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SUMMARY

We perform a CRISPR-Cas9 genome-wide screen in glioblastoma stem cells and identify integrin 

αvβ5 as an internalization factor for Zika virus (ZIKV). Expression of αvβ5 is correlated with 

ZIKV susceptibility in various cells and tropism in developing human cerebral cortex. A blocking 

antibody against integrin αvβ5, but not αvβ3, efficiently inhibits ZIKV infection. ZIKV binds to 

cells but fails to internalize when treated with integrin αvβ5-blocking antibody. αvβ5 directly 

binds to ZIKV virions and activates focal adhesion kinase, which is required for ZIKV infection. 
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Finally, αvβ5 blocking antibody or two inhibitors, SB273005 and cilengitide, reduces ZIKV 

infection and alleviates ZIKV-induced pathology in human neural stem cells and in mouse brain. 

Altogether, our findings identify integrin αvβ5 as an internalization factor for ZIKV, providing a 

promising therapeutic target, as well as two drug candidates for prophylactic use or treatments for 

ZIKV infections.

Graphical Abstract

In Brief

Wang et al. show that Zika virus (ZIKV) uses integrin αvβ5 to infect neural stem cells. ZIKV 

infection can be inhibited by αvβ5 blocking antibody or inhibitors, SB273005 and cilengitide, in 

human neural stem cells and in mouse brain, providing drug candidates for prophylactic use or 

treatments for ZIKV infections.

INTRODUCTION

Zika virus (ZIKV) is a re-emerging arbovirus belonging to the Flavivirus genus that includes 

other mosquito-borne human pathogens such as dengue virus (DENV1–4), West Nile virus 

(WNV), yellow fever virus (YFV), and Japanese encephalitis virus (JEV), among others 

(Lazear and Diamond, 2016). One half of people on Earth are at risk for ZIKV infection, and 

there is no safe and effective treatment or vaccine. ZIKV infection is associated with severe 

fetal abnormalities, including microcephaly, hydranencephaly, and intrauterine fetal growth 
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restriction (Brasil et al., 2016; Noronha et al., 2016; Sarno et al., 2016). In vitro and in vivo 
studies have shown that ZIKV preferentially infects neural stem/progenitor cells and 

immature neurons in the developing brain and dysregulates various cellular processes 

(Cugola et al., 2016; Dang et al., 2016; Li et al., 2016; Tang et al., 2016). These processes 

are thought to directly cause microcephaly and other brain abnormalities in infants infected 

in utero. The molecular mechanisms by which ZIKV dysregulates critical human neural 

stem cell (hNSC) functions are not well understood.

ZIKV is a mosquito-borne flavivirus originally discovered in 1947 (Driggers et al., 2016) 

that had caused sporadic disease in Africa and Asia. Recent outbreaks occurred in 2007 in 

Micronesia and in 2013 in French Polynesia (Broutet et al., 2016). The Brazilian outbreak of 

ZIKV in 2015–2016 has raised alarms about enhanced viral pathogenicity and expansion of 

its global range. ZIKV has a single positive (+) strand RNA genome coding for a single 

polyprotein, which is cleaved by viral and host proteases to produce three structural and 

seven nonstructural proteins (Miner and Diamond, 2017).

A number of genome-wide CRISPR screens have been performed in flavivirus infection 

models and have begun to illuminate our understanding of host pathways important in the 

life cycle of flaviviruses. Two CRISPR screens against WNV infection have been performed 

in human cells and identified members of the endoplasmic reticulum membrane complex 

(EMC) and endoplasmic reticulum-associated signal peptidase complex (SPCS) (Ma et al., 

2015). A CRISPR screen against Dengue virus (DENV) and Hepatitis C virus (HCV) again 

confirmed the importance of endoplasmic reticulum (ER) protein complexes in the 

replication of flaviviruses (Marceau et al., 2016). Another study evaluated two different 

genome-wide RNAi pools in DENV infection, conducted a CRISPR screen against ZIKV 

infection in HeLa cells, and also confirmed the importance of the EMC complex in DENV 

and ZIKV infection (Savidis et al., 2016). Recently, two CRISPR screens were performed to 

identify ZIKV dependency factors in neural progenitor cells (Li et al., 2019; Wells et al., 

2018). These screens identified heparan sulfation, endocytosis, ER processing, and Golgi 

and interferon functions (Li et al., 2019) as well as vacuolar ATPase in addition to heparan 

sulfation and oligomeric Golgi complex as ZIKV-dependent factors (Wells et al., 2018).

Integrins, a family of 24 heterodimers consisting of α and β subunits, are transmembrane 

adhesion receptors that are key components of cell signaling mechanisms involved in cancer 

progression and metastasis (Hynes, 2002). Specific ligands bind and cluster integrins to 

regulate vehicle trafficking and transduce both outside-in and inside-out signaling events 

(Hynes, 2002). In one of the outside-in signaling mechanisms of integrins, focal adhesion 

kinase (FAK) is phosphorylated and activated to recruit additional kinases and induce 

complex signaling cascade to regulate cell survival, proliferation, and migration (Mitra and 

Schlaepfer, 2006). Therefore, FAK inhibitors have been developed to control migration, 

invasion, and metastasis of various tumors. Several viruses had been reported to use 

integrins as receptors or co-receptors, including adenovirus (Summerford et al., 1999; 

Wickham et al., 1993), Kaposi’s sarcoma-associated herpesvirus (KSHV) (Akula et al., 

2002), foot-and-mouth disease virus (Jackson et al., 2004), echovirus (Bergelson et al., 

1992), human metapneumovirus (Cseke et al., 2009), hantavirus (Larson et al., 2005), 
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human parechovirus (Triantafilou et al., 2000), reovirus (Maginnis et al., 2006), and 

rotavirus (Guerrero et al., 2000).

AXL receptor had been initially described as an entry receptor for ZIKV (Hamel et al., 

2015; Meertens et al., 2017; Nowakowski et al., 2016; Retallack et al., 2016; Savidis et al., 

2016). However, some reports argued that AXL was not essential for ZIKV entry in human 

NSCs and organoids (Wells et al., 2016). In addition, AXL was not required for ZIKV 

infection in mice (Hastings et al., 2017; Li et al., 2017). ZIKV utilizes AXL receptor for 

infection in human fetal endothelial cells and AXL promotes virus replication by 

antagonizing type I interferon signaling in astrocytes (Chen et al., 2018a; Richard et al., 

2017; Tabata et al., 2016). Despite this progress, however, the determinants of cell and tissue 

tropism of ZIKV, the entry receptors or co-receptors, and the host factors required for ZIKV 

replication in the CNS are still largely unknown (Miner and Diamond, 2017). In order to 

address these questions, we performed the a CRISPR-Cas9 genome-wide screen in 

glioblastoma stem cells (GSCs) to identify factors determining ZIKV neurotropism. In 

parallel, to distinguish neuro-specific host factors from other cell types, a genome-wide 

CRISPR screen was performed in HEK293FT cells. Our studies identified a unique GSCs-

specific list of 92 genes that linked to ZIKV infection in GSCs. Integrin αvβ5, but not αvβ3, 

was identified as an entry factor mediating ZIKV internalization and ZIKV virions 

physically interacted with integrin αvβ5. The expression of ITGB5 correlated with ZIKV 

susceptibility in various cell lines and primary cell types in CNS. Receptor blocking 

antibodies as well as two αvβ5 pharmaceutical inhibitors blocked ZIKV infection and 

significantly reduced ZIKV-induced pathology in hNSC and mouse brains.

RESULTS

Genome-wide CRISPR Knockout Screen in GSCs Identifies ZIKV Dependency Factors

Here, we performed a genome-wide pooled CRISPR knockout screen to gain insight into 

host dependency factors of ZIKV infection in human neural stem-like cells. We used a 

genome-wide CRISPR library generated by Root lab (targeting 19,114 coding genes, 4 

single guide RNAs [sgRNAs]/gene), named Brunello (Doench et al., 2016). As illustrated in 

Figure 1A, human glioblastoma stem cells (GSCs) were transduced with the lentiviral 

Brunello CRISPR library (400 million cells at MOI = 0.3), selected with puromycin for 7 

days for stable viral integration and completion of genome editing. GSCs (TS576) are highly 

permissive to ZIKV (Zhu et al., 2017). Stemness of the cells was confirmed with high 

expression of stem cell marker SOX2, and lack of differentiation maker GFAP expression 

(Figures 1B and S1A). GSCs shares similarities with neural stem cells and stemness markers 

are constantly detected during the culture. We infected cells with ZIKV-ZsGreen reporter 

virus. This virus was constructed based on the BeH819015 strain (GI: 975885966), a 

representative of the most prominent group of ZIKV isolates from South America (Mutso et 

al., 2017). A robust ZsGreen signal was observed indicating efficient viral infection (Figures 

1B and S1B). When infected at a lower MOI (MOI = 0.01), viral replication was significant 

increased at 5 and 6 days, and all cells were infected with ZIKV at 7 days. When infected at 

a higher MOI (MOI = 0.5), the viral infection significantly increased in 3 days and 4 days, 

reaching approximately full infection 5 days post-infection (Figure 1C). Cell death was 
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apparent at day 3, when around 80% of cells were died from virus-induced cytopathic effect 

(Figure S1C). Stemness of cells was not changed by ZIKV infection (Figure S1D).

We utilized two rounds of sorting to enrich ZIKV resistant cells to identify host genes 

important in ZIKV infection. We challenged 75 million of the transduced and selected cells 

with ZIKV at a low MOI (MOI = 0.01) for 7 days. The other 40 million cells were mock 

infected as control (Figure 1A). After 7 days of infection, ZsGreen-negative cells were 

sorted out with a very restricted gating strategy (Figures S1E and S1F). Half of the cells 

were collected and another half were retained for a second round of infection and sorting. A 

ZIKV NS5 inhibitor (NITD008) was used to reduce the cytopathic effect of ZIKV and 

allowed cells to expand for 2 weeks. The expanded cells were re-infected with ZIKV-

ZsGreen (MOI = 0.01) for 7 days and sorted for ZsGreen negative cells. Genomic DNA was 

extracted from harvested cells and sgRNAs were PCR-amplified and deep sequenced on an 

Illumina NextSeq (Figure 1A). Normalized reads of ZIKV treated cells were compared to 

mock infection cells. The frequency of the amplified CRISPR plasmid and mock group 

sequencing reached >95% of the entire library, confirming that it was a genome-wide screen 

(Figures S1G and S1H).

