help the maturation and stabilization of capil-
laries.’” While significant progress has been made in
understanding and modulating angiogenesis for therapeu-
tic purposes, challenges remain such as resistance to anti-
angiogenic therapies and the side effects associated with
systemic inhibition of angiogenesis.”® Therefore, a deeper
understanding of the regulatory processes of angiogenesis
is crucial for developing selective angiogenic therapies.
Angiogenesis is a complex and dynamic process regu-
lated through a balance between pro-angiogenic and anti-
angiogenic factors®’ (Figure 1). Among them, VEGF is the
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most potent and critical pro-angiogenic factor. It binds to
the receptors on endothelial cells, stimulating their prolif-
eration, migration, and new vessel formation.’'? Strategies
targeting VEGF and related pathways, such as the use of
anti-VEGF antibodies (e.g. Bevacizumab), have been
applied for cancer treatment as an adjunct therapy of
chemotherapy or immunotherapy.®?> Other pro-angiogenic
factors, like fibroblast growth factors (FGFs), promote the
proliferation and differentiation of endothelial cells and
induce their physical organization into tube-like struc-
tures.”® Integrins are critical for the interaction of endothe-
lial cells with the extracellular matrix, facilitating cell
adhesion and migration.”* Angiopoietins (Ang-1 and
Ang-2) have dual roles in angiogenesis. Ang-1 promotes
vascular maturation and stability. Ang-2, unlike Ang-1, facil-
itates vascular regression in the absence of VEGF but pro-
motes angiogenesis when VEGF is present.”> Sphingosine
1-phosphate is an important signaling sphingolipid that regu-
lates angiogenesis and endothelial barrier integrity.”®
Anti-angiogenic factors are natural or synthetic mole-
cules that inhibit the angiogenesis process. Although anti-
angiogenic factors are not the primary focus of this review,
their role in impairing vascularization and exacerbating
ischemia in ONFH warrants a brief discussion. For exam-
ple, elevated levels of anti-angiogenic molecules such as
thrombospondin-1 (TSP-1) have been associated with
reduced neovascularization, a critical barrier to effective

bone regeneration in ONFH.®” TSP-1 is a multifunctional
glycoprotein that suppresses angiogenesis by inducing
apoptosis and inhibiting the proliferation of endothelial
cells. Besides, TSP-1 influences the bioavailability and
activity of other growth factors involved in angiogenesis,
such as VEGF and FGFs, functioning as a key modulator
within the vascular environment and impacting various
stages of angiogenesis.”® Angiostatin is an endogenous
protein fragment derived from the proteolytic cleavage
of plasminogen. Its anti-angiogenic role is achieved
by inhibiting the proliferation of endothelial cells.”
Apolipoprotein(a), when bound to oxidized phospholip-
ids, leads to the apoptosis of endothelial cells.!® In addi-
tion, apolipoprotein(a) inhibits the functionality of
endothelial progenitor cells and upregulates nuclear fac-
tors within endothelial cells, resulting in the disruption of
the integrity of the vascular lining and hampering the
natural repair and regeneration of vascular endothe-
lium.'® Endostatin is a fragment of collagen XVIIL. It
functions as a potent inhibitor of angiogenesis via sup-
pressing vascular cell proliferation and migration. This
suppression thereby inhibits new blood vessel forma-
tion.”>!%" Interferons (IFNs), known for their immune-
modulating effects, also have strong anti-angiogenic
properties via inhibiting the proliferation of endothelial
cells and disrupting epithelial repair.'">!% Platelet fac-
tor-4 (PF-4) is a chemokine released by platelets that
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inhibits endothelial cell migration and proliferation.'*
Soluble Fms-like tyrosine kinase-1 (sFlt-1) is a soluble
receptor that binds to VEGF, preventing it from activating
its endothelial receptors.'*

Targeting angiogenesis for ONFH
treatment

ONFH is characterized by a critical reduction in vascular
supply that is essential for bone healing and remodeling.
The resultant hypoxic environment within the femoral head
further impairs angiogenic responses. Therapeutic strate-
gies targeting angiogenesis have shown promising progress
in alleviating symptoms of ONFH.* For example, periar-
ticular injection of VEGF receptor 2 antibody in rats sup-
pressed intraosseous vessels and resulted in the development
of ONFH.!% On the contrary, co-transplantation of angio-
tensin [I-pretreated MSCs and endothelial cells induce both
osteogenesis and angiogenesis in a rabbit model of
SONFH.!%” Utilizing angiogenic factors in tissue engineer-
ing techniques by loading these factors in biomaterial scaf-
folds, has been explored extensively to support the
formation of new blood vessels over time.'%® However, it is
noteworthy that excessively high levels of VEGF exhibit
detrimental effects on vascular permeability and bone
repair. For example, Cao et al. tested the effects of different
concentrations of VEGF on human umbilical vein endothe-
lial cells (HUVECs) and bone marrow cell (BMC)-derived
osteoclast precursors. Their results revealed that treatment
with high concentrations of VEGF (50ng/ml) induced the
disruption of the junctional integrity of endothelial cells.
Furthermore, VEGF promoted the formation and activity of
osteoclast from BMC-derived osteoclast precursors in
vitro.!” Therefore, while VEGF has therapeutic potential
in ONFH treatment, its levels must be carefully regulated to
avoid its adverse effects on blood vessels and bone cells.
Targeting angiogenesis in the treatment of ONFH repre-
sents a cutting-edge area of study that has gained signifi-
cant attention in recent years. Clinical trials targeting
angiogenesis for the treatment of ONFH are summarized in
Table 2. Current clinical trials are primarily concentrated
on evaluating the effects of autologous cell-based therapy
and bone marrow concentrates on the early-stage ONFH.
Gene editing and bioengineering biomaterials have not
been explored in ONFH treatment in clinics, probably due
to the complexity and security concerns of these technolo-
gies. In this section, we summarize the research progress in
this area and present the latest advances in angiogenesis
promotion and tissue-engineered delivery platforms for
angiogenesis enhancement.

