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Abstract

Trehalose metabolism and its intermediate trehalose-6-phosphate (T6P) are implicated in

sensing and signalling sucrose availability. Four class I TREHALOSE-6-PHOSPHATE

SYNTHASE (TPS1) genes were identified in kiwifruit, three of which have both the TPS and

trehalose-6-phosphate phosphatase (TPP) domain, while the fourth gene gives rise to a

truncated transcript. The transcript with highest sequence homology to Arabidopsis TPS1,

designated TPS1.1a was the most highly abundant TPS1 transcript in all examined kiwifruit

tissues. An additional exon giving rise to a small N-terminal extension was found for two of

the TPS1 transcripts, designated TPS1.2a and TPS1.2b. Homology in sequence and gene

structure with TPS1 genes from Solanaceae suggests they belong to a separate, asterid-

specific class I TPS subclade. Expression of full-length and potential splice variants of these

two kiwifruit TPS1.2 transcripts was sufficient to substitute for the lack of functional TPS1 in

the yeast tps1Δ tps2Δ mutant, but only weak complementation was detected in the yeast

tps1Δmutant, and no or very weak complementation was obtained with the TPS1.1a con-

struct. Transgenic Arabidopsis lines expressing kiwifruit TPS1.2 under the control of 35S

promoter exhibited growth and morphological defects. We investigated the responses of

plants to elevated kiwifruit TPS1 activity at the transcriptional level, using transient expres-

sion of TPS1.2a in Nicotiana benthamiana leaves, followed by RNA-seq. Differentially

expressed genes were identified as candidates for future functional analyses.

Introduction

Trehalose has a central role as an energy source and in stress response in microorganisms and

invertebrates [1]. It has an important role as osmotic protectant in bacteria, fungi, archaea and

insects [2] and is thought to protect against desiccation in specialized resurrection plant spe-

cies. However, in most plant species trehalose is accumulated in trace amounts and is therefore

unlikely to be important as an osmoprotectant. Instead, trehalose metabolism is implicated in

providing a link between plant metabolism and development [3], with its intermediates sens-

ing and signalling carbon availability [4,5]. Alterations in trehalose metabolism cause highly
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pleiotropic phenotypes, implicating trehalose metabolism in regulation of embryo develop-

ment, vegetative growth, flowering and architecture [6–12], stomatal conductance [12–14],

photosynthesis and starch metabolism [15–17]. Manipulation of trehalose metabolism has also

been utilized in model and crop species to increase abiotic stress tolerance [18–21] and

changes in transcriptome of transgenic plants expressing TPS1were described [22,23].

The biosynthesis of trehalose in plants involves generation of trehalose-6-phosphate (T6P)

from UDP-glucose and glucose-6-phosphate (G6P) by trehalose-6-phosphate synthase (TPS), fol-

lowed by dephosphorylation to trehalose by trehalose-6-phosphate phosphatase (TPP). Trehalose

is subsequently hydrolysed by trehalase (TRE) into two glucose residues to actively prevent accu-

mulation of trehalose in higher plants [24]. Mutant and transgenic analyses have demonstrated

that changes in T6P concentrations are associated with developmental and metabolic effects

observed upon perturbing trehalose metabolism. T6P is therefore proposed to be a signal for

sucrose availability and is implicated in sucrose homeostasis in plant cells [25], potentially via the

SNF1-related protein kinase (SnRK1) pathway and the transcription factor bZIP11 [3,26–28].

Plant TPS and TPP enzymes are encoded by gene families, while TRE is encoded by a single

gene [4]. Each of the Arabidopsis and rice genomes has 11 TPS genes, and, respectively, 10 and 13

TPP genes, while 12 TPS genes and 10 TPP genes are reported in the Populus and 14 TPS and 11

TPP in the maize genomes [13,29–31], which have resulted from independent duplication events

[2,4]. TPS genes are divided into two classes. Class I TPS genes are generally present in a single or

low number copy, usually encoding catalytically active TPS enzymes with both TPS and TPP

domains and inactive phosphatase boxes. Among four Arabidopsis class I TPS genes, only

AtTPS1 has previously been shown to encode for TPS activity by expression in the yeast tps1Δ
mutant [32], but a recent study demonstrated that expression of AtTPS2 or AtTPS4 is sufficient

for the yeast tps1Δ tps2Δmutant to grow on glucose and accumulate T6P and trehalose [33].

Therefore at least three catalytically active TPS isoforms are found in Arabidopsis. However, only

the Arabidopsis tps1mutant shows growth defects, suggesting that T6P synthesis may not be the

only role of AtTPS1. Class II TPS genes encode proteins which have both TPS and TPP domains,

but lack residues required for interaction with the substrate, do not possess TPS or TPP activity

and may instead have a regulatory role [32,34]. All plant TPP genes encode proteins with a unique

TPP domain and conserved phosphatase domains, and all Arabidopsis TPP enzymes are active in

yeast. The similar activity but differential expression patterns suggest specialized function [13].

