

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N'-[(*E*)-(3-Fluoropyridin-2-yl)methylidene]benzohydrazide monohydrate

Yamuna Nair,^a M. Sithambaresan^b* and M. R. Prathapachandra Kurup^c

^aDepartment of Chemical Oceanography, Cochin University of Science and Technology, Lakeside Campus, Kochi 682 016, India, ^bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka, and ^cDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India

Correspondence e-mail: eesans@yahoo.com

Received 10 July 2012; accepted 8 August 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.032; wR factor = 0.096; data-to-parameter ratio = 11.8.

The title compound, $C_{13}H_{10}FN_3O \cdot H_2O$, exists in the *E* conformation with respect to the azomethane C=N double bond. The molecule is close to planar with a maximum deviation of 0.286 (2) Å. The pyridine ring is essentially coplanar with the central $C(=O)N_2C$ unit [dihedral angle = 2.02 (3)°] and the phenyl ring exhibits a dihedral angle of 14.41 (10)° with respect to the central unit. The crystal structure features $O-H \cdot \cdot \cdot N$, $N-H \cdot \cdot \cdot O$ and $O-H \cdot \cdot \cdot O$ hydrogen-bond interactions between the solvent water and the benzohydrazide molecules, as well as $C-H \cdot \cdot \cdot O$ hydrogen bonds and $C-F \cdot \cdot \pi$ [3.0833 (18) Å] interactions.

Related literature

For background to the use of benzohydrazides as catalysts, see: Heravi *et al.* (2007); Hou *et al.* (2005) and for their biological activity, see: Sreeja *et al.* (2004). For the synthesis of related compounds, see: Fun *et al.* (2008). For related structures, see Mangalam *et al.* (2009).

Experimental

Crystal data $C_{13}H_{10}FN_3O \cdot H_2O$ $M_r = 261.26$

Orthorhombic, *Pbca* a = 8.2540 (4) Å

Data collection

Z = 8

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{min} = 0.964, T_{max} = 0.974$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.096$ S = 1.072190 reflections 185 parameters Mo $K\alpha$ radiation $\mu = 0.11 \text{ mm}^{-1}$ T = 296 K $0.35 \times 0.30 \times 0.25 \text{ mm}$

34264 measured reflections 2192 independent reflections 1817 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.027$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3-H3'\cdots O1W$ $O1W-H1A\cdots O1^{i}$ $O1W-H1A\cdots N2^{i}$ $O1W-H1B\cdots N1^{i}$ $C9-H9\cdots O1W$	0.901 (18) 0.84 (3) 0.84 (3) 0.89 (2) 0.93	1.914 (18) 2.08 (3) 2.48 (2) 1.95 (3) 2.30	2.7917 (17) 2.9187 (19) 2.9494 (17) 2.8420 (18) 3.209 (2)	164.3 (16) 172 (2) 116.1 (19) 178 (2) 165

Symmetry code: (i) $-x + \frac{3}{2}, y - \frac{1}{2}, z$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2010); software used to prepare material for publication: *SHELXL97* and *publCIF* (Westrip, 2010).

The authors are thankful to Dr Shibu M. Eapen, SAIF, Cochin University of Science and Technology, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2494).

References

Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, 01707.

Heravi, M. M., Ranjbar, L., Derikvand, F., Oskooie, H. A. & Bamoharram, F. F. (2007). J. Mol. Catal. A Chem. 265, 186–188.

- Hou, J., Sun, W.-H., Zhang, D., Chen, L., Li, W., Zhao, D. & Song, H. (2005). J. Mol. Catal. A Chem. 231, 221–233.
- Mangalam, N. A., Sivakumar, S., Sheeja, S. R., Kurup, M. R. P. & Tiekink, E. R. T. (2009). *Inorg. Chim. Acta*, 362, 4191–4197.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sreeja, P. B., Kurup, M. R. P., Kishore, A. & Jasmin, C. (2004). Polyhedron, 23, 575–581.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2012). E68, o2709 [doi:10.1107/S1600536812035179]

N'-[(E)-(3-Fluoropyridin-2-yl)methylidene]benzohydrazide monohydrate

Yamuna Nair, M. Sithambaresan and M. R. Prathapachandra Kurup

Comment

Interest in coordination chemistry of benzohydrazide has been a subject of enthusiastic research since their complexes show a wide range of catalytic properties (Heravi *et al.*, 2007; Hou *et al.*, 2005). Benzohydrazone derivatives are also important due to their wide spectrum of biological activities (Sreeja *et al.*, 2004).