Current animal models for studying ONFH

Preclinical models of ONFH vary in their ability to mimic
the human condition and provide insights into different

aspects of the disease. Currently, there is no consensus on
a standardized ONFH animal model. Each ONFH model
has unique characteristics that make it suitable for certain
types of studies but may also present limitations that
should not be neglected.'"

To date, a variety of animal models of ONFH have been
created, with relevant research efforts being focused on
quadrupeds, such as mice, rats, rabbits, dogs, pigs, sheep,
goats, and horses.!"" However, these quadrupeds do not
possess comparable load-bearing capacities to humans.
Studies on bipedal animals, such as geese, chickens,
ostriches, and emus, reveal that while their weight-bearing
characteristics are similar to those of humans, their ana-
tomical structures and physiological features are not.'?
Large animal models, such as canines, allow for surgical
procedures and implant testing, while small animal mod-
els, such as rats and mice, are particularly useful for genetic
and molecular studies due to the availability of genetically
modified strains.'® Emu models of ONFH provide a
unique advantage due to their anatomical similarity in
femoral heads to humans.''* Common methods for estab-
lishing ONFH models include traumatic, non-traumatic
and combined approaches. Overall, the success rates of
surgical vascular deprivation-induced ONFH models
ranged from 60% to 100%.'!4

Regardless of induction methods, impaired angiogene-
sis is consistently observed across different types of mod-
els. This impairment contributes significantly to the
progression of ONFH, emphasizing the importance of
enhancing angiogenesis to effectively manage and treat
ONFH.115—117

Cell-based therapies and molecular innovations

The concept of promoting angiogenesis for the treatment
of ONFH is based on the widely recognized critical role of
adequate blood supply in bone health and repair. Enhancing
new blood vessel formation helps to deliver nutrients and
oxygen to the affected areas and facilitating the repair pro-
cesses and bone regeneration of ONFH.

Recent advances in cell-based therapy, particularly
those based on mesenchymal stem cells (MSCs), have
emerged as potent strategies for enhancing angiogenesis in
ONFH. Localized cell-based therapy relies on core decom-
pression to create a bone tunnel, which serves as a pathway
for implanting materials containing various cell types into
the femoral head. Cells contained in these inplants, like
MSCs, are capable of differentiating into various cell
types, including vascular endothelial cells, and secrete a
range of angiogenic factors that promote new blood vessel
formation.!'® For example, Xu et al. developed a compos-
ite implant using carboxymethyl chitosan/alginate (CMC/
ALG) scaffolds loaded with BMSCs and endothelial
progenitor cells (EPCs). In vitro, this implant enhanced
osteogenic and angiogenic differentiation while reducing
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adipogenic differentiation of BMSCs.'"® In a rabbit model
of SONFH, a 27mm bone tunnel from the greater tro-
chanter to the femoral head was created via core decom-
pression. Different implants were transplanted into the
femoral head through this bone tunnel. Compared with
other groups, the CMC/ALG/BMSC/EPC implant showed
significantly faster bone tissue repair via promoting osteo-
genesis and angiogenesis and reducing adipogenesis.'"®
Vascular cell adhesion molecule 1 (VCAM-1) is signifi-
cantly downregulated in BMSCs from patients with
trauma-induced ONFH. Motivated by this phenomenon,
Shao et al. utilized a lentiviral vector to overexpress
VCAM-1 in BMSCs, which enhanced the migration and
improved the angiogenic potential of BMSCs in vitro.
mRNA transcriptome sequencing revealed that VCAM-1
promoted angiogenesis via suppressing the cellular com-
munication network factor 2 (CCN2)/Apelin signaling
pathway.'?* However, MSC therapy for ONFH faces chal-
lenges such as limited cell self-renewal and donor availa-
bility. To address these limitations, Zhou et al. explored the
use of MSCs derived from induced pluripotent stem cells
(iPSCs). BMSCs of ONFH patients (ONFH-BMSCs) were
reprogramed into iPSCs, following which the iPSCs were
differentiated into MSCs (iPSC-MSCs). They found that
these iPSC-MSCs had similar properties to normal MSCs,
but showed higher proliferation ability and no tumorigenic
potential. These iPSC-MSCs were then transplanted into
an ONFH rat model through intrabone marrow injection.
Specifically, a needle was inserted through the intercondy-
lar region into the femur’s marrow cavity to deliver 0.2 ml
of iPSC-MSCs (107 cells/ml). The injection site was sealed
with sterilized bone wax after the procedure. Micro-CT
imaging and staining results indicated that this method
effectively promoted bone repair and angiogenesis in a rat
model of SONFH."?! In the study by Zhao et al.,'”’
enhanced ossification and revascularization in the femoral
head in a rabbit model of SONFH were obserfved follow-
ing co-transplantation of angiotensin II-modified mesen-
chymal stem cells (Ang II-MSCs) and endothelial cells
(ECs) at a 5:1 ratio through the core decompression tunnel
under C-arm fluoroscopy of an X-ray machine. Lee et al.
injected VEGF- and bone morphogenetic protein 2
(BMP2)-transfected ASCs into critical-size calvarial
defects (4 mm) and long-bone segmental defects (4 mm) in
a rat model. Their findings demonstrated that the trans-
fected ASCs promoted rapid angiogenesis and osteogene-
sis, significantly enhancing bone regeneration while
remaining localized at the defect site without migration by
day 56. This approach holds potential for clinical applica-
tion in the treatment of ONFH.'??