Most work describing T6P stress response, energy sensing and signalling networks and

underlying molecular mechanisms has utilized Arabidopsis, but it is becoming clear that aspects

of T6P signalling and role in plant development might be conserved across species [31,35,36],

with some caveats. However, there has been little research in trehalose metabolism and signal-

ling in woody perennial plants. Currently, very little is known about the number and structure

of TPS1 genes, or if any of the TPS1 proteins has catalytic activity. This study aimed to identify

kiwifruit Actinidia chinensis trehalose metabolism genes. Specifically, we aimed to characterize

class I TPS genes and determine their catalytic activity and expression patterns, followed by

evaluation of potential roles in transgenic model plants. Further, we used heterologous transient

expression to investigate the response of plants to elevated kiwifruit TPS1 activity.

Materials and Methods

Identification of kiwifruit trehalose metabolism genes

Genes were identified using annotation search and reciprocal blast analysis of the kiwifruit

genomic sequence database [37] and the Plant & Food Research EST database [38]. Arabi-

dopsis TPS, TPP and trehalose protein sequences were used as tblastn queries. The EST

sequences were further used to annotate the TPS genes manually and to devise predicted
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protein sequences (GenBank accession numbers KX249682-KX249687). Predicted protein

sequences were compared with those of Arabidopsis, rice, poplar, tomato and potato using

Geneious ClustalW Alignment, and phylogeny was constructed using the Neighbour-joining

method in Geneious Tree Builder (Geneious, Biomatters Ltd, version 8.1.2) (http://www.

geneious.com) [39].

Plasmid construction

TPS coding sequences, flanked by Invitrogen™ Gateway™ attL sites, were synthesized by Gen-

Script (Piscataway, NJ, USA) and cloned using Gateway LR Clonase™ (ThermoFisher Scien-

tific, Waltham, MA, USA) into the yeast expression vector pURA3ΔNLS and the plant

expression vector pHEX2 [40]. pURA3ΔNLS is based on the pTFT1 [41]-derived Gateway-

enabled vector pTFT1GW6, further modified to express the URA3 selectable marker instead

of ADE2 (pURA3, constructed by C. Brendolise, Plant & Food Research). The nuclear localisa-

tion sequence was spliced out by overlap extension PCR and the resulting fragment cloned

into PvuII-digested pURA3. The PCR primer sequences are presented in S1 Table.

Plant transformation and growth

Agrobacterium tumefaciens-mediated Arabidopsis transformation was performed as described

[42,43]. Nicotiana benthamiana transformation was performed using the leaf disc protocol

[44]. Seeds of transgenic plants were selected on half-strength Murashige and Skoog (½ MS)

medium supplemented with kanamycin and placed in a growth room under a long day (LD,

21˚C, 16/8 h light/dark) regime.

Yeast complementation assays

The Saccharomyces cerevisiae wild-type strain W303-1A (Mata leu2-3, 112 ura3-1 trp1-1 his3-

11, ade2-1 can1-100 GAL SUC2) [45] and W303-1A-derived TPS mutant strains were used for

all complementation assays. Yeast TPS1,A. chinensis TPS1.1a,AcTPS1.2a, AcTPS1.2a EXT,

AcTPS1.2b and AcTPS1.2b EXT, cloned in the pURA3ΔNLS vector (as above), were introduced

into the single-deletion strain YSH290 (W303-1A, tps1Δ::TRP1) [46] and double-deletion

strain YSH652 (W303-1A,tps1Δ::TRP1 tps2Δ::LEU2) [47]. A W303-1A wild-type strain carry-

ing the empty pURA3ΔNLS plasmid was used as a positive control, along with tps1Δ and tps1Δ
tps2Δ deletion strains complemented with pURA3ΔNLS-ScTPS1. Yeast transformation was

performed as described [48] and positive transformants were selected on synthetic dropout

medium lacking uracil and containing 2% (w/v) galactose. For the complementation assay,

starter cultures were grown overnight at 28˚C while shaking at 200 rev/min in selective mini-

mal medium containing 2% (w/v) galactose. Six serial dilutions were made, starting from an

OD600 of 0.5 and 10 μL of each dilution was spotted on plates containing selective medium

supplied either with 2% (w/v) galactose or 2% (w/v) glucose. Plates were incubated for 48 h at

30˚C and pictures were taken using a digital camera. Proof that any observed complementa-

tion was due to the presence of an introduced TPS gene was obtained by confirming loss of

complementation after growth under non-selective conditions (synthetic dropout medium

including uracil and containing 2% (w/v) galactose) and subsequent selection on FOA-con-

taining medium.

Tissue sampling, RNA extraction and sequencing

Tissue was sampled from A. chinensis Planch. ‘Hort16A’ growing at the Plant & Food Research

orchard near Kerikeri, New Zealand, in 2015. All sampling was performed from three
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individual plants (biological replicates), at midday, to avoid variation. Total kiwifruit RNA was

isolated using the Spectrum™ Plant Total RNA Kit (Sigma-Aldrich, St. Louis, MO, USA). The

genomic DNA was removed and cDNA synthesized using the QuantiTect Reverse Transcrip-

tion Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Daily

expression analysis was performed on previously described cDNA samples [48].