The use of multiple sgRNAs targeting each gene in pooled screening allows for further 

discrimination of valid hits by identifying genes in which multiple sgRNAs are enriched in 

the infection-resistant population. We used the STARS algorithm to rank screening hits with 

consistent enrichment among multiple sgRNAs in late ZIKV-infected cells compared to 

mock infected cells of the same duration (Doench et al., 2016). STARS analysis was utilized 

to score and rank the sgRNAs that were enriched in 1st and 2nd round screen compared with 

mock group. We excluded the genes whose sgRNAs had low sequencing coverage (<5 reads 

per million). We obtained a final list of 271 candidate genes (Table S1) with at least 2 

separate sgRNAs that were enriched (Figures 1E and S1I). For illustration purposes, Figure 

1F shows 11 gene targets with significant fold change and further enrichment compared to 

the first infection. Our hits, including SSR3, STT3A, MMGT1, and SSR2, EMC2, EMC3, 

EMC6 are consistent with the prior screens in flaviviruses (Ma et al., 2015; Marceau et al., 

2016; Zhang et al., 2016) and were also top scoring hits in the ZIKV HeLa screen (Savidis et 

al., 2016).

We are interested in identifying unique genes that determine ZIKV susceptibility in GSCs. 

Thus, another screen was conducted in the HEK293FT cell line. HEK293FT cells were 

transduced with the CRISPR library (MOI = 0.3), selected with puromycin for 7 days. Then 

30 million of the transduced and selected cells were challenged with ZIKV or mock 

infection. Cells were harvested at two time points, early (4 days post ZIKV infection) and 

late (7 days post ZIKV infection) time points of infection as well as the uninfected mock 

control. Genomic DNA was extracted from harvested cells and sgRNAs were amplified and 

deep sequenced. Normalized reads of ZIKV treated cells were compared to mock infection 

cells (Figures S2A-S2C). We examined the list of enrichment for genes (Table S2) in which 

multiple sgRNAs also had higher fold change in both early and late infection time points. 

This generated a gene list (in total 159 genes) with at least 2 separate sgRNAs that were not 

only enriched both at early and late time points but also enriched to a greater extent at the 

later time point than at the early time point (Figures S2D and S2E). We then excluded the 
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genes whose sgRNAs had low sequencing coverage (<5 reads per million in both replicates) 

and obtained a final list of 101 candidate genes (Table S2). Top hits are involved in ER 

membrane complex and endocytosis that is required for efficient viral replication or 

internalization (Figures S2F and S2G). We validated the function of the two top hits 

(MMGT1 and EMC6) and two endocytosis-related genes (COPB2 and DNM2) by 

performing sgRNA knockout (KO) (2 sgRNAs per target) (Figure S2H). KO of COPB2, 

DNM2, significantly impaired the ability of ZIKV to productively infect target cells (Figure 

S2H). We also validated 4 additional genes in our candidate list (STOM, RPL23, SV2C, 

TMTC3) whose KO by CRISPR/Cas9 also inhibited ZIKV replication (Figure S2H). These 

results demonstrate that we have successfully identified 293FT-specific genes involved in 

ZIKV infection.

Identification of ZIKV Dependency Factors Specific for GSCs and Their Validation in ZIKV 
Infection

To identify the factors that contribute to ZIKV infection in GSCs, we compared CRISPR 

screen data in GSCs with other screens performed in 293FT and HeLa cells (Savidis et al., 

2016). The Venn diagram comparing our hits in GSCs and 293FT, and from the previous 

HeLa screen is shown in Figure 2A. Ten common genes identified belong to ER 

translocation complex, ERAD pathway and oligosaccharyltransferase complex which were 

characterized in previous study for flavivirus infection (Marceau et al., 2016). Strikingly, 92 

hits were unique to our GSCs cells screen and have not been previously linked to ZIKV 

infection (Figure 2A). Next, we selected a few of the top hits for further functional 

validation. TS576 cells were transduced with short hairpin RNA (shRNA) lentiviral particles 

to knockdown target genes. As shown in Figure S3A, the mRNA of the 11 targets were 

significantly decreased after shRNA transduction. Importantly, ZIKV infection was inhibited 

when we silenced the expression of eleven genes including: CENPH, ITGB5, MYLPF, 

HOMER1, BAALC, GABBR2, EPHA10, PTPN2, GCNT7, TRAM1, and TMEM41B. 

Among them, ITGB5, an integrin family member dramatically decreased virus replication 

by 86%. Knockdown of two other neural genes, HOMER1 and BAALC, also significantly 

reduced virus replication (Figures 2B and S3B), suggesting that these factors contribute to 

ZIKV neurotropism. TMEM41B that has been reported to be essential for DENV infection 

(Marceau et al., 2016) was also involved in ZIKV infection. GCNT7, a glucosaminyl 

transferase, which might participate in glycosylation of ZIKV envelope in Golgi apparatus 

affecting the budding process as well as infectivity of virions. Altogether, our results have 

identified 92 unique host dependency factors in GSCs and confirmed that silencing of 11 

targets efficiently reduced virus replication.

Various integrin family members had been identified as receptors for diverse viruses 

including flaviviruses (Stewart and Nemerow, 2007). To further investigate the role of 

ITGB5 in ZIKV infection, we generated ITGB5 KO cells using four distinct sgRNAs. 

Because integrin β5 forms and functions as heterodimers only with integrin αv subunit (Ley 

et al., 2016), we determined the expressions of ITGB5 by surface staining of αvβ5. As 

shown in Figure 2C, all of the four sgRNAs could ablate αvβ5 expressions on the cell 

membrane. Consistent with the screening and shRNA results, ITGB5 KO showed a robust 

resistance to infection by ZIKV-ZsGreen (Figures 2D, S3C, and S3D). To exclude the off-
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target effects of the sgRNAs, a cDNA rescue experiment was performed. We designed 

rescuing ITGB5 vectors lacking either sgRNA1 or 2 target sites to rescue the expression of 

ITGB5 in KO cells (Figure S3E). The rescuing vectors were delivered into TS576 control or 

ITGB5 KO cells. αvβ5 was confirmed to be overexpressed and rescued in control and KO 

cells, respectively. Compared to sgRNA 1 resistant construct (sg1_ β5), sgRNA 2 resistant 

construct (sg2_ β5) reached a higher rescued expression of αvβ5 (Figure 2E), probably due 

to the difference in the codon preference in the muted sites leading to the difference in the 

translational efficiency. To determine whether the ectopic expression of integrin β5 will 

enhance ZIKV infection, we infected TS576 cells overexpressing sgRNA resistant ITGB5 
with ZIKV and analyzed viral replication by quantifying green cells. We found that ZIKV 

infection was increased in TS576 cells expressing both sgRNA-resistant vectors (Figure 2F), 

demonstrating that the trans-complementation of ITGB5 in ITGB5 KO cells could restore 

viral infectivity. Consistent with the β5 expression by two sgRNA-resistant vectors observed 

in Figure 2E, sg2_ β5 vector rendered TS576 cells more susceptible to ZIKV infection as it 

led to higher β5 expression (Figure 2F). These results show that ITGB5 is essential for 

ZIKV infection.

Integrin αvβ5 Mediates Internalization of ZIKV

WNV and Japanese encephalitis virus use integrin αvβ3, but not αvβ5, for viral entry (Chu 

and Ng, 2004; Cui et al., 2018). In our CRISPR screen, ITGB5, but not ITGB3, was 

enriched in ZIKV infection resistant cells. Here, anti-integrin αvβ5 antibody was utilized to 

block its function to determine the role of integrin β5 in ZIKV infection. The results showed 

that pre-treatment of anti-integrin αvβ5 blocking antibody significantly inhibited ZIKV 

infection in dose-dependent manner at low and high MOIs conditions compared with isotype 

antibody treatment (Figures 3A and 3C). The flow data analysis also showed that this 

blocking antibody reduced the percentage of ZIKV-positive cells in a dose-dependent 

manner (Figure 3D). The released viral RNA in supernatant was also decreased by the 

blocking antibody (Figure S4A). To determine the specificity of the roles of αvβ5 in ZIKV 

infection, anti-integrin αvβ3 blocking antibody was included. We observed that αvβ3 was 

expressed at the surface of TS576 cells (Figure S4B). Treatment of αvβ3 antibody did not 

inhibit ZIKV infection at different MOIs even at higher concentrations (Figures 3B, 3C, and 

S4C). These results suggest that unlike other members of the flavivirus family, ZIKV prefers 

to utilize αvβ5, but not αvβ3, for its infection. Considering that integrin-ligand binding is 

dependent on cations (Summerford et al., 1999; Wickham et al., 1993; Zhang and Chen, 

2012), we treated the cells with 5 mM EDTA during ZIKV infection. Our results showed 

that ZIKV infection was significantly reduced by the treatment of EDTA, further supporting 

the notion that αvβ5 function is essential for ZIKV infection (Figures S4D-S4F).

Because integrins are promising drug targets for cancer therapy, there are a number of 

integrin inhibitors in clinical trials to treat a variety of cancers (Ley et al., 2016). We selected 

two αvβ5 integrin inhibitors, SB273005 and cilengitide, to validate αvβ5 integrin function 

and also to evaluate their potential for anti-ZIKV drug development. Our results showed that 

treatment with these inhibitors significantly blocked ZIKV infection in TS576 cells in a 

dose-dependent manner (Figures 3E, 3F, and S4G-S4I). Strikingly, both SB273005 and 

cilengitide showed significant anti-ZIKV activity at nanomolar concentrations. The half-
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maximal inhibitory concentration (IC50) of SB273005 and cilengitide were 0.69 nM and 

27.5 nM, respectively (Figures 3E and 3F). In addition, the IC50s were quite similar to their 

half-maximal binding concentrations to αvβ5 integrin in vitro (SB273005, 0.3 nM; 

cilengitide, 37 nM) (Liu et al., 2008; Miller et al., 2000). These inhibitors did not exhibit any 

cytotoxicity, even at 10 μM in TS576 (Figures 3E and 3F). These results further validate that 

αvβ5 integrin is a key host factor for ZIKV infection and provide two promising drug 

candidates targeting αvβ5 integrin for ZIKV infections.

Although ZIKV-ZsGreen (BeH819015) is a representative of the most prominent group 

isolated from South America (Mutso et al., 2017), we decided to verify the roles of αvβ5 in 

infections of another Asian lineage strain Paraiba and an African lineage strain MR766. 