Exosomes are small extracellular vesicles secreted by
various cell types. They function as cargos that can trans-
fer proteins, lipids, and nucleic acids between cells.'?
Unlike cell transplantation, which typically requires core
decompression and drilling into the femoral head to deliver

the therapeutic cells, exosomes can be applied with higher
flexibly for ONFH treatment. Exosomes can be adminis-
tered either through direct injection into the femoral head
via core decompression or by systemic delivery through
the bloodstream or intra-articular injection. The minimally
invasive systemic or articular delivery method represents a
promising alternative for ONFH treatment.'?* For exam-
ple, an engineered exosome-functionalized ECM-
mimicking hydrogel (Lightgel-Li-Exo) was injected into
the femoral head via core decompression tunnel in a rat
model of GONFH. These exosomes enhanced macrophage
M2 polarization, osteogenesis, and angiogenesis, ulti-
mately promoting bone repair.'?® Intra-articular injection
of exosomes from miR-1a-3p deprived, glucocorticoid-
stimulated M1 macrophages suppressed adipogenic differ-
entiation and promote osteogenic differentiation of BMSCs
in a mouse model of GONFH.'?® In a GC-induced ONFH
rat model, intra-articular injection of miR-26a-CD34%-
Exos increased vessel density and improved trabecular
bone integrity, thereby inhibiting the progression of
ONFH.*® Platelet-rich plasma-derived exosomes (PRP-
Exos) encapsulating platelet-derived growth factor-BB
(PDGFBB), transforming growth factor beta (TGF-p),
FGF, and VEGF were identified to promote angiogenesis
and inhibit apoptosis in ONFH. These exosomes, injected
via the tail vein, activated the Akt pathway, increasing the
expression of anti-apoptotic proteins such as Bel-2 and
countering the apoptotic effects of glucocorticoid-associ-
ated endoplasmic reticulum (ER) stress.'”” Another sys-
tematic delivery example is the microRNA (miR)-21-5p
delivered by human umbilical MSC-derived exosomes
(hucMSC-Exos). These exosomes, injected daily via the
tail vein, were found to reduce the number of empty cavi-
ties or abscesses with poor necrotic trabecular bone struc-
ture and increased the volume and number of blood vessels
via suppressing SOXS and EZH2 transcription in ONFH
rat models.'?® Other in vitro studies showed that exosomes
derived from MSCs and endothelial cells have been shown
to enhance angiogenesis by delivering pro-angiogenic fac-
tors directly to the affected area.'?® siRNAs encapsulated
in BMSC-derived exosomes were found to be effective in
promoting angiogenesis and osteogenesis in a cell model
of ONFH.!?13% miR-26a overexpressed in CD34" stem
cell-derived exosomes (miR-26a-CD34*-Exos) enhanced
endothelial cell migration and tube formation, as well as
increased the osteogenic differentiation of BMSCs in
Vitro. 48127

Tissue engineering and delivery techniques

Tissue engineering involves the combination of scaffolds,
cells, and regulatory signals to create functional tissues
capable of repairing or replacing damaged structures.
Several tissue engineering approaches have been synergis-
tically combined with angiogenic therapy to enhance their
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Figure 2. lllustration of delivery systems for angiogenesis. There
are diverse strategies employed to deliver angiogenic factors,
each with unique advantages and applications. These advanced
delivery systems are pivotal in the development of therapeutic
approaches for enhancing angiogenesis, with significant
implications for regenerative medicine and the treatment of
various vascular diseases. Created with biorender.com.

therapeutic effects for ONFH treatment.”® Emerging deliv-
ery systems are designed for different therapeutic needs
based on their unique advantages (Figure 2). In Table 3, we
summarized the key features, strengths, and limitations
of different delivery systems, including nanoparticles
(e.g. lipid nanoparticles), nanosuspensions, nanomicelles,
nanofibers, liposomes, ethosomes, phytosomes, liquid
crystals, microspheres, exosomes, dendrimers, hydrogels,
AAV system, transdermal drug delivery systems, and nano
and micro emulsions. The primary goals of these systems
are to overcome biological barriers, improve drug bioa-
vailability, enhance cell/tissue targeting ability, and
achieve controlled and sustained drug release.'3! Take
hydrogels as an example, which is a 3D biphasic material
composed of porous, permeable solids and at least 10%
(an approximate lower limit by weight or volume) of inter-
stitial fluid.'3? This water content is essential for their char-
acteristic ability to swell and retain moisture, which makes
hydrogels particularly suitable for applications in tissue
repair. Hydrogels’ high water content, biocompatibility,
and ability to mimic the physical properties of biological
tissues enable them to repair tissues with complex shapes
and provide a platform for controlled drug release.'>3 For
example, Fu et al. developed a heat-sensitive mesoporous
silica nanoparticle composite hydrogel that could be
injected and undergo solidification under body tempera-
ture. With the gradual degradation of the hydrogel, the
contained miR-21-5p was released, which promoted bone

regeneration in a rat model of AONFH.'3* Moreover,
hydrogels can be engineered to be highly sensitive to envi-
ronmental stimuli, such as changes in pH, temperature, or
ionic strength. For instance, thermosensitive hydrogels
gelate at body temperature, facilitating minimally invasive
delivery and localized therapeutic effects, and pH-sensi-
tive hydrogels can release bioactive factors in response to
the acidic microenvironment of necrotic bone.'>® However,
the limited mechanical strength of hydrogels and concern
for their long-term stability and potential toxicity remain
as obstacles for their extended applications.'3¢ It should be
noted that a lengthy exploration is often required before
the translation of drug delivery techniques from basic
research to clinical applications due to their biological
complexities and safety concerns.'3” In this section, we
introduce typical novel drug delivery systems as examples
and illustrate their mechanisms of function.