Leaves of N. benthamiana plants grown in a containment glasshouse were infiltrated with

Agrobacterium tumefaciens suspension culture as described [40]. Two young leaves each of

three plants were used for each treatment. Six samples were collected by punching ~ 6-mm

diameter discs from each treated leaf, and the samples from the same plant were pooled to rep-

resent one biological replicate. Infiltration and sample collection were performed at midday,

to avoid variation. The RNA was extracted using the Spectrum Plant Total RNA Kit (Sigma-

Aldrich) and the quality and quantity of the total RNA were checked using a NanoDrop ND-

1000 spectrophotometer (ThermoFisher Scientific) and the Agilent 2100 Bioanalyzer (Agilent

Technologies, Santa Clara, CA, USA). Three RNA samples per treatment and time point were

used for subsequent library construction and sequencing (three biological replicates per each

treatment). The sequencing libraries were constructed according to the TruSeq RNA sample

preparation guide (Illumina, San Diego, CA, USA) and subsequently sequenced by an Illumina

Genome Analyzer (HiSeq 2000, Illumina) obtaining paired-reads of 100 bp. Library construc-

tion and sequencing were performed at Macrogen (Seoul, Republic of Korea).

Sequence analysis

The resulting RNA-seq reads were passed through the FastQC tool version 0.11.2 (http://www.

bioinformatics.babraham.ac.uk/projects/fastqc/) to check the overall quality of the raw data

from sequencing. Macrogen TruSeq adapters were clipped from the reads and filtered for a min-

imum length of 40 bp and minimum quality threshold of 28 using fastq-mcf version 1.04.803

(https://code.google.com/archive/p/ea-utils/). Reads containing unknown nucleotides (Ns) and

the first 14 bp of each read were removed using a custom Perl script (written by Cecilia Deng,

Plant & Food Research). The remaining high-quality reads were mapped to the genomic

sequence of A. tumefaciens wild-type strain C58 (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA_

000092025.1_ASM9202v1) with Bowtie2 version 2.2.5 [49] on default settings to remove reads

derived from Agrobacterium contamination. Remaining reads were mapped to the draft N.

benthamiana transcriptome version 1.0.1 (ftp://ftp.solgenomics.net/genomes/Nicotiana_

benthamiana/annotation/Niben101/) using Bowtie2 on default settings with the paired-end

reads mapped end-to-end. Htseq-count version 0.018 (http://www-huber.embl.de/users/anders/

HTSeq/doc/count.html) was used to count the number of unique reads that mapped to tran-

scripts using ‘gene’ as the feature type. The resulting count tables were used for downstream

analysis in R using the package DESeq2 [50]. Transcripts with P values adjusted for false discov-

ery rates (FDRs) of 10% and adjusted P value<0.05 were considered to be statistically differen-

tially expressed. The fold changes in differentially expressed genes were calculated by comparing

the values for TPS1 samples to appropriate time points of GFP samples and significant differen-

tially expressed genes were determined by fold changes�1.5 and P adjusted-values<0.05.

Gene ontology (GO) annotation

Gene annotations were obtained by reciprocal best blast hits of translated N. benthamiana EST

sequences to Arabidopsis amino acid sequences.

The best Arabidopsis (TAIR 10) hit was used for GO term classification, which was per-

formed using PANTHER [51] (http://pantherdb.org/) and interrogation of expression, using

the Arabidopsis eFP Browser (http://bbc.botany.utoronto.ca/efp/cgi-bin/efpWeb.cgi) [52].
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Quantitative real-time PCR (qRT-PCR) analysis

Gene-specific primers for qRT-PCR of A. chinensis and N. benthamiana genes were designed

using Primer3 (v 2.3.4) in Geneious v 8.1.2 (http://www.geneious.com) [39]. RT-PCRs were per-

formed using FastStart DNA MasterPLUS SYBR Green I reaction mix on a LightCycler1 1.5

instrument (Roche) or SYBR Green I Master reaction mix using the LightCycler1 480 System

(Roche). Non-template controls were included in each run. Amplification was carried out with an

initial denaturing step at 95˚C for 5 min, then 40–50 cycles of 95˚C for 5 s, 60˚C for 5 s, and 72˚C

for 10 s (1.5 instrument) or 95˚C for 5 min, then 50 cycles of 95˚C for 10 s, 60˚C for 10 s, and

72˚C for 20 s (480 instrument). The PCR efficiency for each individual sample was calculated

using the LinRegPCR v 2015.3 software [53–55]. The mean efficiency per amplicon was then in-

cluded in the calculation of relative expression ratios according to the comparative cycle threshold

method [56]. Ct values were determined using the second derivative maximum method in the

LightCycler1 480 software 1.5.0. For kiwifruit samples, expression of the commonly used refer-

ence genes ACT, EF1α, UBC9, and PP2A [38] was analysed using GeNORM software [57] to iden-

tify the most stably expressed gene. Similarly, for the N. benthamiana samples, the PP2A, F-box

and L23 genes were included as reference genes [58]. All primer sequences are listed in S1 Table.

Results

Identification of Actinidia TPS1 genes

Name and sequence searches of the kiwifruit draft genome [37] identified 22 TPS, 10 TPP and

a single TRE gene (S2 Table). The majority of predicted coding sequences appeared misanno-

tated, often missing large parts of protein coding sequence. A sequence search of the EST data-

base [38] identified candidates for expressed kiwifruit TPS genes (S3 Table). At least 27 ESTs

representing partial sequences of TPS genes were identified, with representatives of the class I

and class II TPS genes. For some genes, multiple near-identical sequences were found, proba-

bly reflecting alleles, sequences from different genomes within polyploid genomes, or ortho-

logs from different kiwifruit species. Most kiwifruit TPS predicted proteins included a TPS

and a TPP domain, although truncated genes and ESTs were also identified. These are unlikely

to be functional and were not investigated further.