Similar to ZIKV-ZsGreen results, treatment of the both blocking antibody and SB273005 

significantly reduced virus infection in TS576 (Figures 3G and 3H). Altogether, these results 

demonstrate that αvβ5 plays a key role in infections of different ZIKV strains.

Because integrin αvβ5 is a transmembrane protein and blocking its ligands-binding domains 

inhibits ZIKV infection, it suggests that integrin αvβ5 promotes ZIKV entry. To test this 

hypothesis, we performed virus binding and internalization assays. TS576 cells were treated 

with anti-integrin αvβ5 or isotype antibody for 1 h and then challenged with ZIKV at 4°C 

for 2 h. For binding assay, cells were washed, and total RNA was extracted and quantified. 

For internalization assay, cells were washed and transferred to 37°C for 4 h, and un-

internalized virions were removed by Accumax. Total cellular RNA was extracted and ZIKV 

RNA was quantified by qPCR. These results showed that at 4°C, ZIKV binding to cells was 

not affected by treatment of the blocking antibody (Figure 3I). For virus internalization, less 

virus RNA was detected within the cells by pre-treatment of anti-integrin αvβ5 antibody 

(Figure 3J). To exclude the possibility that αvβ5 is involved in viral replication, we 

transfected in vitro-transcribed ZIKV replicon into TS576 cells (Mutso et al., 2017). No 

difference of ZIKV RNA replication was detected after treatment with the blocking antibody 

(Figure 3K). These results show that integrin αvβ5 mediates virus internalization but not 

binding.

Next, to evaluate physiological significance of αvβ5, we investigated the role of integrin 

αvβ5 in primary human neural stem cells (hNSCs), which ZIKV preferentially infect in 
vitro and in vivo (Dang et al., 2016; Tang et al., 2016). hNSCs were characterized by 

analyzing Nestin expression (Figure S4J). hNSCs were treated with either αvβ5 blocking 

antibody or two inhibitors followed by ZIKV infection. Consistent with the results obtained 

in TS576 cells (Figures 3A, 3D, 3F, and 3G), anti-αvβ5 blocking antibody, cilengitide, and 

SB273005 efficiently inhibited ZIKV infection in hNSCs (Figures 3L and 3M). Similarly, 

αvβ5 blocking antibody exerted no effect on viral binding but significantly reduced virus 

internalization in hNSCs (Figures 3N and 3O). This suggests that integrin αvβ5 acts as an 

internalization factor for ZIKV both in TS576 and hNSCs.

ZIKV Virions Directly Interact with Integrin αvβ5, and FAK Activation Is Essential for ZIKV 
Infection

To determine whether ZIKV virions directly bind integrin αvβ5, we performed ZIKV-αvβ5 

ELISA experiments by coating purified integrin αvβ5 on plates and incubating with ZIKV 

Wang et al. Page 8

Cell Rep. Author manuscript; available in PMC 2020 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



virions. The principle of this assay is shown in Figure 4A. We found that ZIKV virions 

specifically bind with integrin αvβ5 but not with BSA (Figure 4B). Furthermore, the binding 

of ZIKV-αvβ5 was inhibited by αvβ5 blocking antibody, while isotype antibody showed no 

effects on ZIKV and integrin interactions (Figure 4C). Along with the results that αvβ5 

blocking antibody reduced ZIKV internalization in both TS576 and primary NSCs (Figures 

3J and 3O), the physical interaction of ZIKV-αvβ5 is essential for ZIKV infection. Together, 

these results demonstrate that ZIKV virions physically interact with integrin αvβ5, and this 

interaction is essential for ZIKV infection.

Despite the significance of integrins in cancer and other disease, the complete understanding 

of integrin-specific signalosomes is still not available. Canonical integrin signaling involves 

FAK phosphorylation at Y397 that leads to signaling cascades regulating cell survival, 

proliferation, adhesion, migration, and invasion (Desgrosellier and Cheresh, 2010; Tancioni 

et al., 2014). To investigate the mechanism of integrin-mediated signaling by ZIKV, we 

probed the activity of FAK by ZIKV infection. We infected TS576 cells with ZIKV and 

analyzed FAK phosphorylation at different time points. We detected a peak induction of 

activated FAK (pi-FAK-Y397) within 15 min after infection (Figure 4D). Next, we 

determined the functional relevance of FAK phosphorylation in ZIKV infection by two 

methods: (1) pharmacological inhibition of FAK phosphorylation by VS-4718 (Serrels et al., 

2015; Tancioni et al., 2014; Figures 4E and 4F), and (2) silencing of FAK by three separate 

shRNAs as well pooled shRNAs (Figures 4G-4I). Both of these approaches to inhibit FAK 

function resulted in a significant repression of ZIKV infection (Figures 4G–4I). Altogether, 

these results show that ZIKV-integrin interactions involve FAK-mediated signaling pathway, 

and inhibition of FAK provides another strategy to inhibit ZIKV infection. Future studies 

could elucidate how FAK activation reprograms hNSCs transcriptional and proteomic 

networks to modulate ZIKV infection.

αvβ5 Expression Correlates with ZIKV Susceptibility and Contributes to ZIKV 
Neurotropism

To gain insight into the correlation of αvβ5 with viral neurotropism, we next investigated 

the correlation between αvβ5 expression and ZIKV susceptibility in multiple cell types 

including GSCs (TS576), microglia, 293FT, H9, and Jurkat. High expression levels of αvβ5 

were detected in TS576 and a microglia cell line, which ZIKV preferentially infect in vitro 
and in vivo (Chen et al., 2018b; Lum et al., 2017; Zhu et al., 2017). 293FT cells were less 

permissive to ZIKV infection and showed a relative low expression of αvβ5 (Figures 5A and 

5B). Consistent with previous findings (Chan et al., 2016), lymphocytes were not susceptible 

to ZIKV infection. The result showed that integrin αvβ5 was undetectable in H9 and Jurkat 

cells (Figure 5A). The susceptibility of these cells to ZIKV infection was monitored by 

quantifying infected cell ratios (Figure 4B). The qPCR results reconfirmed that mRNA 

levels of ITGB5 and ZIKV RNA replication were consistent with the flow analysis data 

(Figure S5A).

Because ZIKV is a neurotropic flavivirus that preferentially infects radial glia, astrocyte, 

microglia, and endothelial cells, but not neurons in fetal brain (Miner and Diamond, 2017; 

Retallack et al., 2016), we analyzed single-cell transcriptomics data of different cell types 
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isolated from developing human cerebral cortex (Nowakowski et al., 2016). The expression 

profiles showed that ITGB5 expression was enriched in radial glia, astrocyte, microglia, and 

endothelial cells, but not neurons and interneurons (Figure 5C), which exactly matched the 

cell tropism of ZIKV (Miner and Diamond, 2017). Furthermore, single-cell RNA (scRNA) 

sequence analysis showed that ITGB5 was highly expressed in outer radial glia but not in 

interneurons, neurons, or intermediate progenitor cells (IPC) (Pollen et al., 2015). 

Immunolabeling data also showed that ITGB5 was a marker for outer radial glia because it 

perfectly matched with the expression of radial glia marker PAX6 (Pollen et al., 2015). In 

addition, SOX2, a stemness marker, and AXL, a potential receptor for ZIKV, showed much 

higher expression in those cell types vulnerable to ZIKV infection (Figures 5D and S5B; 

Meertens et al., 2017). Meanwhile, ITGB3 was absent in most cell types and only showed 

slight expression in microglia (Figure S5C).

To further validate this correlation between ITGB5 expression and ZIKV susceptibility, we 

performed ectopic expression of integrin αvβ5 in Jurkat cells (non-permissive cell) and 

analyzed ZIKV infection (Figure 5E). Strikingly, compared with control vector, 

overexpression of αvβ5 converted non-permissive Jurkat cells into cells that were 

susceptible to ZIKV infection. The ZsGreen-positive cell ratios (Figures 5F and 5G) as well 

as viral genomic RNA replication (Figure 5H) dramatically increased in αvβ5-

overexpressed cells. These findings were also consistent using another ZIKV strain MR766 

(Figure 5I). Together with the results that ITGB5 KO dramatically decreased ZIKV infection 

(Figure 2D), these data support the notion of a strong correlation between αvβ5 expression 

and ZIKV susceptibility.

Inhibition of Integrin αvβ5 Alleviates ZIKV-Induced Pathology in hNSCs and Mouse Brain

To further investigate the physiological significance of integrin αvβ5 during ZIKV infection, 

we analyzed the function of ZIKV-integrin in hNSCs and in mouse brain. Because ZIKV 

prefers to infect NSCs leading to depletion of NSCs and impaired neurogenesis during brain 

development (Dang et al., 2016; Tang et al., 2016), hNSC neurospheres had been utilized to 

recapitulate in vivo neurogenesis phenotypes for ZIKV infection (Dang et al., 2016). We 

produced hNSC-derived neurospheres and determined the effect of ZIKV infection and 

integrin inhibition. Compared with the uninfected group, ZIKV infection resulted in a 

significant decrease in overall neurosphere size (Figure 6A). The treatment of αvβ5 

blocking antibody, cilengitide, and SB273005 significantly rescued the destruction of 

neurospheres caused by ZIKV infection (Figures 6A and 6B). In addition, ZIKV infections 

cause apoptosis and induce cell death of hNSC (Dang et al., 2016; Tang et al., 2016). 

Consistent with the neurosphere size results, ZIKV infection dramatically reduced cell 

viability and treatment of cilengitide, αvβ5 blocking Ab, or SB273005 reversed this effect in 

both neurospheres produced from human-induced pluripotent stem cell (iPSC)-derived 

NSCs (ihNSC) (Figure 6C) and human fetal-derived primary NSCs (hfNSC) (Figure S6A). 

In addition, cilengitide reduced ZIKV-induced apoptosis in hfNSC (Figure S6B). Altogether, 

these results show that ZIKV-integrin interactions are required in 3D neurosphere models of 

hNSCs and blocking integrins ameliorates ZIKV-mediated cell death in hNSCs.
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Because cilengitide exhibited robust inhibition of ZIKV infection in cellular and 

neurosphere models (Figures 3F, 3L, 3M, and 6A-6C), we sought to determine its effects to 

inhibit ZIKV in vivo. C57BL/6 mice were administered with IFNAR1 blocking Ab before 

ZIKV infection and treated daily with cilengitide (20 mg/kg body weight) or PBS only. 