The main goal of scaffold-based approaches is to pro-
vide a 3D structure that supports cell attachment, prolifera-
tion, and differentiation. Besides, 3D scaffolds, such as
hydrogels, can encapsulate cells and biomolecules, such as
growth factors, and be engineered to release the encapsu-
lated molecules gradually to promote angiogenesis and
bone repair for a relatively long period.'®! Currently engi-
neered scaffolds often combine different types of materials
to generate a complex network, leveraging the strengths of
each to achieve better results. For example, Lai et al. inte-
grated poly (lactide-co-glycolide) (PLGA), B-tricalcium
phosphate (TCP) and magnesium (Mg) powder to formu-
late a porous PLGA/TCP/Mg scaffold using a low-temper-
ature rapid prototyping technology. This scaffold exhibited
osteogenic and angiogenic properties in an GONF rabbit
model.'®! Zhu et al. designed a platelet-coated micro-scaf-
fold composed of cross-linked gelatin within a 3D-printed
porous titanium framework. This scaffold has a stable,
degradable structure that promoted osteogenesis and vas-
cularization in a rabbit ONFH model through the slow
release of growth factors, specifically TGF-B1 and VEGF,
over 21days.'®> Wang et al.?® developed a novel tissue
engineering scaffold by compositing CaO,/gelatin micro-
spheres with a porous scaffold, gelatin/alginate hydrogel,
and BMSCs. In their research, medical-grade gelatin and
calcium peroxide were cross-linked with glutaraldehyde to
create microspheres (Figure 3(A)). A 3D multi-layer
porous tubular structure was printed using a mixture of
nano-hydroxyapatite and polycaprolactone. Gelatin-
coated microspheres were molded into rod-shaped com-
plexes and inserted into the tubular scaffold. BMSCs were
encapsulated within a gelatin and sodium alginate matrix.
This mixture was injected into the scaffold containing the
microspheres.?® This scaffold was capable of providing
necessary stiffness and releasing oxygen via the decompo-
sition of calcium peroxide within the microspheres over
19days (Figure 3(A)). In vivo and in vitro tests demon-
strated its high biocompatibility and ability to promote cell
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Figure 3. Scaffold-based bioengineering approaches to ONFH management. (A) The CaO,/gelatin-based, oxygen-releasing

microspheres and the 3D printed PCL/nHA tubular scaffold were molded into rod-shaped complexes. Micro-CT confirmed bone
regeneration and immunohistochemical staining of CD 31 indicated angiogenesis in the femoral heads in rabbit ONFH model
4weeks after implantation. Sc, PCL/nHA Scaffold; Hy, hydrogel; Cc, calcium carbonate; CPO, calcium peroxide. Each value is the
mean = standard error of mean (n=3); Figures reproduced with permission from Wang et al.,? Copyright 2021, RSC. (B) Images
of toluidine blue-stained cobalt bioactive glass/collagen-glycosaminoglycan scaffolds. These two scaffolds, with different structural
integrity and porosity, are prepared at a controlled freezing rate of | and 4°C/min, respectively. Scanning electron microscope
images revealed that these scaffolds, loaded with small- and large-diameter bioactive glass particles, elute cobalt effectively. Figures
reproduced witi perrmission from Quinlan et al.,'®* Copyright 2015, Elsevier Ltd. (C) Schematic illustration of the fabrication of
a versatile MCFS nanosheet-functionalized 3D-printed BGS for periprosthetic infection preven tion/treatment and vascularized
osteogenesis confirmed by CLSM and digital images. Figures reproduced witi permission from Bian et al.'® (D) Scanning electron
micrographs illustrating the structural changes in MBG-PCL-zol scaffolds before and after 21 and 30 days of drug release tests,
respectively. Confocal images of the morphology of osteoclast-like cells | and 6 days after immersing the MBG-PCL-zol scaffolds
in the medium of osteoclast cultures. Actin was stained with rhodamine-phalloidin (red) and cell nuclei with DAPI (blue). Figures

reproduced with permission from Gémez-Cerezo et al.,'® Copyright 2019, Elsevier Ltd.

proliferation in hypoxic conditions and reduce local cell
apoptosis. Additionally, the composite 3D scaffold signifi-
cantly enhanced osteogenesis and angiogenesis in a rabbit
ONFH model demonstrating improved efficiency of a tis-
sue engineering treatment for ONFH.?® In addition to com-
bining materials of different properties, coating is another
effective method to add new characteristics to the scaffold.
For example, the presence of a Matrigel coating on the
CMC/ALG scaffold provided a friendly environment for