Identified putative class I TPS1 ESTs were used for manual annotation of kiwifruit genome

scaffolds and their expression and full-length sequence were further confirmed by subsequent

PCR amplification and sequencing. Four kiwifruit TPS1-like genes were identified. TPS1.1a,

TPS1.2a and TPS1.2b all had 17 exons within the predicted protein coding sequence (Fig 1A)

and the first 10 exons encoded the TPS domain, while the remaining seven encoded the TPP

domain. TPS1.1b gene gave rise to a truncated transcript, which lacked part of the TPS and the

entire TPP domain, and the sequence of the last exon (as identified by corresponding EST)

showed high homology to a downstream gene encoding an ADP-ribosylation factor. Potential

alternative splicing resulting in an N-terminal extension and additional short exon was found

for both the TPS1.2 transcripts, denoted TPS1.2EXT (Fig 1A). The alternative translation initi-

ation site context of extended TPS1.2 transcripts appeared favourable [59] and interrogation of

the tomato genome (ITAG2.4 gene models at https://solgenomics.net/) revealed that the most

similar tomato gene, Solyc02g071590 also contained an additional short exon. The presence of

this exon increased the length of the N-terminal extension but did not affect the length of the

TPS domain (Fig 1B). Phylogenetic analysis confirmed that all identified kiwifruit predicted

TPS1 proteins belonged to the class I TPS subfamily. TPS1.1 sequences share homology with

TPS1 proteins from other dicots including Arabidopsis and poplar, while TPS1.2 sequences

form a distinct subclade with one of tomato and one of potato TPS1 proteins (Fig 1C).
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Expression analyses

Analysis of Actinidia ESTs [38] identified TPS1 expression in young leaf, actively growing

shoot buds and developing fruit (S3 Table), consistent with expression in actively growing tis-

sues with high energy demand [32]. qRT-PCR analysis confirmed expression for TPS1.1a,

TPS1.2a and TPS1.2b throughout the plant, in all root and shoot tissues analysed (Fig 2). Dif-

ferential expression levels were detected for three transcripts, with TPS1.1a showing highest

expression. Between TPS1.2 transcripts, TPS1.2b appeared somewhat more abundant. The

same differential expression pattern was also observed in the publicly available mature leaf

transcriptome (Sequence Read Archive (SRA) database, accession SRX219918, at http://www.

ncbi.nih.gov/sra), and in leaf samples collected over a 24-hour period (S1 Fig), suggesting that

TPS1.1a is the predominant TPS1 transcript in kiwifruit tissues.

Functional analyses in yeast

Alignment of kiwifruit TPS1 sequences with catalytically active Arabidopsis TPS1, TPS2 and

TPS4 identified conservation in amino acid positions important for substrate binding and sta-

bilization of the interaction (S2 Fig). Catalytic activity of kiwifruit TPS1 predicted proteins was

further tested in yeast mutants. The disruption of the TPS1 gene in yeast S. cerevisiae tps1Δ and

tps1Δ tps2Δmutants prevents growth in glucose, but not galactose. The complementation

assays in the tps1Δ tps2Δ double mutant are considered very sensitive, based on the assumption

that the absence of TPP enzyme allows accumulation of T6P even when the introduced TPS1

proteins have only weak activity [33]. The full-length coding sequences of TPS1.1a,TPS1.2a,

Fig 1. Actinidia chinensis TPS1 genes. A. A. chinensis TPS1 gene structure. B. A. chinensis (Ac) TPS1 predicted protein structure compared with

TREHALOSE-6-PHOSPHATE SYNTHASE proteins from Arabidopsis thaliana (At), Escherichia coli (Ec) and Saccharomyces cerevisiae (Sc). The TPS

and TPP domains are highlighted black and grey, respectively. C. Cladogram of Class I TPS proteins. A. chinensis (Ac) TPS1 predicted protein sequences

(indicated by arrowheads) were aligned with Class I TPS proteins from Arabidopsis thaliana (At), Oryza sativa (Os), Populus trichocarpa (Pt), Solanum

lycopersicum (Solyc), and Solanum tuberosum (Sotub) and a tree was constructed using the Neighbour-joining method and 1000 bootstrap replicates, with

Class II AtTPS5 as an outgroup.

doi:10.1371/journal.pone.0168075.g001
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TPS1.2b and S. cerevisiae TPS1 (ScTPS1) were therefore constitutively expressed in the tps1Δ
tps2Δ yeast strain and assessed for growth on galactose and glucose. TPS1.1bwas not included

in the experiment because its coding region was disrupted and it lacked a part of the TPS

domain, suggesting it was not functional. TPS1.2 sequences with potential N-terminal exten-

sion were also included in the analysis. Expression of all kiwifruit TPS1.2 sequences including

the extended transcripts complemented the growth defect on glucose of the yeast tps1Δ tps2Δ
mutants, confirming catalytic activity and no obvious interference of the N-terminal exten-

sion, although serial dilutions of overnight cultures of the different strains suggested that

AcTPS1.2 constructs were less effective than ScTPS1 (Fig 3A). The kiwifruit TPS1.1a construct

resulted in very little growth on glucose (Fig 3A). AcTPS1.1a and AcTPS1.2a were also studied

for function in the less sensitive yeast tps1Δmutant [32], which lacks the functional TPS

enzyme but has TPP activity. AcTPS1.2a was capable of complementing this mutant, but less

effectively than ScTPS1 (Fig 3B), further confirming catalytic activity, albeit weaker than that

of the yeast enzyme. The deliberate loss of the TPS1-expressing plasmids in the complementing

strains resulted in loss of ability to grow on glucose-containing medium (data not shown),

confirming that the complementation occurred as a result of TPS1 expression and enzymatic

activity.