Animals were euthanized at 6 days post-infection, and viral levels were analyzed by qRT-

PCR or by immunohistochemistry. At the whole brain level, we found that cilengitide 

treatment significantly suppressed levels of ZIKV RNA (Figure 6D). Immunohistochemical 

staining revealed efficient infection of ZIKV in hNSC as observed by colocalization of 

ZIKV envelop protein with NSC marker Nestin in the cortex (Figures 6E, 6F, S6C, and S6D) 

and the dentate gyrus region of the hippocampus (Figures S6C and S6D). Treatment of 

cilengitide reduced ZIKV infection in NSCs in the both cortical and hippocampal regions of 

mouse brain. All in all, these results established that inhibition of integrin αvβ5 could 

ameliorate ZIKV-induced malformation of 3D NSC neurosphere, reverse ZIKV-induced cell 

death, and decrease ZIKV infection in neural stem cells from both cortical and hippocampal 

region of mice brains.

DISCUSSION

To systemically investigate the key factors essential for ZIKV infection, Savidis et al. (2016) 

performed a genome-wide CRISPR screen in HeLa cells. EMC was reconfirmed to be 

involved in ZIKV and also other falvivirus family members’ replication at an early stage 

(Ma et al., 2015; Savidis et al., 2016). However, because ZIKV neurotropism is different 

from other members of Flaviviridae such as WNV and JEV, unique factors should determine 

this specificity (Laureti et al., 2018). Chavali et al. (2017) reported that Musashi-1, a neural 

precursor protein, directly interacted with ZIKV genome and also involved in the 

development of microcephaly. Another orthogonal proteomics survey in neural progenitor 

cells revealed hundreds of interacting proteins in which many of them were associated with 

neuronal development and retinal defects (Scaturro et al., 2018). These findings provided a 

clue that investigation in neural cells could be important in elucidating ZIKV neurotropism. 

Therefore, we performed a genome-wide CRISPR screen in GSCs. Because our screening 

strategy required stem cell expansion, cell sorting, and two rounds of infection for 

enrichment, primary NSCs could not be maintained for these long-term studies. GSCs can 

be preferentially infected by ZIKV in vitro and in vivo, thus they can provide a good model 

system to study ZIKV neurotropism (Chen et al., 2018b; Goffart et al., 2013; Pollen et al., 

2015; Zhu et al., 2017). Comparative analysis of our results obtained from GSCs and 293FT 

cells screens and the results from Savidis et al. (2016) in HeLa cells resulted in identification 

of a number of neural genes (Figure 2). Among them, HOMER1 and BAALC were further 

confirmed to be involved in ZIKV infection. HOMER1 is a postsynaptic scaffold protein 

that might interact with metabotropic glutamate receptors to control intracellular calcium 

signaling to affect ZIKV infection (Luo et al., 2012). BAALC is highly expressed in various 

neural tissues and might control neural progenitor differentiation and proliferation 

(Moodbidri and Shirsat, 2006; Tanner et al., 2001). The underlying mechanism of these 

factors involved in ZIKV infection needs further investigation.

ITGB5 was one of the top ten targets that was specifically present in our GSCs screen 

(Figures 1F and 2A). The ITGB5 KO and rescue experiments demonstrated its essential role 
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in ZIKV infection (Figures 2C-2F). Furthermore, ZIKV virions directly interacted with 

integrin αvβ5 (Figures 4A-4C). In both TS576 and hNSCs, viral internalization was 

inhibited by blocking integrin αvβ5 (Figures 3J and 3O). In addition, there was a strong 

correlation between ITGB5 expression and ZIKV susceptibility in various cell lines (Figures 

5A and 5B). Strikingly, ITGB5 was specially and highly expressed in outer radial glia, 

which are the neural stem cells of the neocortex, explaining ZIKV tropism for hNSC (Figure 

5C; Pollen et al., 2015). Importantly, ectopic expression of ITGB5 in non-permissive Jurkat 

cells renders the cells susceptible to ZIKV infection. Altogether, these results suggest that 

integrin αvβ5 is an essential internalization factor for ZIKV. ITGB5 was neither identified 

as a top hit nor selected for further validation in ZIKV infection screens (Li et al., 2019; 

Wells et al., 2018). The reasons could be at least 2-fold. First, we utilized reporter virus, 

which is a straightforward readout and decreased the background. Second, we used 3D 

neurosphere of GSC for a screen that was a more physiologically relevant model than the 

other stem cell culture conditions (Dang et al., 2016; Garcez et al., 2016). Future studies 

employing αvβ5 and interferon (IFN) knockout animal models in the context of flavivirus 

infections could further validate the functional requirements of this factor for ZIKV 

infection.

Integrins have been demonstrated to promote various viral entry (Stewart and Nemerow, 

2007). For some flaviviruses, such as WNV and JEV, integrin β3, but not β5, mediates 

binding and internalization (Chu and Ng, 2004). ITGB5 was significantly expressed in 

neural cells compared to ITGB3, especially in cells that are susceptible for ZIKV infection 

(Figures 5C and 5D). This may help elucidate the uniqueness of ZIKV neurotropism 

compared with WNV and JEV (Olmo et al., 2017). Interestingly, integrin αvβ5 was shown 

to mediate adeno-associated virus type 2 internalization but not binding, similar to our 

findings for ZIKV (Summerford et al., 1999). This suggests integrin αvβ5 might have 

similar functions in the two viruses from different families. In addition, integrin αvβ5, as a 

mediator of host signalosome, might be activated by ZIKV and trigger signal pathways to 

rearrange cytoskeleton and recruit components to assemble endocytic vesicles. The outside-

in signal might also contribute to a permissive initial infection (Hussein et al., 2015). 

Investigations of ZIKV-integrin interactions not only contribute to furthering our 

understanding of ZIKV neurotropism and pathogenesis, but also reveal promising 

therapeutic targets for ZIKV infection.

Integrins are promising drug targets for cancers and other pathological disorders (Arruda 

Macêdo et al., 2015). Three integrins had been exploited as therapeutic targets by designing 

blocking antibodies, short peptides, and small molecules to interfere with their functions 

(Ley et al., 2016). In our study, integrin αvβ5 inhibitors SB273005 and cilengitide showed 

remarkable anti-ZIKV activity with IC50 of 0.69 nM and 27.5 nM, respectively. These IC50 

values are quite close to their binding IC50 to integrin αvβ5 in vitro (Badger et al., 2001; 

Miller et al., 2000). Importantly, inhibition of integrin αvβ5 by these two inhibitors and a 

blocking antibody ameliorated ZIKV-induced malformation of NSC 3D neurospheres and 

reversed ZIKV-induced cell death. Furthermore, as a proof of concept study, cilengitide 

significantly reduced ZIKV infection of neural stem cells in both cortical and hippocampal 

region of mouse brains. These findings revealed that integrin αvβ5 is important for ZIKV 

infection in vivo. Because cilengitide was not directly injected in the brains of animals or 
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formulated for CNS delivery, overall observed effects of cilengitide on ZIKV inhibition in 
vivo were not dramatic when the whole brains were analyzed. Nonetheless, these results 

validate the role of integrin in ZIKV infection in mouse and provide a proof of concept for 

integrin blockade in controlling viral infections. Because SB273005 and cilengitide have 

been tested in dozens of clinical trials and are available in various formulations, these drugs 

can potentially be used as prophylactics or treatments for ZIKV infections. These 

compounds also provide promising lead molecules for further antiviral drug development.

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Tariq Rana (trana@ucsd.edu).

All unique/stable reagents generated in this study will be made available on request, but we 

may require a payment and/or a completed Materials Transfer Agreement if there is 

potential for commercial application.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All studies were conducted in accordance with approved IRB protocols by the University of 

California, San Diego. All animal work was approved by the Institutional Review Board at 

the University of California, San Diego and was performed in accordance with Institutional 

Animal Care and Use Committee guidelines.

Cell lines and Culturing Conditions—Glioblastoma stem cells (GSCs, TS576) were 

cultured as described previously (Benitez et al., 2018; Inda et al., 2010). In brief, TS576 

were cultured in DMEM/F12 medium supplemented with 1:100 B27 without vitamin A, 

EGF (20ng/ml), FGF (10ng/ml) and penicillin-streptomycin (100IU/ml) at 37°C. H9 and 

Jurkat were cultured in RPMI1640 medium with 10% FBS at 37°C. 293FT, Vero and 

microglia cells were cultured in D10 medium (DMEM supplemented with 10% FBS). 

Human iPSC derived neural stem cells (hiNSC) were obtained from Dr. Frank Furnari Lab 

at UCSD and hiNSC were cultured in DMEM/F12 with 2mM Glutamax, 1% N2 

supplement, 1% B27 supplement, 50 mM ascorbic acid, 3 μM CHIR99021, 0.5μM 

Purmorphamine and 1% Pen/Strep on Matrigel coated plates at 37°C. Primary human fetal 

NSCs (hfNSC) (Thermo Fisher, A15654) were cultured in DMEM/F12 with 2mM 

Glutamax, 2% StemPro supplement, EGF (20ng/ml), bFGF (20ng/ml), 6 U/ml heparin, 

200μM ascorbic acid and 1% Pen/Strep on Matrigel coated plates at 37°C. Neurospheres 

were formed by generating single cell suspensions using Stempro accutase and seeding in 

untreated plates. hfNSC was isolated from a male donor and authenticated by evaluating 

differentiation potential to neuron, glial cell and the expression of markers of Nestin, SOX2, 

HLA–DR and CD11b.

ZIKV strain, virus stock preparation and viral titer measurements—ZIKV-

ZsGreen reporter virus was rescued as described previously (Mutso et al., 2017). In brief, 

ZIKV-ZsGreen infectious RNA was transfected into Vero cells and supernatant containing 
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rescued virus were collected at 5 days post-transfection. Prototype MR766 ZIKV virus and 

Paraiba strain was produced in Vero cells after inoculum with stock virus at MOI = 1 in E-

MEM 10% FBS medium. 24h later, media was removed, and the cells were washed with 

PBS. DMEM/F12 medium with B27 and growth factors were added. Supernatant was 

harvested after 36 hours. Media was replaced 24 hr after inoculation and viral supernatant 

was collected at 48 hr post-inoculation. Viral titer was assessed using plaque assay on Vero 

cells.