cell adhesion and proliferation in a rabbit model of
SONFH.'" In this scaffold, the loaded BMSCs and EPCs
promoted bone regeneration and angiogenesis while
reducing fat accumulation.'"” Certain biomaterials can
stimulate desired cellular behaviors by creating specific
microenvironments or releasing metal ions. For example,
Quinlan et al. developed hypoxia-mimicking bioactive
glass/collagen glycosaminoglycan composite scaffolds.
These scaffolds significantly enhanced the production and
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expression of VEGF in endothelial cells and promoted the
formation of new blood vessels and bone tissue, represent-
ing a promising option for ONFH treatment (Figure
3(B)).'®3 Zamani et al. incorporated zinc and magnesium
ions (Si0,-P,0,-Ca0-ZnO-MgO, 60% SiO,, 26% CaO,
4% P,0s, 5% ZnO, 5% MgO, in mol.%) into bioactive
glass-ceramic particles. Their results showed that incorpo-
rating iron-containing bioactive glasses into alginate net-
works improved the antibacterial efficacy, biological
activity, and mechanical properties, including toughness,
elastic modulus, and compressive strength, of the bone
composite scaffolds (Figure 3(C)).'3* Eriksson et al. devel-
oped S53P4 bioactive glass scaffolds with a composition
of 53% Si0,, 23% Na,0, 20% CaO, and 4% P,0O,. This
scaffold, after undergoing pressureless sintering, exhibited
a significantly higher porosity of approximately 50% and
greater compressive strength of 4.80 MPa than previously
reported bioactive glass scaffolds. These characters make
the scaffold suitable for load-bearing applications in long
bone defects. In vivo studies found that this scaffold
induced BMP expression and osseointegration in a rabbit
critical-sized bone defect model.'®> Bian et al. developed a
bifunctional scaffold made by integrating MgCuFe-Layered
Double Hydroxide (LDH)-derived polymetallic sulfide
(MCFS) nanosheets into a 3D-printed bioactive glass scaf-
fold (BGS). The MCFS nanosheets incorporate Mg?*, Cu?",
and Fe** ions and enhance bone regeneration and vasculari-
zation. In a rabbit cranial defect model, BGS/MCFS resulted
in an 8.5-fold increase in bone mass and a 2.3-fold increase
in neovascularization compared to pristine BGS (Figure
3(C)).'% Goémez-Cerezo et al.'®” developed a type of
mesoporous scaffold by mixing e-polycaprolactone (PCL)
with mesoporous bioactive glass (MBG-58S) powder.
Drugs can be incorporated and released controllably over
30days with the degradation of the scaffold. This complex
scaffold effectively supported angiogenesis and bone regen-
eration in an osteoporotic sheep model (Figure 3(D)).!*’
However, the role of these bioactive glass scaffolds on angi-
ogenesis and ONFH has not been investigated, which war-
rants further research in the future.

Recent studies have also explored the use of nanoparti-
cles as carriers of angiogenic growth factors, aiming to
improve the precision of delivery and the duration of ther-
apeutic effect. Their affinity for specific tissues makes
these particles a versatile platform for releasing growth
factors, genes, and other bioactive molecules at the tar-
geted site.®® Previous studies have shown that growth fac-
tor-loaded nanoparticles and gene delivery nanoparticles
enhanced angiogenesis and bone regeneration in animal
models of ONFH.% 18 For example, Xu et al.''! developed
a porous nano-hydroxyapatite/polyamide 66 scaffold,
which demonstrated significant potential in supporting
bone regeneration in dog ONFH model. Microcapsules
and microspheres are another class of delivery vehicles
that can encapsulate cells, growth factors, and drugs. These
systems offer controlled release properties and can be
engineered to target specific tissues. For example, CaO,/

gelatin microspheres developed by Wang et al.?° constantly

released oxygen, which facilitated the treatment of ONFH
via enhancing angiogenesis and survival of grafted stem
cells. Currently, research into nanotechnology-based ther-
apies of ONFH, especially those for promoting angiogen-
esis, is limited. Studies in related areas can provide
valuable insights.'®® For example, researchers used func-
tionalized mesoporous silica nanoparticles in a porcine
model of myocardial infarction to achieve anti-inflamma-
tory and proangiogenic effects.'3* A biomimetic, hierarchi-
cal scaffold composed of nanoparticles (DFO@PCL NPs)
facilitated bone regeneration and angiogenesis via activat-
ing the hypoxia-inducible factor-1a pathway.'”® Oxygen-
releasing nanoparticles loaded with MSC-Exos promoted
angiogenesis and muscle regeneration without causing sig-
nificant inflammation or overproduction of ROS."! A dual
delivery system developed by O’Brien et al.'®? incorpo-
rated a miR-210 mimic and a miR-16 inhibitor within a
collagen-nanohydroxyapatite scaffold, which could
enhance bone repair by enhancing angiogenic-osteogenic
coupling. However, despite significant advancements in
tissue engineering and biomolecule delivery techniques,
several challenges remain, including the limited availabil-
ity of donor cells, potential immune reactions, and the
need for precise control over the delivery and release of
therapeutic agents.

Other angiogenesis-promoting methods

Non-invasive therapies have been actively pursued in the
treatment of ONFH. These therapies offer significant ben-
efits by minimizing the risks and complications associated
with invasive surgical procedures. For example, extracor-
poreal shockwave treatment (ESWT) is a non-invasive
treatment option for various diseases, including musculo-
skeletal and vascular disorders. High-dosage ESWT (6000
impulses of ESWT at 24kV) for 1 month was found to be
associated with improved angiogenesis and osteogenesis,
anti-inflammatory effects, higher pain threshold, and tis-
sue regeneration.'”® Wu et al.'* found that ESWT pro-
moted the proliferation, migration, and angiogenesis of
endothelial cells, relieving endothelial injury and dysfunc-
tion in steroid-induced rat ONFH via downregulating
miR-135b and FOXO1 modulation. Another type of ther-
apy, hyperbaric oxygen therapy (HBOT), involves breath-
ing pure oxygen in a pressurized environment, which
increases oxygen delivery to tissues.'”> This therapy has
been reported to enhance angiogenesis and improve tissue
healing under various conditions, like accelerating skin
wound healing in diabetic mice and reducing fibrosis in
patients with breast cancer who received adjuvant radio-
therapy for breast cancer.'?®!”” HBOT may be particularly
useful in early-stage ONFH to enhance the oxygenation of
the necrotic area and support new blood vessel forma-
tion.!”® Low-intensity pulsed ultrasound (LIPUS) is
another non-invasive method that uses ultrasound waves
to stimulate tissue repair and angiogenesis. LIPUS has
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been shown to enhance the expression of angiogenic fac-
tors and promote blood vessel formation in ONFH. LIPUS
therapy is considered safe and can be applied as an adjunct
to other treatments.'”” The efficacy of exercise and
mechanical loading in treating ONFH is under debate.
Weight-bearing activities and specific exercise regimens
can promote blood flow and enhance the delivery of nutri-
ents and oxygen to the necrotic area, thereby supporting
the repair process. Though physical activities can stimu-
late angiogenesis through the physical stress they impose
on bones and tissues, the optimal intensity and frequency
of such activities have not yet been standardized.