Phenotypic analyses in model plants

Perturbation of trehalose metabolism is associated with developmental changes in plants. Con-

stitutive expression of ScTPS1 transcript resulted in severely retarded growth and elevated antho-

cyanin accumulation in Arabidopsis seedlings germinated in tissue culture (Fig 4A). Growth

and developmental defects were observed even after transfer to the soil mixture (Fig 4B). Similar

but less severe defects were observed in multiple transgenic lines upon constitutive expression of

kiwifruit TPS1.2 constructs, although most plants recovered in soil, while constitutive expression

of TPS1.1a gave rise to mostly normal plants (Fig 4). In transgenic N. benthamiana, constitutive

Fig 2. Relative expression of Actinidia chinensis TPS1 in kiwifruit tissues, normalized to kiwifruit PP2A.

Error bars represent standard errors (SE) for three biological replicates. DAA, days after anthesis.

doi:10.1371/journal.pone.0168075.g002
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expression of ScTPS1 transcript resulted in dwarfed plants with extensive branching (Fig 5A);

however, kiwifruit TPS1.1a and TPS1.2a lines demonstrated slightly slower development, but

mostly normal general growth and flowering (Fig 5A and 5B).

Transcriptome profiling (RNA-seq)

Whilst TPS1.1a is the predominant transcript in kiwifruit tissues, the yeast complementation

results in the double and single mutants, combined with over-expression phenotypes in

Arabidopsis, prompted us to focus on the TPS1.2a gene as a representative kiwifruit TPS1.

We also chose this gene as a representative of a potentially asterid-specific clade of TPS1
genes. To study the immediate plant responses to elevated TPS1.2a activity, transient expres-

sion in N. benthamiana leaves followed by transcriptome analyses were used to identify differ-

ences in gene expression. Nicotiana was chosen as a model plant, because (i) agroinfiltration

leaf assay is performed easily and efficiently, and (ii) the TPS1.2a over-expression phenotype is

not severe, and therefore the transcriptome changes are less likely to be driven by dramatic

changes in sucrose concentrations or by a highly elevated stress response. In addition, Nicoti-
ana is a representative of the asterid clade of core eudicots, to which kiwifruit also belongs.

Kiwifruit TPS1.2a under the control of 35S promoter was delivered by infiltration of Agrobac-
terium suspension culture. Agrobacterium carrying GFP under control of 35S promoter was

used as a control. RNA was extracted from leaf discs surrounding the infiltration area (Fig 6A)

Fig 3. Yeast mutant complementation assays. A. Complementation assay of the yeast tps1Δ tps2Δmutant. B.

Complementation assay of the single tps1Δmutant. W303-1A is the wild-type control which can grow on bot

galactose and glucose. The mutation results in impaired growth on glucose. Columns represent ten-fold serial

dilutions.

doi:10.1371/journal.pone.0168075.g003
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Fig 4. Phenotypes of transgenic Arabidopsis constitutively expressing TPS1 genes. A. Early growth on

½MS medium supplemented with sucrose and kanamycin. B. Plants grown in soil.

doi:10.1371/journal.pone.0168075.g004
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one (T1) and three days (T3) after infiltration and subjected to RNA-sequencing analysis on

the Illumina platform.

A total of 12 libraries were prepared to include three biological replicates for each treatment

and time point. A total of 396,418,395 pair-end raw reads were generated, ranging from

28,277,533 to 35,938,674 per library (S4 Table). After cleaning and quality checks, reads of

each RNA library (ranging from 27,608,067 to 34,933,127 per library; S4 Table) were subjected

to a principal component analysis (PCA), which displayed good separation between sample

sets (S3 Fig). Only a small number of reads (ranging from 0.06 to 0.19% per library; S4 Table)

mapped onto Agrobacterium C58 sequence and these reads were removed before mapping of

the remaining reads to the N. benthamiana draft transcriptome at average alignment rate of

Fig 5. Phenotypes of transgenic Nicotiana benthamiana constitutively expressing TPS1 genes. A.

Branching and flowering of representative plants. B. Early growth on½MS medium supplemented with sucrose

and kanamycin.

doi:10.1371/journal.pone.0168075.g005
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Fig 6. The response of Nicotiana benthamiana to transiently elevated kiwifruit TPS1.2a transcript one day

(T1) and three days (T3) after infiltration. A. Agrobacterium tumefaciens carrying GFP under control of 35S

promoter was used as control. Exposure to UV light confirmed uniform GFP activity, easily detected in all infiltrated

leaves after three days. B. Increased GFP transcription after infiltration. C. Increased TPS1 transcription after

infiltration. RPKM, frequency counts normalized to number of reads and length of gene. D. Venn diagram showing

the number of differentially expressed genes at two sampling times. E. GO term categories of genes with differential

expression in response to elevated TPS1.2a. The graph presents the number of differentially expressed genes

between TPS1.2a and control GFP samples identified as significant at T1, T3 and both time points (T1T3).

doi:10.1371/journal.pone.0168075.g006
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84.38% (ranging from 76.64 to 87.36%; S4 Table). Frequency counts were generated for GFP
and TPS1.2a sequences and normalized to the number of reads and the length of the gene

(RPKM) to demonstrate that both sequences can be detected as perfect matches, and their

abundance increased between the sampling points (Fig 6B and 6C).