This molecule adopts an *E* conformation with respect to the C6=N2 bond and it exists in the amido form with a C7=O1 bond length of 1.2258 (17) Å which is very close to the reported C=O bond length of a similar structure (Mangalam *et al.*, 2009). The O1 and N2 atoms are in a *Z* conformation with respect to C7–N3 having a torsional angle of -0.4 (2)°. The molecule is almost planar with a maximum deviation of 0.286 (2) Å for the atom C12 from its least square plane. The pyridyl ring is essentially coplanar with the central C(=O)N₂C unit (dihedral angle 2.02 (3) °), the phenyl ring exhibits a dihedral angle of 14.41 (10)° with respect to the central unit.

The water molecule forms six H-bonds with two different benzohydrazone molecules. Hydrogen bond interactions such as O–H···N, O–H···O, N–H···O and C–H···O are present in the crystal system between the H atoms attached to the O1W atom and N1, N2, N3, C9 and O1 atoms of two adjacent molecules with D···A distances of 2.842 (2), 2.9495 (17), 2.7917 (17), 3.209 (2) and 2.9188 (18) Å respectively as shown in Table 1. Both H-atoms of the water molecule form bifurcated hydrogen bonds with the azomethine nitrogen, the pyridyl nitrogen and the carbonyl oxygen atoms of one neighboring molecule (Fig. 2). The water molecule acts as a hydrogen bond acceptor towards another benzohydrazone molecule through an N–H···O hydrogen bond. Through these interactions the molecules are interconnected through the water molecule to form infinite chains parallel to the *b* axis of the unit cell (Fig. 2). Benzohydrazone molecules within these chains also interact through weak C–F··· π [3.0833 (18) Å] interactions (Fig. 2) that augment the stronger O–H···N, O–H···O, N–H···O hydrogen bonds.

Experimental

The title compound was prepared by adapting a reported procedure (Fun *et al.*, 2008). A solution of 3-fluoropyridine-2carbaldehyde (1.25 g,1 mmol) in ethanol (10 ml) was mixed with an ethanolic solution (10 ml) of benzohydrazide (1.36 g,1 mmol). The mixture was boiled under reflux for 12 h after adding few drops of glacial acetic acid and then cooled to room temperature. Colorless block shaped crystals, suitable for single-crystal analysis, were obtained in 61.8% yield after slow evaporation of the solution in air for a few days. ¹H NMR spectrum, DMSO-d₆, δ , p.p.m.: 12.12 (s, 1H, NH), 8.66 (s, 1H, CH=N), 8.53 (d, 1H, py–H(C1)), 7.54–7.95 (m, 7H, Ar–H (C2, C3, C9, C10, C11, C12, C13)). IR spectrum, ν (cm⁻¹): 3421, 3059, 1683,1650, 1597, 1441, 1350, 1295, 1273, 1167, 1134, 1073, 922, 801, 706, 674.

Refinement

The atoms H3', H1A and H1B were located from a difference Fourier map and refined isotropically. The remaining hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H

distances of 0.93 Å, and with isotropic displacement parameters 1.2 times that of the parent carbon atoms. Omitted owing to bad disagreement were the reflections $(0\ 0\ 2)$ and $(1\ 0\ 2)$.

Computing details

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2010); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008) and *publCIF* (Westrip, 2010).

Figure 1

ORTEP diagram of N'-[(E)-(3-fluoropyridin-2-yl)methylidene]benzohydrazide monohydrate with 50% probability ellipsoids.

Figure 2

Hydrogen-bonding interactions showing an infinite chain in the crystal structure of N'-[(E)-(3-fluoropyridin-2-yl)methylidene]benzohydrazide hydrate and the interconnection of the chains *via* weak C–F··· π interactions.