Natural compounds and nature-derived molecules rep-
resent an emerging category of therapeutics for ONFH
treatment, with several preclinical studies demonstrating
their potential to modulate inflammation, enhance vascu-
larization, regulate metabolism, combat oxidative stress,
and promote bone regeneration., For example, icariin, a
bioactive compound derived from the Epimedium plant,
promoted microvascular endothelial cell migration, tube
formation, and expression of angiogenesis-related
cytokines via activating protein kinase B (Akt), increasing
B-cell lymphoma 2 (Bcl-2) expression and reducing Bcl-
2-associated X protein (Bax) expression. In vivo, icariin
treatment resulted in a lower ratio of empty lacunae, higher
blood vessel volume, and more CD31-positive cells in a
rat model of GONFH.? Resveratrol and urolithins, found
in grapes and pomegranates, have been noted for their pro-
tective effects on bone health through their anti-inflamma-
tory, antioxidant, and anti-apoptotic properties.2!-20?
Vitamin B2, also known as riboflavin, is a vital nutrient
that plays a crucial role in energy production, and cellular
antioxidant defense system and aids in the metabolism of
fats, drugs, and steroids.?’>?** Recent research has high-
lighted the potential therapeutic benefits of vitamin B2 in
the treatment of ONFH.'”® Guo and Zhang?* found that
vitamin B2 can inhibit ONFH-like changes by suppressing
cell apoptosis, promoting blood vessel regeneration, and
increasing bone mass in rat models of GONFH. In vitro
studies using HUVECs have further supported these find-
ings, showing that vitamin B2 enhances cell migration,
boosts the expression of angiogenesis-related factors, and
inhibits cellular apoptosis. These effects are believed to be
mediated through the activation of the phosphoinositide
3-kinase (PI3K)/Akt signaling pathway.?’> Osthole is a
bioactive derivative of coumarin. It has an extensive range
of pharmacotherapeutic effects, including anti-inflamma-
tory, antioxidant, anti-tumor, angiogenetic and neuropro-
tective properties. A study revealed that osthole reversed
the detrimental effects of ethanol on BMSCs and HUVECs
by modulating the Wnt/p-catenin pathway. In vivo study
further confirmed that osthole enhanced bone formation,
increased angiogenesis, and reduced adipogenesis in a rat
model of AONFH.*? Aldehyde dehydrogenase 2 (ALDH?2)
is a crucial enzyme in the metabolism of ethanol. It plays a

pivotal role in the detoxification process by converting
acetaldehyde, a toxic byproduct of alcohol metabolism,
into less harmful acetic acid.?® A recent study investigated
the protective role of ALDH2 in AONFH. In a rat model,
Alda-1, an ALDH2 activator, protected against ethanol-
induced ONFH by enhancing bone formation, reducing
adipogenesis, and promoting angiogenesis. The protective
effects were achieved via activating PI3K/AKT and
AMPK signaling pathways.?%

Various pharmacological agents and bioactive mole-
cules play significant roles in the treatment of ONFH.
Deferoxamine, for instance, is an iron chelator that can
remove excess iron, reduce oxidative stress, and promote
angiogenesis in a rabbit SONFH model.**’ Traditional
Chinese medicine (TCM) represents a promising source of
therapeutic agents for ONFH treatment, which may have
multiple pharmacological actions. For example, polydatin,
a natural bioactive ingredient extracted from the roots of
the Reynoutria japonica Houtt, was found to promote the
proliferation and osteogenic differentiation of BMSCs.2%
Lai et al. developed a porous PLGA/TCP scaffold contain-
ing icariin, a bioactive component derived from Herba
Epimedii. This scaffold was precisely printed to provide
mechanical support and stable icariin release, which
improved angiogenesis and bone regeneration in rabbit
model of SONFH.2” Icariin was also found to activate
autophagy and rejuvenate osteogenesis of senescent
BMSCs, thereby alleviating inflammaging and bone loss
in osteoporotic mice.?'’ Other typical TCM that possess
osteogenic function and promote bone regeneration
include but are not limited to Drynariae Rhizoma, Psoralea
corylifolia, Astragalus radix, Eucommiae Cortex, Deer
Antler, curcumin and resveratrol.?!?12 Xy et al. developed
anovel 3D-printed bone repair scaffold (SGC) by incorpo-
rating xonotlite nanofibers into a silk fibroin/gelatin scaf-
fold. This SGC scaffold promoted osteogenic and
angiogenic differentiation of bone mesenchymal stem
cells and reprogramed macrophages to create a favorable
osteoimmune microenvironment.?'3 Synthetic growth fac-
tors, such as recombinant BMP-2 and VEGF, directly
stimulate bone growth and vascularization.?'* Statins,
commonly used for lowering cholesterol, have been shown
to promote angiogenesis and bone healing.?!® Zinc, mag-
nesium, and iron ions are important bioactive agents in
bone tissue.?'® The combined supplementation of Mg and
vitamin C significantly inhibited osteoclast differentiation
of BMCs and promoted angiogenesis in a rat model of
GONFH.?'7 A randomized controlled clinical trial con-
ducted by Zhao et al. confirmed that biodegradable Mg
screws were reliable options for the fixation of vascular-
ized bone graft in ONFH patients. Patients in the Mg
screw group showed improved functional recovery and
increased Harris hip score at 12-month post-operative fol-
low-up without increased risk of side effects.”'® A self-
adaptive biomimetic periosteum composed of a novel
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interpenetrating double network hydrogel developed by
Zhou et al.?" continuously releases NO, activating the
NO-cGMP signaling pathway, thereby enhancing angio-
genesis and osteogenesis. Other pharmacological agents,
such as bisphosphonates and prostaglandin E1, hold the
potential to enhance blood flow and support bone regen-
eration in ONFH,220:22!