Mice handling—C57BL/6J mice (4 to 5 week old, male) were purchased from MMRRC 

Jackson Laboratories and housed according to regulatory standards approved by the Institute 

Review Board of the University of California, San Diego.

METHOD DETAILS

Pooled library amplification and viral production—Brunello library (Cat# 73179) 

and GeCKO v2 A library (cat# 1000000048) pooled plasmid (lentiCRISPRv2) was obtained 

from addgene and amplified per recommended protocols via electroporation in lucigen 

endura electrocompetent cells. 293FT cells were harvested with DMEM and co-transfected 

with 12ug of the plasmid library, 9ug psPAX2 vector, and 6ug pMD2.G vector into 10cm 

plates using 48uL of PLUS reagent (Invitrogen 11514-015) and 60uL of lipofectamine in 

Opti-MEM media. Media was aspirated then after 6 hours and replaced with fresh D10 

media. 24h later, D10 media was removed and the cells were washed with PBS. DMEM/F12 

medium with B27 and growth factors were added. Supernatant was harvested after 24 h and 

centrifuged at 3,000 rpm at 4°C for 10 minutes and then filtered through 0.45um low protein 

binding membrane (Millipore) and concentrated using Amicon Ultra-15 Centrifugal Filter 

(Millipore) for 40 minutes at 4°C at 4,000 rpm. Virus was then aliquoted and frozen at 

−80°C.

Pooled Library Transduction, Zika Virus Challenge, and resistant cell isolation
—Functional virus titer was obtained by measuring puromycin resistance after transduction 

via spin infection as described in Zhang lab papers (Joung et al., 2017; Shalem et al., 2015). 

A titer resulting in 30% of cells surviving puromycin selection has been calculated to 

correspond to a MOI of 0.3. Four hundred million TS576 cells was transduced with library 

to reach a coverage of 500 for each group (~500 cells for the same sgRNA, the library 

contains 77,441 sgRNAs). Transduced cells were selected with puromycin at 1 μg/ml for 7 

days and split every 4 days. For ZIKV infection group, a total of 75 million cells were 

infected at MOI = 0.01 for 7days. ZsGreen negative cells were sorted out, half of the cells 

were split out for sequencing. The other half was kept in culture and expanded for 2 weeks 

in the presence of ZIKV inhibitor, NITD008. Expanded cells were re-infected with ZIKV at 

an MOI of 0.01 for 1 week and sorted for resistant cells. These cells were collected for 

sequencing.

sgRNA Library Quantification by Deep Sequencing—Genomic DNA was extracted 

from cells using the salt-precipitation protocol as described in Chen et al. (2015). The 

sgRNA library readout was performed following described protocols using a two-step nested 

PCR process in which PCR1 amplifies the lentiviral sequence containing the 20bp sgRNA 
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cassette followed by PCR2 which attaches illumina sequencing adapters and barcodes. 

Primer sequences were obtained from the Zhang lab online resource (http://genome-

engineering.org/gecko/) using v2Adaptor_F and v2Adapter_R for PCR1 and Primers F01-

F06 and R01-R02 for PCR2 (Joung et al., 2017). All PCR was performed using Herculase II 

Fusion DNA Polymerase (Agilent). Enough PCR1 reactions were performed to maintain full 

library representation and PCR2 was performed with one reaction per 104 constructs (7 

reactions per sample). 10ug of genomic DNA was used per PCR1 reaction. After pooling 

PCR1 product, 10uL of pooled PCR1 product was used for each PCR2 reaction. PCR 

products were purified and quantified with Qubit and/or bioanalyzer and diluted libraries 

were sequenced on Illumina NextSeq.

ZIKV infection in mice—C57BL/6J mice (4 to 5 week old, male, from Jackson 

Laboratories) were administered as a single dose with 2mg of an IFNAR1 mAb 

(MAR1-5A3) before one-day infection of ZIKV and 0.5mg of IFNAR1 mAb at second and 

fourth day after ZIKV infection by intraperitoneal (i.p.) injection as previously described 

(Gorman et al., 2018). Mice were treated with cilengitide (20 mg/kg body weight) daily for 

6 days by i.p. and were infected with ZIKV MR766 (2x104 PFU/mouse) in 200ul volume 

through i.p. injection. Mice were sacrificed and brain was collected and analyzed by RT-

qPCR or by immunohistochemistry.

Data processing and analysis—Sequencing reads were de-multiplexed and adapters 

trimmed using cutadapt (https://cutadapt.readthedocs.io/en/stable/, https://doi.org/10.14806/

ej.17.1.200) leaving only the 20bp sgRNA spacer sequences. The sgRNA spacer sequences 

were then mapped to the Brunello or GeCKO library using bowtie (Langmead and Salzberg, 

2012) allowing a maximum of one mismatch and allowing only uniquely aligning reads. 

Only sgRNA spacers with multiple reads were analyzed (sgRNA spacer with only a single 

read were filtered out). Normalized read counts were obtained by normalizing to total read 

count per sample (normalized reads per sgRNA = reads per sgRNA/total reads for all 

sgRNAs in sample x 106+1). Normalized reads were used for input in STARS software 

(https://portals.broadinstitute.org/gpp/public/dir/download?

dirpath=software&filename=STARS_v1.3.zip) following instruction (Doench et al., 2016).

Lentivirus production and transduction—shRNA vectors were obtained from the 

Functional Genomics Center of La Jolla institute of allergy and immunology, the sequences 

are listed in Table S3. For knockout of ITGB5, four sgRNA oligos targeting ITGB5 were 

designed and inserted into sgRNA expressing vector (lentiCRISPR v2, addgene 52961). 

ITGB5 was cloned into a pLVX plasmid for ITGB5 overexpression experiments. Two rescue 

ITGB5 vectors were generated by point mutation kit (NEB). All the cloning primers were 

listed in Table S3. Lentiviral particles were prepared by co-transfection of shRNA, sgRNA 

or overexpression vectors (1.8 μg), psPAX.2 (1.2 μg) and pMD2.G (0.6 μg) vectors in 0.8 

million 293FT cells. Lipofectamine 2000 and Opti-MEM were used according to 

manufacturer’s instruction. Six hours post transfection, supernatant was removed and D10 

medium was added. 24h later, D10 media was removed and the cells were washed with PBS. 

DMEM/F12 medium with B27 and growth factors were added. Supernatant was harvested 
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after 24 hours and filtered at 0.22 μm and added to target TS576. After 12 hours lentivirus 

was removed and replaced with fresh medium.

Immunohistochemistry—Brains were removed and post-fixed in 10% paraformaldehyde 

overnight at 4°C followed by cryopreservation in 10, 20, 30% (w/v) sucrose in PBS. Serial 

coronal sections of 20-30 μm thickness encompassing the neurogenic regions such as 

hippocampus and sub-ventricular zone (SVZ) were cut using a freezing cryostat (Leica 

Biosystems, CM3050s). In order to examine the ZIKV infection, double 

immunofluorescence analysis was carried out in the cortex and hippocampus. Coronal 

sections beginning at bregma −1.50 to −3.50 mm through the dorsal hippocampus 

encompassing the dentate gyrus region and cortex were co-labeled with Nestin/ZIKV-E. 

Free-floating sections were washed and carried out antigen retrieval with citrate buffer (pH 

6.2) and blocked with 3% NGS, 0.1% Triton X-100, and 0.5% BSA for 2 h. Sections were 

then incubated in mouse anti-ZIKV-E/anti-flavivirus group antigen antibody 4G2 (1:500), 

chicken anti-Nestin (1:500) for 24 h at 4°C. Secondary antibodies used included anti-mouse 

and anti-chicken Alexa Fluor 488 (1:400); and anti-mouse and anti-chicken Alexa Fluor 594 

(1:400). Sections were mounted with DAPI containing Hard Set anti-fade mounting medium 

(Vectashield, Vector Laboratories, CA, USA) and stored in the dark at 4°C. Images from the 

stained slides were acquired for fluorescence co-labeling under inverted Leica fluorescence 

microscope (DMI 3000B) and Keyence All in one fluorescence microscope BZ-X800. The 

images were analyzed and background corrected by ImageJ software as described earlier 

(Youssef et al., 2019; Zhang et al., 2019) and BZ-X analyzer as described in user manual. 

For quantification, cell counting in cortical and hippocampal region for Nestin/ZIKV-E 

double positive cells were performed in coronal sections beginning at bregma −1.50 to −3.50 

mm. Nestin/ZIKV-E double positive cells, in at least 5 sections in each group, were analyzed 

and cells were identified by their DAPI labeled nuclei.

ZIKV infection experiment in presence of blocking antibodies or inhibitors—
TS576 cells were treated with antibodies or inhibitors for 1h and infected with ZIKV-

ZsGreen of MOI = 0.05 or 1. Cells were collected 48h or 72h post-infection. For RNA 

quantification, cells were lysed in TRIzol and total RNA was extracted. 1ug RNA of each 

sample was used to generate cDNA with a reverse transcription kit. Viral RNA was 

quantified relative to cellular GAPDH mRNA by real-time qPCR. For flow analysis, cells 

were dissociated with accumax and fixed in 2% PFA with PBS. The samples were filtered 

and subject for flow analysis using BD ACCURI C6 Flow Cytometer. Data analysis was 

performed using FlowJo v10 software (FlowJo LLC). For cell viability assays, cells seeding 

in 96-well plate were mixed with Celltiter-Glo reagent (Promega, G7572) according to the 

manufacturer’s protocol, and luminescence intensity was measured to quantify the cell 

viability. The cytotoxicity of inhibitors and cell viability of neurospheres were also 

determined using this method.

ZIKV binding and internalization assays—TS576 cells or hNSCs were treated with 

2.5ug/ml anti-integrin αvβ3, αvβ5 or isotype antibody for 1h and incubated with ZIKV of 

MOI = 20 at 4 degrees for two hours. For the binding assays, cells were then washed with 

chilled PBS for three times, and cells were lysed using TRIzol and binding viral RNA was 
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quantified by qPCR. For the internalization assay, cells were incubated in 37 degrees for 4h. 

And further washed with PBS for three times. Pellets were lysed by TRIzol and total RNA 

was extracted to quantify internalized viral RNA.