N'-[(*E*)-(3-Fluoropyridin-2-yl)methylidene]benzohydrazide monohydrate

Crystal data	
$C_{13}H_{10}FN_3O\cdot H_2O$	F(000) = 1088
$M_r = 261.26$	$D_{\rm x} = 1.390 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pbca	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 9884 reflections
a = 8.2540 (4) Å	$\theta = 5.8 - 54.5^{\circ}$
b = 11.5489 (4) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 26.1962 (11) Å	T = 296 K
$V = 2497.14 (18) \text{ Å}^3$	Block, colorless
Z = 8	$0.35 \times 0.30 \times 0.25 \text{ mm}$

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scan Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2004) $T_{\min} = 0.964, T_{\max} = 0.974$ <i>Refinement</i>	34264 measured reflections 2192 independent reflections 1817 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -9 \rightarrow 9$ $k = -13 \rightarrow 13$ $l = -31 \rightarrow 31$
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.032$	H atoms treated by a mixture of independent
$wR(F^2) = 0.096$	and constrained refinement
S = 1.07	$w = 1/[\sigma^2(F_o^2) + (0.0425P)^2 + 0.6736P]$
2190 reflections	where $P = (F_o^2 + 2F_c^2)/3$
185 parameters	$(\Delta/\sigma)_{max} = 0.001$
0 restraints	$\Delta\rho_{max} = 0.18 \text{ e } \text{Å}^{-3}$
Primary atom site location: structure-invariant	$\Delta\rho_{min} = -0.13 \text{ e } \text{Å}^{-3}$
direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick,
Secondary atom site location: difference Fourier	2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}
map	Extinction coefficient: 0.0073 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
F1	0.75071 (13)	0.87133 (8)	1.09485 (3)	0.0629 (3)	
01	0.82638 (15)	1.12491 (9)	0.86590 (4)	0.0561 (3)	
O1W	0.90084 (17)	0.73757 (10)	0.93534 (6)	0.0600 (3)	
N1	0.60294 (15)	1.12483 (10)	1.03176 (5)	0.0462 (3)	
N2	0.79363 (14)	1.02906 (10)	0.95707 (4)	0.0413 (3)	
N3	0.88214 (15)	0.97616 (11)	0.91928 (4)	0.0418 (3)	
C1	0.51707 (19)	1.17020 (13)	1.06961 (6)	0.0514 (4)	
H1	0.4633	1.2397	1.0637	0.062*	
C2	0.5032 (2)	1.12006 (14)	1.11710 (6)	0.0562 (4)	
H2	0.4420	1.1552	1.1425	0.067*	
C3	0.5812 (2)	1.01773 (15)	1.12616 (6)	0.0557 (4)	
Н3	0.5742	0.9811	1.1577	0.067*	
C4	0.66988 (18)	0.97122 (13)	1.08709 (5)	0.0444 (4)	
C5	0.68155 (16)	1.02434 (11)	1.04024 (5)	0.0392 (3)	
C6	0.77636 (17)	0.97353 (12)	0.99866 (5)	0.0416 (3)	