In addition, external shape and internal architecture of
scaffolds and tissue engineering constructs can dramati-
cally impact tissue regeneration outcomes beyond the
addition of growth factors, as different geometric designs
can modulate the cellular environment and vasculariza-
tion. For instance, scaffolds with smaller fiber diameters
and higher porosity, such as those fabricated using melt
electrowriting (MEW), have been shown to promote better
bone regeneration by fostering dense microvascular net-
works, while scaffolds with larger fiber diameters, like
those made with fused deposition modeling (FDM), sup-
port the formation of larger blood vessels.??? Yan et al.??
used FDM to produce scaffolds with PCL, 6-hexanedi-
amine, and angiogenic agents, which showed enhanced
vascular regeneration and improved bone formation in a
rat large bone defect model. The type H vessel, which is a
specific capillary subtyte, has been found to couple angio-
genesis with osteogenesis via regulating various signal
patways, such as Notch, PDGF-BB, Slit3, HIF-1a, and
VEGF.?** Chitosan (CS)-based microporous scaffolds
have gained attention for its role in promoting and angio-
genesis during bone regeneration.??

Discussion

Overview of ONFH and current treatment
strategies

ONFH remains a challenging orthopedic condition with a
significant impact on the patients’ quality of life as it pro-
gresses toward joint dysfunction. Current recommenda-
tions for ONFH treatment are listed in Table 4.%°
Nonsurgical treatment modalities, such as weight-bearing
restriction and pharmacological therapies may improve
outcomes when an early diagnosis is made.??® Once the
disease progresses to late stages characterized by the pres-
ence of a crescent sign, femoral head flattening, and ace-
tabular involvement, total hip arthroplasty becomes the
only viable treatment option.?*’ Innovative approaches that
target the underlying pathology of the disease, particularly
vascular insufficiency, are currently under extensive inves-
tigation. Researchers are relentlessly exploring a diverse
array of potential treatments, including antioxidants like
Resveratrol, extracellular vesicles like exosomes, cell-
based therapy, cutting-edge biotechnologies such as gene
editing, metabolic reprograming, and non-operative physi-
cal therapy such as high-energy focused extracorporeal
shock wave.?28-232

Table 4. Recommended treatments for ONFH.

Grade of
recommendation

Treatment

Nonoperative
Observation
Weight-bearing restriction
Bisphosphonates
Anticoagulants
Vasodilators
Acetylsalicylic acid
Extracorporeal shockwave therapy
Pulsed electromagnetic fields
Hyperbaric oxygen

Operative
Precollapse
Core decompression
Multiple small-diameter drilling
Adjunctive bone-grafting
Cell-based therapy
Nonvascularized bone-grafting
Vascularized bone-grafting
Tantalum rod
Rotational osteotomy
Angular osteotomy
Postcollapse
Total hip arthroplasty A

OO ®®E®E>P>P>

Grade A indicates good evidence (Level-l studies with consistent
findings); grade B, fair evidence (Level-Il or Il studies with consistent
findings); grade C, poor-quality evidence (Level-IV or V studies with
consistent findings); and grade |, insufficient or conflicting evidence not
allowing a recommendation.

Challenges facing angiogenic therapies

Recent advances in regenerative medicine and bioengi-
neering have fueled the exploration of angiogenic thera-
pies as potential treatments for ONFH.?3 In vitro and in
vivo studies confirmed that the restoration of blood sup-
ply via enhancing blood vessel formation significantly
prevented the apoptosis of osteocytes and the loss of tra-
becular bone.*>*** While therapeutic targeting of angio-
genesis represents a promising direction in ONFH
treatment, several challenges remain. First, the applica-
tion prospect of these new treatments in clinical practice
has not been clearly defined. Comprehensive multicenter
clinical trials should be conducted to evaluate the long-
term safety and efficacy of these approaches before their
clinical application. Another concern is the heterogeneity
of ONFH. Because of various pathologies, the response to
angiogenic therapies may differ based on the underlying
cause of the disease and in diverse patient populations.?
Thus, personalized treatment approaches may be neces-
sary to maximize the therapeutic outcomes. Additionally,
real-time imaging and monitoring technologies should be
applied to in vivo and clinical research, as useful insights
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Figure 4. 4D bioprinted self-folding vascular structures. (A) 4D bioprinting of cell-laden tubular structures: (a) Schematic of the 4D
bioprinting process for cell-laden AlgMA or HA-MA structures. Cells are mixed with AlgMA or HA-MA and printed on a substrate.
Figures reproduced with permission from Kirillova et al.,2** Copyright 2017, Wiley-VCH. (b) The printed structures are crosslinked
using green light, followed by drying. (c) The dried constructs are folded into tubular shapes upon immersion in water, PBS, or