ELISA Binding—To detect ZIKV-αvβ5 direct interaction, integrin αvβ5 or BSA were 

coated (400ng/well) in TBS supplemented with 10mM Ca2+, 10mM Mg2+ and 1mM Mn2+ 

overnight. The wells were blocked with 2% BSA in TBS for 2h at 37°C. MR766 virions 

(107 PFU/well) were added and incubated at 4°C for 2h. Unbound virions were removed by 

washing with TBS for four times and 0.5 μg/ml biotinylated 4G2 (Novus, NBP2-52709B) 

and HRP-Streptavidin were added to detect the binding virions. TMB substrate was 

incubated and the intensity at 450nm was measured.

Immunofluorescence staining of NSCs and GSCs—NSCs or GSCs were washed 

with PBS and then fixed with 4% paraformaldehyde for 1 hour. Fixed cells were blocked in 

5% BSA in PBS for 1 hours, washed three times with PBS+0.1% Triton X-100 (PBST), and 

incubated with anti-flavivirus group antigen antibody 4G2 (1:500) or SOX2 (1:500), or 

GFAP (1:500) at 4°C overnight. GSCs were then washed 3 times with PBST and incubated 

with FITC-conjugated secondary antibody for 1 hour. After 3 washes in PBST, DAPI was 

added and images were acquired. All images were acquired on a Leica DMI 3000B.

QUANTIFICATION AND STATISTICAL ANALYSIS

Graphs were plotted using Prism 8.0.2 (GraphPad Inc.) Differences between groups were 

analyzed using Student’s t test (paired, two-sided) if not stated in the figure legends 

otherwise. Data are presented as the means ± standard deviation (SD), with a p value < 0.05 

considered statistically significant. The values of n refers to the number of mice used in the 

mice study part. In the other parts, it refers to the number of dependent experiments.

DATA AND CODE AVAILABILITY

Raw and processed data are provided in the Gene Expression Omnibus (accession number 

GSE139142 for sgRNA library deep sequencing).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

We thank Dr. Andres Merits at University of Tartu, Tartu, Estonia, for providing ZIKV-ZsGreen and ZIKV-replicon 
clones. We thank Michael Diamond, David Cheresh, and David Schlaepfer for sharing their insight into the integrin 
and ZIKV receptors mechanisms. We also thank the support from Dr. Kristen Jepsen of IGM at UCSD for her help 
with the HT-seq and Dr. Celsa Spina and Tara Rambaldo at UCSD CFAR for cell sorting. We thank members of the 
Rana lab for helpful discussions and advice. This work was supported in part by grants from the NIH (AI125103, 
CA177322, DA039562, DA046171, and DA049524).

REFERENCES

Akula SM, Pramod NP, Wang FZ, and Chandran B (2002). Integrin alpha3beta1 (CD 49c/29) is a 
cellular receptor for Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target 
cells. Cell 108, 407–419. [PubMed: 11853674] 

Wang et al. Page 17

Cell Rep. Author manuscript; available in PMC 2020 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Arruda Macêdo JK, Fox JW, and de Souza Castro M (2015). Disintegrins from snake venoms and their 
applications in cancer research and therapy. Curr. Protein Pept. Sci 16, 532–548. [PubMed: 
26031306] 

Badger AM, Blake S, Kapadia R, Sarkar S, Levin J, Swift BA, Hoffman SJ, Stroup GB, Miller WH, 
Gowen M, and Lark MW (2001). Disease-modifying activity of SB 273005, an orally active, 
nonpeptide alphavbeta3 (vitronectin receptor) antagonist, in rat adjuvant-induced arthritis. Arthritis 
Rheum. 44, 128–137. [PubMed: 11212150] 

Benitez JA, Ma J, D’Antonio M, Boyer A, Camargo MF, Zanca C, Kelly S, Khodadadi-Jamayran A, 
Jameson NM, Andersen M, et al. (2018). Publisher Correction: PTEN regulates glioblastoma 
oncogenesis through chromatin-associated complexes of DAXX and histone H3.3. Nat. Commun 9, 
16217. [PubMed: 29799523] 

Bergelson JM, Shepley MP, Chan BM, Hemler ME, and Finberg RW (1992). Identification of the 
integrin VLA-2 as a receptor for echovirus 1. Science 255, 1718–1720. [PubMed: 1553561] 

Brasil P, Pereira JP Jr., Moreira ME, Ribeiro Nogueira RM, Damasceno L, Wakimoto M, Rabello RS, 
Valderramos SG, Halai UA, Salles TS, et al. (2016). Zika Virus Infection in Pregnant Women in Rio 
de Janeiro. N. Engl. J. Med 375, 2321–2334. [PubMed: 26943629] 

Broutet N, Krauer F, Riesen M, Khalakdina A, Almiron M, Aldighieri S, Espinal M, Low N, and Dye 
C (2016). Zika Virus as a Cause of Neurologic Disorders. N. Engl. J. Med 374, 1506–1509. 
[PubMed: 26959308] 

Chan JF, Yip CC, Tsang JO, Tee KM, Cai JP, Chik KK, Zhu Z, Chan CC, Choi GK, Sridhar S, et al. 
(2016). Differential cell line susceptibility to the emerging Zika virus: implications for disease 
pathogenesis, non-vector-borne human transmission and animal reservoirs. Emerg. Microbes Infect 
5, e93. [PubMed: 27553173] 

Chavali PL, Stojic L, Meredith LW, Joseph N, Nahorski MS, Sanford TJ, Sweeney TR, Krishna BA, 
Hosmillo M, Firth AE, et al. (2017). Neurodevelopmental protein Musashi-1 interacts with the Zika 
genome and promotes viral replication. Science 357, 83–88. [PubMed: 28572454] 

Chen J, Yang YF, Yang Y, Zou P, Chen J, He Y, Shui SL, Cui YR, Bai R, Liang YJ, et al. (2018a). 
AXL promotes Zika virus infection in astrocytes by antagonizing type I interferon signalling. Nat. 
Microbiol 3, 302–309. [PubMed: 29379210] 

Chen Q, Wu J, Ye Q, Ma F, Zhu Q, Wu Y, Shan C, Xie X, Li D, Zhan X, et al. (2018b). Treatment of 
Human Glioblastoma with a Live Attenuated Zika Virus Vaccine Candidate. MBio 9, e01683–18. 
[PubMed: 30228241] 

Chen S, Sanjana NE, Zheng K, Shalem O, Lee K, Shi X, Scott DA, Song J, Pan JQ, Weissleder R, et 
al. (2015). Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 
160, 1246–1260. [PubMed: 25748654] 

Chu JJ, and Ng ML (2004). Interaction of West Nile virus with alpha v beta 3 integrin mediates virus 
entry into cells. J. Biol. Chem 279, 54533–54541. [PubMed: 15475343] 

Cseke G, Maginnis MS, Cox RG, Tollefson SJ, Podsiad AB, Wright DW, Dermody TS, and Williams 
JV (2009). Integrin alphavbeta1 promotes infection by human metapneumovirus. Proc. Natl. Acad. 
Sci. USA 106, 1566–1571. [PubMed: 19164533] 

Cugola FR, Fernandes IR, Russo FB, Freitas BC, Dias JL, Guimarães KP, Benazzato C, Almeida N, 
Pignatari GC, Romero S, et al. (2016). The Brazilian Zika virus strain causes birth defects in 
experimental models. Nature 534, 267–271. [PubMed: 27279226] 

Cui X, Wu Y, Fan D, Gao N, Ming Y, Wang P, and An J (2018). Peptides P4 and P7 derived from E 
protein inhibit entry of dengue virus serotype 2 via interacting with β3 integrin. Antiviral Res. 155, 
20–27. [PubMed: 29709564] 

Dang J, Tiwari SK, Lichinchi G, Qin Y, Patil VS, Eroshkin AM, and Rana TM (2016). Zika Virus 
Depletes Neural Progenitors in Human Cerebral Organoids through Activation of the Innate 
Immune Receptor TLR3. Cell Stem Cell 19, 258–265. [PubMed: 27162029] 

Desgrosellier JS, and Cheresh DA (2010). Integrins in cancer: biological implications and therapeutic 
opportunities. Nat. Rev. Cancer 10, 9–22. [PubMed: 20029421] 

Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, 
Orchard R, et al. (2016). Optimized sgRNA design to maximize activity and minimize off-target 
effects of CRISPR-Cas9. Nat. Biotechnol 34, 184–191. [PubMed: 26780180] 

Wang et al. Page 18

Cell Rep. Author manuscript; available in PMC 2020 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Driggers RW, Ho CY, Korhonen EM, Kuivanen S, Jääskeläinen AJ, Smura T, Rosenberg A, Hill DA, 
DeBiasi RL, Vezina G, et al. (2016). Zika Virus Infection with Prolonged Maternal Viremia and 
Fetal Brain Abnormalities. N. Engl. J. Med 374, 2142–2151. [PubMed: 27028667] 

Garcez PP, Loiola EC, Madeiro da Costa R, Higa LM, Trindade P, Delvecchio R, Nascimento JM, 
Brindeiro R, Tanuri A, and Rehen SK (2016). Zika virus impairs growth in human neurospheres 
and brain organoids. Science 352, 816–818. [PubMed: 27064148] 

Goffart N, Kroonen J, and Rogister B (2013). Glioblastoma-initiating cells: relationship with neural 
stem cells and the micro-environment. Cancers (Basel) 5, 1049–1071. [PubMed: 24202333] 

Gorman MJ, Caine EA, Zaitsev K, Begley MC, Weger-Lucarelli J, Uccellini MB, Tripathi S, Morrison 
J, Yount BL, Dinnon KH 3rd., et al. (2018). An Immunocompetent Mouse Model of Zika Virus 
Infection. Cell Host Microbe 23, 672–685. [PubMed: 29746837] 

Guerrero CA, Méndez E, Zárate S, Isa P, López S, and Arias CF (2000). Integrin alpha(v)beta(3) 
mediates rotavirus cell entry. Proc. Natl. Acad. Sci. USA 97, 14644–14649. [PubMed: 11114176] 

Hamel R, Dejarnac O, Wichit S, Ekchariyawat P, Neyret A, Luplertlop N, Perera-Lecoin M, 
Surasombatpattana P, Talignani L, Thomas F, et al. (2015). Biology of Zika Virus Infection in 
Human Skin Cells. J. Virol 89, 8880–8896. [PubMed: 26085147] 