After one day, 104 genes were found to be significantly differentially expressed between

TPS1.2a and control GFP samples (S5 Table). This number increased to 454 three days after

infiltration (S6 Table). Among identified transcripts, 74 and 30 were upregulated and 347 and

107 downregulated after one and three days, respectively, with only 19 differentially expressed

genes in common for the two time-points (Fig 6D). These results were validated by qRT-PCR

analysis of a subset of differentially expressed genes. High correlation between RNA-seq and

qRT-PCR results confirmed the accuracy and reproducibility of the transcriptome analysis (S4

Fig). Classification of the differentially expressed sequences identified genes that have been

associated with a range of functions, with catalytic and transporter activity identified in the

common gene set (Fig 6E). Blast analysis of the common set identified Arabidopsis homologs,

which included transcription factors and genes with roles in stress response and hormonal sig-

nalling (Table 1). Genes in this set often belonged to larger gene families with multiple mem-

bers responding to TPS1 activity either at T1, T3 or both.

Discussion

Conservation and divergence of the Class I TPS pathway in kiwifruit

The kiwifruit genome encodes for multiple TPS and TPP proteins and possibly only a single

TRE enzyme, similar to previous reports for Arabidopsis, rice, maize and poplar. Multiple class I

TPS genes have been identified, including a probable non-functional, truncated TPS1.1b, which

is, however, expressed, and a regulatory role cannot be excluded. The TPS1.1a gene is most simi-

lar to Arabidopsis TPS1 and has a conserved gene structure with 17 exons within the protein

coding region. The structure of TPS1.2 genes is potentially different. At this stage, it is not fully

clear if the additional intron is placed in the untranslated 5´ UTR, thus resembling the structure

of Arabidopsis AtTPS1, which also has a very large additional intron in the 5´ UTR (but not

AtTPS2-4), or if it gives rise to a different variant with an additional exon, not yet reported in

other plant species. Very little is known about TPS1 genes in the asterids, but interrogation of

the tomato genome (https://solgenomics.net/) revealed that two of tomato TPS1 genes also have

different structures. Solyc07g062140 coding region contains 17 exons, while a very large and an

additional small intron were identified in the 50 UTR. In contrast, Solyc02g071590 coding

sequence contains an additional 50-terminal short exon, thus resembling kiwifruit AcTPS1.2
EXT structure. The two TPS1.1 and two TPS1.2 genes are probably the result of a recent genome

duplication event. It has been proposed that A. chinensis underwent two recent whole-genome

duplication events, believed to have occurred after the divergence of kiwifruit from tomato and

potato [37]. The finding that tomato and potato each have two class I TPS genes that cluster sep-

arately from each other and share high similarity in sequence and potentially gene structure

with kiwifruit TPS1.1 and TPS1.2, respectively, would suggest that one of these duplications

occurred in a much earlier stage of asterid evolution, before the divergence of Solanales, to

which tomato and potato belong, from the basal asterid Ericales, to which Actinidia belongs.

Neither of the kiwifruit TPS1 genes appeared to encode truncated forms lacking the auto-

inhibitory N-terminal domain and the length of this domain did not seem to affect the func-

tionality. Kiwifruit TPS1 proteins were catalytically active and could complement the yeast

tps1Δ tps2Δ strain, although TPS1.1a showed extremely weak activity. Complementation of the

yeast tps1Δ strain was generally more difficult and required multiple screens, which confirmed

TPS1.2a activity. Differential complementation was previously reported for class I Arabidopsis

Kiwifruit TPS1 Genes
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Table 1. Differentially expressed genes between TPS1.2a and control GFP samples identified as significant at both time points (T1 and T3).

Nicotiana benthamiana

transcript ID

Arabidopsis

top hit

e-value Description (TAIR) Predicted

function (TAIR)

Induced by

treatment (eFP

browser)

log2Fold

(T1)

log2Fold

(T3)