cell culture media. (d) Microscopic images of the cell-laden tubular structures after folding, demonstrating structural integrity and
cell viability (scale bar: 400 um). (B) Self-folding PEGDA bilayer structures: (d—f) The first and second layers are photocrosslinked
sequentially, leading to a self-folding construct when immersed in water. (g and h) Microscopic images showing various self-folded
micropatterns in the bilayer structures. (i) Fluorescent imaging of cell-laden scaffolds indicates successful cell seeding and cell
distribution (scale bar: 200 um). Figures reproduced with permission from Jamal et al.,2*' Copyright 2013, Wiley-VCH. (C) 4D
printing and transformation of vascular structures: 3D bioprinting or PDMS molding to create a grid-like scaffold, followed by
transformation into complex vascular shapes in aqueous solutions. Magnetically driven shape transformation showing the 2D-to-3D
transition to form branching vascular structures. Confocal microscopy images of the constructed vascular channels showing network
formation by NHLFs and HUVECs within the matrix (scale bar: 100 um). Figures reproduced with permission from Xie et al.23

can be obtained by monitoring the dynamics of angiogen-
esis within the femoral head.?’

Bioengineered scaffolds and bioprinting
innovations

Bioengineered scaffolds are a highly active research field
attracting increasing attention. Scaffolds implanted into
the femoral head can provide a 3D structure that mimics
the natural extracellular matrix, which facilitates cell adhe-
sion, proliferation, and differentiation.'®* Angiogenic fac-
tors or cells incorporated in these scaffolds can enhance
the therapeutic potential of these structures by gradually
releasing the loaded or cell-secreted angiogenic factors
(Figure 4). This sustained release mechanism creates a

well-modulated environment and ensures a prolonged
angiogenetic effect.'”® Advanced techniques like 3D bio-
printing are being investigated to create more precise and
functional tissue constructs for ONFH treatment. 32236
However, potential undesirable vascular growth in adja-
cent areas has to be avoided, which requires more precise
regulatory and delivery systems.

4D bioprinting incorporates time as the fourth dimen-
sion and uses smart materials and smart design to create
dynamic 3D structures.?*” The key feature of 4D bioprint-
ing is that the produced constructs can change their shape
or functionality in response to external stimuli, such as
water, heat, pH, light, electric current, and magnetic
fields.?*® Unlike static 3D bioprinted products, 4D
bioprinted products are programmable and capable of
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Figure 5. Cell and cellular component-based therapy on angiogenesis and osteogenesis. (A) Schematic diagram illustrating the sources
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tissue, muscle, neonatal tissues, dental pulp, and skin. Different types of stem cells have been employed in relevant previous studies,
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red arrows indicate vessels. Scale bars=100pm. 3D micro-CT images showing the subchondral region of the femoral head in each group.
Figures reproduced with permission from Xu et al.,''* Copyright 2021, Wiley Periodicals LLC. (C) The angiogenesis of HMEC-1 cells
treated with DEX alone or with Dex + PRP-Exos was evaluated using a tube formation assay. Angiographic images show the blood supply
in the different groups. Scale bar: 100 um. Figures reproduced with permission from Tao et al.,'”” Copyright 2017, Ivyspring International
Publisher.(D) Angiographic images showing the blood supply in a rat model of ONFH treated with different interventions. The density and
structure of vessels in each group are visualized in red. Figures reproduced with permission from Zuo et al.*®

undergoing controlled dynamic changes, making them
uniquely advantageous for certain biomedical applica-
tions.?* For example, 4D bioprinted vascular scaffolds can
not only mimic the geometry of native blood vessels, but
also dynamically respond to the surrounding biological
milieu. Figure 5 provides several examples of 4D bio-
printed constructs. These constructs were designed to act
as dynamic scaffolds that can support and guide the forma-
tion of new blood vessels.?**24? The creation of dynamic
and functional vascular structures via 4D bioprinting pre-
sents transformative possibilities for ONFH treatment. As
4D bioprinting technology continues to evolve, its applica-
tion in orthopedic regenerative medicine could revolution-
ize the treatment of ONFH. Future research will likely
focus on optimizing the material properties and design of
bioprinted vascular constructs to enhance their functional-
ity and integration with host tissues.

In addition, 3D/4D bioprinting holds great potential in
not only providing regenerative constructs for ONFH man-
agement but also generating in vivo-like multi-tissue

models for replicating the (patho)physiology of ONFH and
predicting the safety and efficacy of potential drugs.?*
Besides, organs-on-chips (OoCs) are micro-engineered liv-
ing systems that recapitulate the functions and interactions
of human organs on a miniature, chip-like platform. These
devices integrate human cells, 3D scaffolds, and physiolog-
ically relevant microenvironments to replicate the physio-
logical and pathological processes of human organs.’*’
There are currently no OoCs specifically developed for
ONFH. Filling this gap with a dedicated ONFH-relevant
OoC model could profoundly impact the understanding,
diagnosis, and treatment of the disease, offering a more pre-
cise and comprehensive approach to tackling ONFH.

Conclusion

In this review, we comprehensively summarized the advance-
ment and challenges in angiogenesis-targeted treatments of
ONFH. As we have detailed, the use of angiogenic therapies
is a promising strategy to enhance blood supply and support
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tissue regeneration in the femoral head. Emerging biochemi-
cal agents and advanced biotechnologies, such as gene edit-
ing, stem cell therapies, bioengineered scaffolds, and 4D
bioprinting, provide exciting opportunities for future preci-
sion medicine. Several challenges remain regarding the
translation of research findings related to ONFH mecha-
nisms and intervention into clinical practice, including safety
concerns, ethical issues, technical complexity, individual
variability in response to treatments, and financial barriers. A
deeper understanding of the molecular mechanisms underly-
ing compromised angiogenesis in ONFH is expected to
result in innovative, efficacious therapeutic interventions,
which will greatly benefit from interdisciplinary efforts by
clinicians, biologists, and tissue engineers.
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