Hastings AK, Yockey LJ, Jagger BW, Hwang J, Uraki R, Gaitsch HF, Parnell LA, Cao B, Mysorekar 
IU, Rothlin CV, et al. (2017). TAM Receptors Are Not Required for Zika Virus Infection in Mice. 
Cell Rep. 19, 558–568. [PubMed: 28423319] 

Hussein HA, Walker LR, Abdel-Raouf UM, Desouky SA, Montasser AK, and Akula SM (2015). 
Beyond RGD: virus interactions with integrins. Arch. Virol 160, 2669–2681. [PubMed: 26321473] 

Hynes RO (2002). Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687. [PubMed: 
12297042] 

Inda MM, Bonavia R, Mukasa A, Narita Y, Sah DW, Vandenberg S, Brennan C, Johns TG, Bachoo R, 
Hadwiger P, et al. (2010). Tumor heterogeneity is an active process maintained by a mutant EGFR-
induced cytokine circuit in glioblastoma. Genes Dev. 24, 1731–1745. [PubMed: 20713517] 

Jackson T, Clark S, Berryman S, Burman A, Cambier S, Mu D, Nishimura S, and King AM (2004). 
Integrin alphavbeta8 functions as a receptor for foot-and-mouth disease virus: role of the beta-
chain cytodomain in integrin-mediated infection. J. Virol 78, 4533–4540. [PubMed: 15078934] 

Joung J, Konermann S, Gootenberg JS, Abudayyeh OO, Platt RJ, Brigham MD, Sanjana NE, and 
Zhang F (2017). Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. 
Nat. Protoc 12, 828–863. [PubMed: 28333914] 

Langmead B, and Salzberg SL (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 
357–359. [PubMed: 22388286] 

Larson RS, Brown DC, Ye C, and Hjelle B (2005). Peptide antagonists that inhibit Sin Nombre virus 
and hantaan virus entry through the beta3-integrin receptor. J. Virol 79, 7319–7326. [PubMed: 
15919886] 

Laureti M, Narayanan D, Rodriguez-Andres J, Fazakerley JK, and Kedzierski L (2018). Flavivirus 
Receptors: Diversity, Identity, and Cell Entry. Front. Immunol 9, 2180. [PubMed: 30319635] 

Lazear HM, and Diamond MS (2016). Zika Virus: New Clinical Syndromes and Its Emergence in the 
Western Hemisphere. J. Virol 90, 4864–4875. [PubMed: 26962217] 

Ley K, Rivera-Nieves J, Sandborn WJ, and Shattil S (2016). Integrin-based therapeutics: biological 
basis, clinical use and new drugs. Nat. Rev. Drug Discov 15, 173–183. [PubMed: 26822833] 

Li C, Xu D, Ye Q, Hong S, Jiang Y, Liu X, Zhang N, Shi L, Qin CF, and Xu Z (2016). Zika Virus 
Disrupts Neural Progenitor Development and Leads to Microcephaly in Mice. Cell Stem Cell 19, 
120–126. [PubMed: 27179424] 

Li F, Wang PR, Qu LB, Yi CH, Zhang FC, Tang XP, Zhang LG, and Chen L (2017). AXL is not 
essential for Zika virus infection in the mouse brain. Emerg. Microbes Infect 6, e16. [PubMed: 
28352123] 

Li Y, Muffat J, Omer Javed A, Keys HR, Lungjangwa T, Bosch I, Khan M, Virgilio MC, Gehrke L, 
Sabatini DM, and Jaenisch R (2019). Genome-wide CRISPR screen for Zika virus resistance in 
human neural cells. Proc. Natl. Acad. Sci. USA 116, 9527–9532. [PubMed: 31019072] 

Liu Z, Wang F, and Chen X (2008). Integrin alpha(v)beta(3)-Targeted Cancer Therapy. Drug Dev. Res 
69, 329–339. [PubMed: 20628538] 

Wang et al. Page 19

Cell Rep. Author manuscript; available in PMC 2020 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lum FM, Low DK, Fan Y, Tan JJ, Lee B, Chan JK, Rénia L, Ginhoux F, and Ng LF (2017). Zika Virus 
Infects Human Fetal Brain Microglia and Induces Inflammation. Clin. Infect. Dis 64, 914–920. 
[PubMed: 28362944] 

Luo P, Li X, Fei Z, and Poon W (2012). Scaffold protein Homer 1: implications for neurological 
diseases. Neurochem. Int 61, 731–738. [PubMed: 22749857] 

Ma H, Dang Y, Wu Y, Jia G, Anaya E, Zhang J, Abraham S, Choi JG, Shi G, Qi L, et al. (2015). A 
CRISPR-Based Screen Identifies Genes Essential for West-Nile-Virus-Induced Cell Death. Cell 
Rep. 12, 673–683. [PubMed: 26190106] 

Maginnis MS, Forrest JC, Kopecky-Bromberg SA, Dickeson SK, Santoro SA, Zutter MM, Nemerow 
GR, Bergelson JM, and Dermody TS (2006). Beta1 integrin mediates internalization of 
mammalian reovirus. J. Virol 80, 2760–2770. [PubMed: 16501085] 

Marceau CD, Puschnik AS, Majzoub K, Ooi YS, Brewer SM, Fuchs G, Swaminathan K, Mata MA, 
Elias JE, Sarnow P, and Carette JE (2016). Genetic dissection of Flaviviridae host factors through 
genome-scale CRISPR screens. Nature 535, 159–163. [PubMed: 27383987] 

Meertens L, Labeau A, Dejarnac O, Cipriani S, Sinigaglia L, Bonnet-Madin L, Le Charpentier T, 
Hafirassou ML, Zamborlini A, Cao-Lormeau VM, et al. (2017). Axl Mediates ZIKA Virus Entry 
in Human Glial Cells and Modulates Innate Immune Responses. Cell Rep. 18, 324–333. [PubMed: 
28076778] 

Miller WH, Alberts DP, Bhatnagar PK, Bondinell WE, Callahan JF, Calvo RR, Cousins RD, Erhard 
KF, Heerding DA, Keenan RM, et al. (2000). Discovery of orally active nonpeptide vitronectin 
receptor antagonists based on a 2-benzazepine Gly-Asp mimetic. J. Med. Chem 43, 22–26. 
[PubMed: 10633035] 

Miner JJ, and Diamond MS (2017). Zika Virus Pathogenesis and Tissue Tropism. Cell Host Microbe 
21, 134–142. [PubMed: 28182948] 

Mitra SK, and Schlaepfer DD (2006). Integrin-regulated FAK-Src signaling in normal and cancer cells. 
Curr. Opin. Cell Biol 18, 516–523. [PubMed: 16919435] 

Moodbidri MS, and Shirsat NV (2006). Induction of BAALC and down regulation of RAMP3 in 
astrocytes treated with differentiation inducers. Cell Biol. Int 30, 210–213. [PubMed: 16376586] 

Mutso M, Saul S, Rausalu K, Susova O, Žusinaite E, Mahalingam S, and Merits A (2017). Reverse 
genetic system, genetically stable reporter viruses and packaged subgenomic replicon based on a 
Brazilian Zika virus isolate. J. Gen. Virol 98, 2712–2724. [PubMed: 29022864] 

Noronha Ld., Zanluca C, Azevedo ML, Luz KG, and Santos CN (2016). Zika virus damages the 
human placental barrier and presents marked fetal neurotropism. Mem. Inst. Oswaldo Cruz 111, 
287–293. [PubMed: 27143490] 

Nowakowski TJ, Pollen AA, Di Lullo E, Sandoval-Espinosa C, Bershteyn M, and Kriegstein AR 
(2016). Expression Analysis Highlights AXL as a Candidate Zika Virus Entry Receptor in Neural 
Stem Cells. Cell Stem Cell 18, 591–596. [PubMed: 27038591] 

Olmo IG, Carvalho TG, Costa VV, Alves-Silva J, Ferrari CZ, Izidoro-Toledo TC, da Silva JF, Teixeira 
AL, Souza DG, Marques JT, et al. (2017). Zika Virus Promotes Neuronal Cell Death in a Non-Cell 
Autonomous Manner by Triggering the Release of Neurotoxic Factors. Front. Immunol 8, 1016. 
[PubMed: 28878777] 

Pollen AA, Nowakowski TJ, Chen J, Retallack H, Sandoval-Espinosa C, Nicholas CR, Shuga J, Liu 
SJ, Oldham MC, Diaz A, et al. (2015). Molecular identity of human outer radial glia during 
cortical development. Cell 163, 55–67. [PubMed: 26406371] 

Retallack H, Di Lullo E, Arias C, Knopp KA, Laurie MT, Sandoval-Espinosa C, Mancia Leon WR, 
Krencik R, Ullian EM, Spatazza J, et al. (2016). Zika virus cell tropism in the developing human 
brain and inhibition by azithromycin. Proc. Natl. Acad. Sci. USA 113, 14408–14413. [PubMed: 
27911847] 

Richard AS, Shim BS, Kwon YC, Zhang R, Otsuka Y, Schmitt K, Berri F, Diamond MS, and Choe H 
(2017). AXL-dependent infection of human fetal endothelial cells distinguishes Zika virus from 
other pathogenic flaviviruses. Proc. Natl. Acad. Sci. USA 114, 2024–2029. [PubMed: 28167751] 

Sarno M, Sacramento GA, Khouri R, do Rosário MS, Costa F, Archanjo G, Santos LA, Nery N Jr., 
Vasilakis N, Ko AI, and de Almeida AR (2016). Zika Virus Infection and Stillbirths: A Case of 

Wang et al. Page 20

Cell Rep. Author manuscript; available in PMC 2020 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hydrops Fetalis, Hydranencephaly and Fetal Demise. PLoS Negl. Trop. Dis 10, e0004517. 
[PubMed: 26914330] 

Savidis G, McDougall WM, Meraner P, Perreira JM, Portmann JM, Trincucci G, John SP, Aker AM, 
Renzette N, Robbins DR, et al. (2016). Identification of Zika Virus and Dengue Virus Dependency 
Factors using Functional Genomics. Cell Rep. 16, 232–246. [PubMed: 27342126] 

Scaturro P, Stukalov A, Haas DA, Cortese M, Draganova K, Płaszczyca A, Bartenschlager R, Götz M, 
and Pichlmair A (2018). An orthogonal proteomic survey uncovers novel Zika virus host factors. 
Nature 561, 253–257. [PubMed: 30177828] 