Niben101Scf02537g06002.1 AT4G08950 1.00E-158 EXO, EXORDIUM Response to

brassinosteroid

Wounding,

oxidative stress,

brassinosteroids

1.33 1.05

Niben101Scf01911g03001.1 AT5G60680 5.00E-58 UNKNOWN Associated with

carbohydrate

metabolism

Cold stress, ABA 1.3 0.6

Niben101Scf00995g00005.1 AT5G60680 1.00E-54 UNKNOWN Associated with

carbohydrate

metabolism

Cold stress, ABA 1.21 0.62

Niben101Scf07244g00001.1 AT4G14130 1.00E-128 XYLOGLUCAN

ENDOTRANSGLUCOSYLASE

Cell wall

biogenesis and

organization

GA inhibitors,

brassinosteroid

inhibitors

1.01 1.02

Niben101Scf02537g05005.1 AT4G08950 1.00E-158 EXO, EXORDIUM Response to

brassinosteroid

Wounding,

oxidative stress,

brassinosteroids

0.99 0.89

Niben101Scf03240g01008.1 AT1G66180 0.00E+00 PUTATIVE ASPARTIC

PROTEASE

Response to

light and

ascorbate

Brassinosteroids 0.98 0.72

Niben101Scf02303g00022.1 AT2G39380 0.00E+00 ATEXO70H2, EXO70H2 Vesicle docking

involved in

exocytosis

ACC treatment 0.93 0.75

Niben101Scf04082g02014.1 AT1G26800 6.00E-50 RING/U-BOX SUPERFAMILY

PROTEIN

Zinc ion binding Heat 0.8 -0.62

Niben101Scf00872g03005.1 AT1G13260 1.00E-129 ETHYLENE RESPONSE

FACTOR 4, RAV1

Negative

growth

regulator

Cold stress 0.8 0.71

Niben101Scf00963g04011.1 AT1G54740 1.00E-24 UNKNOWN Associated with

carbohydrate

metabolism

Genotoxic stress 0.79 0.73

Niben101Scf01002g01001.1 AT3G58120 1.00E-60 BZIP61 Transcription

factor

Genotoxic and

oxidative stress,

brassinosteroids,

IAA

0.78 1.01

Niben101Scf03506g03001.1 AT3G07650 1.00E-130 BBX7, COL9,

CONSTANS-LIKE 9

Regulation of

flowering time

Cold stress 0.78 1.16

Niben101Scf14755g00001.1 AT3G01640 1.00E-127 GLUCURONOKINASE,

ATGLCAK, GLCAK

Cell wall

biogenesis

N/A 0.78 0.74

Niben101Scf02783g01002.1 AT2G36050 7.00E-41 OVATE FAMILY PROTEIN 15,

ATOFP15

Negative

regulation of

transcription

GA3, genotoxic

stress

0.74 0.62

Niben101Scf02406g04044.1 AT2G15890 3.00E-66 MATERNAL EFFECT

EMBRYO ARREST 14

Pollen tube

guidance

N/A 0.68 0.9

Niben101Scf08341g10005.1 AT3G24520 2.00E-98 HEAT SHOCK

TRANSCRIPTION FACTOR

C1

Regulation of

transcription

Cold stress, ABA 0.62 0.76

Niben101Scf01198g02006.1 AT3G02910 7.00E-54 AIG2-LIKE (AVIRULENCE

INDUCED GENE)

Involved in

response to

karrikin

Osmotic and salt

stress

0.59 0.79

Niben101Scf12318g00007.1 AT3G54950 1.00E-114 PATATIN-LIKE PROTEIN 6 Acyl-CoA

hydrolase

activity

Cold and drought

stress

-0.67 0.65

Niben101Scf01388g00004.1 AT4G02390 0.00E+00 POLY(ADP-RIBOSE)

POLYMERASE 2

Post-

translational

modification

Genotoxic stress -0.7 -0.73

doi:10.1371/journal.pone.0168075.t001

Kiwifruit TPS1 Genes

PLOS ONE | DOI:10.1371/journal.pone.0168075 December 19, 2016 13 / 21



TPS transcripts, with TPS1 complementing both mutants, but TPS2 and TPS4 complementing

only the double mutant, which enables screening for weaker TPS activity for its lack of capacity

to convert T6P into trehalose [33]. It has been suggested that Arabidopsis TPS1 has an addi-

tional, non-catalytic function which may have an important physiological role, in line with the

finding that yeast TPS1 protein rather than its metabolic product provides tolerance to stress

and is essential for energy homeostasis and yeast cellular integrity [60]. The lack of natural

mutants in kiwifruit and the slow transformation process hinders efforts to establish which of

the TPS1 isoforms might have the same dominant physiological role in this species, and future

studies in model asterids, particularly tomato, may be better suited to reveal the roles of TPS1

subclades. However, constitutive expression of TPS1.2 resulted in more prominent arrest of

growth and increased anthocyanin accumulation in transgenic Arabidopsis, comparable to

phenotypes reported for Arabidopsis seedlings expressing E. coli TPS from the 35S promoter

[11], albeit the effect was less severe than that observed with yeast ScTPS1. This result, com-

bined with lower levels of expression in kiwifruit, could mean that TPS1.2 also has higher

activity in planta. On the other hand, TPS1.1a is most similar to Arabidopsis AtTPS1 and is

most highly expressed, but appears to have a very weak catalytic activity. Therefore, we cannot

exclude the possibility of it having a non-catalytic function in kiwifruit, similar to that pro-

posed for AtTPS1.

Transcriptional changes with elevated TPS1 activity

TPS1.2was transiently expressed in N. benthamiana leaves, enabling us to observe the effects

of short-term changes in the availability of kiwifruit TPS1 transcript, and therefore probable

changes in TPS1 protein and T6P. Infiltration of Agrobacterium suspension expressing GFP

showed no obvious adverse effect on leaf physiology: GFP was detected in the whole leaf (out-

side the point of infiltration) and a steady increase in GFP transcript was detected in all biolog-

ical replicates. Expression of TPS1 followed the same pattern, but the number of reads was

lower and the rate of increase between time points slower, potentially suggesting TPS1-related

adverse effects.