H6	0.8237	0.9010	1.0026	0.050*
C7	0.89290 (17)	1.03168 (12)	0.87370 (5)	0.0416 (3)
C8	0.99453 (17)	0.97527 (13)	0.83362 (5)	0.0427 (3)
C9	1.0457 (2)	0.86099 (14)	0.83555 (6)	0.0543 (4)
H9	1.0176	0.8148	0.8633	0.065*
C10	1.1385 (2)	0.81533 (17)	0.79643 (6)	0.0664 (5)
H10	1.1715	0.7384	0.7978	0.080*
C11	1.1819 (2)	0.88324 (18)	0.75569 (7)	0.0692 (5)
H11	1.2441	0.8522	0.7294	0.083*
C12	1.1337 (2)	0.99666 (18)	0.75360 (6)	0.0650 (5)
H12	1.1645	1.0427	0.7261	0.078*
C13	1.03959 (19)	1.04278 (15)	0.79213 (6)	0.0529 (4)
H13	1.0062	1.1196	0.7903	0.064*
H3′	0.908 (2)	0.9010 (16)	0.9235 (6)	0.057 (5)*
H1A	0.838 (3)	0.699 (2)	0.9166 (9)	0.102 (9)*
H1B	0.902 (3)	0.701 (2)	0.9653 (9)	0.100 (8)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
F1	0.0738 (6)	0.0639 (6)	0.0511 (5)	0.0185 (5)	0.0040 (5)	0.0128 (4)
01	0.0757 (8)	0.0461 (6)	0.0467 (6)	0.0037 (5)	0.0021 (5)	0.0061 (5)
O1W	0.0761 (8)	0.0452 (6)	0.0589 (8)	-0.0080 (6)	0.0070 (7)	0.0081 (6)
N1	0.0496 (7)	0.0422 (7)	0.0468 (7)	0.0015 (5)	0.0020 (6)	-0.0028 (5)
N2	0.0454 (7)	0.0418 (6)	0.0366 (6)	-0.0004 (5)	0.0024 (5)	-0.0031 (5)
N3	0.0500 (7)	0.0406 (7)	0.0348 (6)	0.0017 (5)	0.0046 (5)	-0.0004(5)
C1	0.0508 (9)	0.0451 (8)	0.0583 (10)	0.0016 (7)	0.0051 (7)	-0.0096 (7)
C2	0.0529 (9)	0.0628 (10)	0.0528 (10)	-0.0014 (8)	0.0107 (7)	-0.0155 (8)
C3	0.0571 (9)	0.0704 (11)	0.0395 (8)	-0.0017 (8)	0.0053 (7)	-0.0008 (7)
C4	0.0447 (8)	0.0492 (8)	0.0395 (8)	0.0006 (7)	-0.0027 (6)	-0.0008 (6)
C5	0.0381 (7)	0.0417 (7)	0.0377 (7)	-0.0032 (6)	-0.0013 (6)	-0.0039 (6)
C6	0.0459 (8)	0.0401 (8)	0.0388 (7)	0.0034 (6)	-0.0001 (6)	-0.0008 (6)
C7	0.0458 (8)	0.0415 (8)	0.0375 (8)	-0.0089 (6)	-0.0036 (6)	-0.0003 (6)
C8	0.0421 (8)	0.0527 (8)	0.0333 (7)	-0.0109 (6)	-0.0020 (6)	-0.0007 (6)
С9	0.0643 (10)	0.0551 (9)	0.0433 (8)	-0.0037 (8)	0.0112 (8)	-0.0003 (7)
C10	0.0736 (12)	0.0708 (11)	0.0550 (10)	0.0039 (9)	0.0161 (9)	-0.0077 (9)
C11	0.0611 (11)	0.1001 (15)	0.0463 (10)	-0.0034 (10)	0.0143 (8)	-0.0098 (10)
C12	0.0576 (10)	0.0987 (14)	0.0386 (9)	-0.0147 (10)	0.0058 (7)	0.0105 (9)
C13	0.0519 (9)	0.0651 (10)	0.0418 (8)	-0.0110 (8)	-0.0024 (7)	0.0068 (7)

Geometric parameters (Å, °)

F1—C4	1.3481 (17)	C4—C5	1.376 (2)
O1—C7	1.2258 (17)	C5—C6	1.4639 (19)
O1W—H1A	0.84 (3)	С6—Н6	0.9300
O1W—H1B	0.89 (2)	C7—C8	1.494 (2)
N1—C1	1.3266 (19)	C8—C9	1.387 (2)
N1—C5	1.3480 (18)	C8—C13	1.388 (2)
N2—C6	1.2721 (18)	C9—C10	1.384 (2)
N2—N3	1.3736 (16)	С9—Н9	0.9300