Most of the identified differentially expressed genes appeared to be involved in a very early

(T1) or later response (T3), with a relatively small number (19) demonstrating sustained response

to TPS1.2a. As expected, infiltration of Agrobacterium suspension culture itself resulted in large

transcriptional changes, demonstrated by the separation of samples between T1 and T3. This

large background response may explain the relatively small number of detected differentially

expressed genes. Overall, the transcriptomic analyses demonstrated that more genes exhibited

significant differences in expression as part of the later response to TPS1.2a, potentially reflecting

downstream effects of metabolic changes resulting from perturbed trehalose signalling. As

expected, changes in a range of GO categories were observed with elevated TPS1, but the range

narrowed in the set of genes consistently up- or downregulated between the two time-points.

Analysis of this common set identified that most showed homology to Arabidopsis genes impli-

cated in abiotic stress responses and hormonal signalling.

Several transcription factor gene families were identified with multiple members showing

altered expression induced early and/or late by TPS1.2, and with at least one member in the

common set. These included APETALA2/Ethylene Responsive Factor (AP2/ERF) transcrip-

tion factors, which act as mediators of stress responses and developmental programmes [61]

and CO-like transcription factors [62], with roles in growth and developmental processes that

include seedling photomorphogenesis, photoperiodic regulation of flowering, shade avoid-

ance, and responses to biotic and abiotic stresses. A transcript with homology to Arabidopsis

bZIP61 and bZIP34was also consistently upregulated. While it is proposed that Arabidopsis

Kiwifruit TPS1 Genes
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TPS1 exerts its function via bZIP11, these bZIP transcription factors belong to a different

group and are postulated to mediate stress response, e.g. boron deprivation [63,64]. Transcrip-

tion factors in other classes, e.g. bHLH, DOF, MYB and WRKY, were also differentially

expressed in one or both time points, suggesting a major impact of T6P signalling on

transcription.

A set of genes induced by TPS1.2 showed homology to EXORDIUM (EXO), which has a

role in meristem function in Arabidopsis [65], cell expansion and brassinosteroid (BR)-medi-

ated responses [66] and growth during low carbon and energy-limiting conditions [67]. More

recently, it was demonstrated that apoplastic EXO protein modifies intracellular sucrose and

trehalose responses and thus connects the extracellular C status to growth [68]; trehalose feed-

ing induced Arabidopsis EXO expression, and therefore a potential increase in trehalose syn-

thesis after AcTPS1.2 infiltration might be the underlying cause for elevated Nicotiana EXO
expression.

Other differentially expressed gene families identified in this study included genes encoding

several classes of F-box proteins, implicated in hormone and stress signalling [69–72] and mul-

tiple small auxin-up RNA (SAUR) genes. These proteins are localised in the membrane and

cytoplasm [73,74], associated with elongating tissues [73–76] and can inhibit synthesis of

auxin and proteins for polar auxin transport [77,78]. In addition to auxin, other hormones and

environmental signals affect SAUR gene expression, and it has been postulated that SAURs

have a key role in integrating hormonal and environmental signals into distinct growth and

Fig 7. A model for TPS1 action in Nicotiana benthamiana leaf. T6P signalling modulates transcription, hormone

signals and cell wall biogenesis to coordinate growth, development and stress responses with carbon availability.

doi:10.1371/journal.pone.0168075.g007
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developmental responses [79]. A possible mechanism involves activation of plasma membrane

H+-ATPases [80], to regulate cell wall-modifying enzymes, including expansins, and thus

facilitate uptake of solutes to drive cell expansion. Indeed, a number of Nicotiana EXPANSIN
genes were downregulated in the early response to AcTPS1.2 infiltration. Similarly, differential

expression of other auxin-related transcripts was detected as part of the late response.

Based on the RNA-seq analysis, we propose a model of TPS1 action in N. benthamiana leaf

(Fig 7). Given the nature of heterologous transient overexpression, the changes would reflect

the Nicotiana-specific responses and a comparison with overexpression of Nicotiana TPS1
would be required to identify potential kiwifruit TPS1-specific effects. Similarly, the responses

reflect increased accumulation of T6P intermediate and perturbance of trehalose metabolism,

but likely include indirect effects resulting from high accumulation of the TPS1 protein. As an

example, it is well established that TPS1 activity is regulated post-translationally by phosphory-

lation at multiple sites [81], hence a high availability of TPS1 protein could occupy kinases to

such an extent that they are insufficiently active on other substrates in the plant. Therefore,

some of the transcriptome changes detected by RNA-seq may be a consequence of depleted

kinase function rather than the TPS1 function.

Conclusions

Multiple biochemically active TPS1 proteins and differentially expressed TPS1 genes might

contribute to sugar signalling and regulation of kiwifruit growth and development. They fall

into two subclasses, one of which is common in eudicots and one of which is found in asterids.

Transiently elevated kiwifruit TPS1.2 activity in Nicotiana leaf affects transcription of a large

number of genes which affect plant growth, development, responses to stress, hormonal signal-

ling and sugar metabolism.
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67. Schröder F, Lisso J, Müssig C (2011) EXORDIUM-LIKE1 Promotes Growth during Low Carbon Avail-

ability in Arabidopsis. Plant Physiology 156: 1620–1630. doi: 10.1104/pp.111.177204 PMID: 21543728
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