N3—C7	1.3582 (18)	C10-C11	1.372 (3)
N3—H3′	0.901 (18)	C10—H10	0.9300
C1 - C2	1 377 (2)	$C11_C12$	1,370(3)
	0.0200	C11 H11	0.0200
	0.9300		0.9300
C2-C3	1.366 (2)	C12-C13	1.381 (2)
C2—H2	0.9300	C12—H12	0.9300
C3—C4	1.368 (2)	С13—Н13	0.9300
С3—Н3	0.9300		
H1A—O1W—H1B	105 (2)	С5—С6—Н6	120.2
C1-N1-C5	118 31 (13)	01 - C7 - N3	122 14 (13)
C6 N2 N3	116.00 (12)	01 C7 C8	122.11(13) 121.16(13)
$C_0 = N_2 = N_3$	110.90 (12)	01 - 07 - 08	121.10(13)
$C/=N_3=N_2$	117.28 (12)	N3	116.67 (13)
C7—N3—H3′	123.2 (11)	C9—C8—C13	118.79 (14)
N2—N3—H3′	117.8 (11)	C9—C8—C7	124.09 (13)
N1—C1—C2	123.60 (15)	C13—C8—C7	117.12 (14)
N1—C1—H1	118.2	C10—C9—C8	120.27 (15)
C2—C1—H1	118.2	С10—С9—Н9	119.9
C3—C2—C1	118.79 (14)	С8—С9—Н9	119.9
C3-C2-H2	120.6	$C_{11} - C_{10} - C_{9}$	120 18 (18)
$C_1 C_2 H_2$	120.6		110.0
$C_1 = C_2 = C_1$	117.40(15)	C_{10} C_{10} H_{10}	110.0
$C_2 - C_3 - C_4$	117.49 (13)	C_{9}	119.9
C2—C3—H3	121.3		120.13 (17)
С4—С3—Н3	121.3	С12—С11—Н11	119.9
F1—C4—C3	119.21 (13)	C10—C11—H11	119.9
F1—C4—C5	118.78 (13)	C11—C12—C13	120.19 (16)
C3—C4—C5	122.00 (14)	С11—С12—Н12	119.9
N1—C5—C4	119.81 (13)	C13—C12—H12	119.9
N1—C5—C6	118.68 (12)	C12—C13—C8	120.43 (16)
C4 - C5 - C6	121 51 (13)	C12—C13—H13	119.8
N2 C6 C5	110.67(12)	C_{8} C_{12} H_{12}	110.8
N2 - C6 - U6	119.07 (12)	0-015-1115	119.0
N2-C0-H0	120.2		
~			
C6—N2—N3—C7	176.10 (12)	N2—N3—C7—O1	-0.4 (2)
C5-N1-C1-C2	-0.2(2)	N2—N3—C7—C8	177.81 (11)
N1—C1—C2—C3	-0.2 (2)	O1—C7—C8—C9	-166.31 (14)
C1—C2—C3—C4	0.3 (2)	N3—C7—C8—C9	15.5 (2)
C2—C3—C4—F1	178.90 (14)	O1—C7—C8—C13	13.8 (2)
C2—C3—C4—C5	0.1 (2)	N3—C7—C8—C13	-164.45(13)
C1 - N1 - C5 - C4	0.6(2)	C13 - C8 - C9 - C10	-0.7(2)
C1 N1 $C5$ $C6$	170.80(13)	C7 C8 C9 C10	170 37 (15)
$E1 C4 C5 N^{1}$	$-170 \ 40 \ (12)$	$C_{1}^{2} = C_{1}^{2} = C_{1$	0.7(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/9.40(12)	$C_0 = C_1 $	0.7(3)
C_{3} C_{4} C_{5} N_{1}	-0.5(2)		0.1 (3)
F1	1.4 (2)	C10—C11—C12—C13	-0.8 (3)
C3—C4—C5—C6	-179.78 (14)	C11—C12—C13—C8	0.8 (3)
N3—N2—C6—C5	-179.18 (11)	C9—C8—C13—C12	0.0 (2)
N1-C5-C6-N2	5.7 (2)	C7—C8—C13—C12	179.90 (14)
C4—C5—C6—N2	-175.10(14)		

Tyurogen bonu geometry (II,)	Hydrogen-bond	geometry (Å,	9
-------------------------------	---------------	--------------	---

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N3—H3'…O1W	0.901 (18)	1.914 (18)	2.7917 (17)	164.3 (16)
O1 <i>W</i> —H1 <i>A</i> ···O1 ⁱ	0.84 (3)	2.08 (3)	2.9187 (19)	172 (2)
$O1W$ —H1 A ···N 2^{i}	0.84 (3)	2.48 (2)	2.9494 (17)	116.1 (19)
O1W— $H1B$ ···N1 ⁱ	0.89 (2)	1.95 (3)	2.8420 (18)	178 (2)
C9—H9…O1 <i>W</i>	0.93	2.30	3.209 (2)	165

Symmetry code: (i) -x+3/2, y-1/2, z.