Serrels A, Lund T, Serrels B, Byron A, McPherson RC, von Kriegsheim A, Gómez-Cuadrado L, Canel 
M, Muir M, Ring JE, et al. (2015). Nuclear FAK controls chemokine transcription, Tregs, and 
evasion of anti-tumor immunity. Cell 163, 160–173. [PubMed: 26406376] 

Shalem O, Sanjana NE, and Zhang F (2015). High-throughput functional genomics using CRISPR-
Cas9. Nat. Rev. Genet 16, 299–311. [PubMed: 25854182] 

Stewart PL, and Nemerow GR (2007). Cell integrins: commonly used receptors for diverse viral 
pathogens. Trends Microbiol. 15, 500–507. [PubMed: 17988871] 

Summerford C, Bartlett JS, and Samulski RJ (1999). AlphaVbeta5 integrin: a co-receptor for adeno-
associated virus type 2 infection. Nat. Med 5, 78–82. [PubMed: 9883843] 

Tabata T, Petitt M, Puerta-Guardo H, Michlmayr D, Wang C, Fang-Hoover J, Harris E, and Pereira L 
(2016). Zika Virus Targets Different Primary Human Placental Cells, Suggesting Two Routes for 
Vertical Transmission. Cell Host Microbe 20, 155–166. [PubMed: 27443522] 

Tancioni I, Uryu S, Sulzmaier FJ, Shah NR, Lawson C, Miller NL, Jean C, Chen XL, Ward KK, and 
Schlaepfer DD (2014). FAK Inhibition disrupts a β5 integrin signaling axis controlling anchorage-
independent ovarian carcinoma growth. Mol. Cancer Ther 13, 2050–2061. [PubMed: 24899686] 

Tang H, Hammack C, Ogden SC, Wen Z, Qian X, Li Y, Yao B, Shin J, Zhang F, Lee EM, et al. (2016). 
Zika Virus Infects Human Cortical Neural Progenitors and Attenuates Their Growth. Cell Stem 
Cell 18, 587–590. [PubMed: 26952870] 

Tanner SM, Austin JL, Leone G, Rush LJ, Plass C, Heinonen K, Mrózek K, Sill H, Knuutila S, Kolitz 
JE, et al. (2001). BAALC, the human member of a novel mammalian neuroectoderm gene lineage, 
is implicated in hematopoiesis and acute leukemia. Proc. Natl. Acad. Sci. USA 98, 13901–13906. 
[PubMed: 11707601] 

Triantafilou K, Triantafilou M, Takada Y, and Fernandez N (2000). Human parechovirus 1 utilizes 
integrins alphavbeta3 and alphavbeta1 as receptors. J. Virol 74, 5856–5862. [PubMed: 10846065] 

Wells MF, Salick MR, Wiskow O, Ho DJ, Worringer KA, Ihry RJ, Kommineni S, Bilican B, Klim JR, 
Hill EJ, et al. (2016). Genetic Ablation of AXL Does Not Protect Human Neural Progenitor Cells 
and Cerebral Organoids from Zika Virus Infection. Cell Stem Cell 19, 703–708. [PubMed: 
27912091] 

Wells MF, Salick MR, Piccioni F, Hill EJ, Mitchell JM, Worringer KA, Raymond JJ, Kommineni S, 
Chan K, Ho D, et al. (2018). Genome-wide screens in accelerated human stem cell-derived neural 
progenitor cells identify Zika virus host factors and drivers of proliferation. bioRxiv. 
10.1101/476440.

Wickham TJ, Mathias P, Cheresh DA, and Nemerow GR (1993). Integrins alpha v beta 3 and alpha v 
beta 5 promote adenovirus internalization but not virus attachment. Cell 73, 309–319. [PubMed: 
8477447] 

Youssef M, Atsak P, Cardenas J, Kosmidis S, Leonardo ED, and Dranovsky A (2019). Early life stress 
delays hippocampal development and diminishes the adult stem cell pool in mice. Sci. Rep 9, 
4120. [PubMed: 30858462] 

Zhang K, and Chen J (2012). The regulation of integrin function by divalent cations. Cell Adhes. Migr 
6, 20–29.

Zhang R, Miner JJ, Gorman MJ, Rausch K, Ramage H, White JP, Zuiani A, Zhang P, Fernandez E, 
Zhang Q, et al. (2016). A CRISPR screen defines a signal peptide processing pathway required by 
flaviviruses. Nature 535, 164–168. [PubMed: 27383988] 

Zhang W, Tan YW, Yam WK, Tu H, Qiu L, Tan EK, Chu JJH, and Zeng L (2019). In utero infection of 
Zika virus leads to abnormal central nervous system development in mice. Sci. Rep 9, 7298. 
[PubMed: 31086212] 

Wang et al. Page 21

Cell Rep. Author manuscript; available in PMC 2020 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Zhu Z, Gorman MJ, McKenzie LD, Chai JN, Hubert CG, Prager BC, Fernandez E, Richner JM, Zhang 
R, Shan C, et al. (2017). Zika virus has oncolytic activity against glioblastoma stem cells. J. Exp. 
Med 214, 2843–2857. [PubMed: 28874392] 

Wang et al. Page 22

Cell Rep. Author manuscript; available in PMC 2020 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• CRISPR screens identify 92 GSC-specific factors linked to ZIKV infection

• Integrin αvβ5 mediates ZIKV internalization into hNSCs providing two drug 

candidates

• Integrin αvβ5 expression correlates with ZIKV susceptibility and 

neurotropism

• Inhibition of αvβ5 alleviates ZIKV-induced pathology in hNSCs and in 

mouse brain
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Figure 1. Identification of ZIKV Dependency Factors in Glioblastoma Stem Cells (GSCs) by a 
Genome-wide CRISPR Knockout Screen
(A) Schematic representation of the genome-wide CRISPR/Cas9 screen in GSCs. Briefly, 

GSC cells were transduced with Brunello sgRNA pooled library and selected by puromycin 

treatment. Transduced cells were mock-infected or infected with ZIKV ZsGreen strain 

(ZIKV-ZsGreen) at an MOI of 0.01 for 7 days. ZsGreen negative cells were sorted out and 

cultured for 2 weeks in the presence of ZIKV inhibitor, NITD008. Expanded cells were re-

infected with ZIKV for 1 week and sorted for resistant cells. Genomic DNA was harvested, 

and sgRNA sequencing libraries were prepared by nested PCR and quantified on Illumina 

NextSeq.

(B) Characterization of GSC (TS576) stemness. GSCs are shown to highly express stem cell 

marker SOX2 and lack of differentiation maker GFAP expression. n = 3.

(C) GSCs are highly permissive for ZIKV-ZsGreen infection. GSCs were infected with 

ZIKV-ZsGreen at an MOI of 0.5 for 5 days. n = 3.

(D) Replication curve of ZIKV-ZsGreen in GSCs infected at an MOI of 0.5 or 0.01. 

ZsGreen-positive cells were quantified by flow cytometry. n = 3.

(E) Identification of sgRNAs consistently enriched in ZsGreen-negative versus uninfected 

cells. STARS analysis was performed, and 271 genes are shown for illustration. Previously 
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identified genes are highlighted in blue. A few of newly identified genes in our study are 

highlighted in red and orange.

(F) Enrichment of specific sgRNAs identified by STARS analysis is enhanced after 

expansion and second sorting. Known targets that have been identified were highlighted by 

red asterisk. Color key represents fold change.
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Figure 2. Identification of GSC-Specific ZIKV Dependency Factors
(A) Comparison of targets from three genome-wide screens in GSC and 293 FT (this study) 

and HeLa cells (Savidis et al., 2016). Ten common targets are shown in the green box 

(right). A representative list of GSC-specific targets is shown in blue box.

(B) Eleven unique targets are essential for ZIKV infection in GSCs. GSCs were transduced 

with lentiviruses expressing non-targeting control (NC) shRNA or pooled shRNAs for 

indicated genes. After 2 days, cells were infected with ZIKV ZsGreen at an MOI of 0.01 for 

3 days. Cells were harvested to extract the RNA, and RT-PCR was performed to quantify the 

expression of ZIKV NS3 gene relative to GAPDH. Mean ± SD of n = 3. *p < 0.05, **p < 

0.01 by Student’s t test.

(C) ITGB5 KO efficiency in TS576. TS576 cells were transduced with non-targeting sgRNA 

(NTC) or four separate sgRNAs targeting ITGB5. Cells were selected by 1 μg/mL 

puromycin for 7 days. The expression of αvβ5 on cell surface was monitored by flow 

cytometry. Blue shading represents cell staining with isotype antibody, red shading 

represents NTC cells staining with αvβ5 antibody, golden shading represents four ITGB5-

edited cells staining with αvβ5 antibody. One representative of three independent 

experiments is shown.

(D) ITGB5 KO dramatically reduced ZIKV infection. NTC- or ITGB5-edited cells were 

infected with ZIKV-ZsGreen at MOI = 0.05 for 72 h. The percentage of infected cells were 

measured by flow cytometry. Mean ± SD of n = 3. ****p < 0.0001 by Student’s t test.
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(E) αvβ5 expressions is restored by trans-complementation of ITGB5. The expressions of 

αvβ5 was characterized in control or ITGB5 KO TS576 cells transduced with empty vectors 

(e.v.) or rescue vectors (sg1_ β5 or sg2_β5) for 2 days. The expression of αvβ5 on cell 

surface was monitored by flow cytometry. Golden shading represents cells staining with 

isotype antibody, blue shading represents cells transduced with empty vectors (e.v.) staining 

with αvβ5 antibody, red shading represents cells transduced with rescuing vectors (sg1_ β5 

or sg2_β5) staining with αvβ5 antibody. A representative of three independent experiments 

is shown.

(F) Trans-complementation of ITGB5 in ITGB5 KO TS576 cells restored ZIKV infectivity. 

The control and ITGB5 KO TS576 cells expressing e.v. or resistant ITGB5 were infected 

with ZIKV-ZsGreen at MOI = 0.05 for 72 h. The percentage of infected cells were measured 

by flow cytometry. Mean ± SD of n = 3. **p < 0.01, ***p < 0.001, ****p < 0.0001 by 

Student’s t test.
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Figure 3. Integrin β5 Is Identified as an Internalization Factor for ZIKV and Contributes to Its 
Neurotropism
(A–D) αvβ5, but not αvβ3, is essential for ZIKV infection. TS576 cells were treated with 

various concentrations of anti-integrin αvβ5, αvβ3, or isotype antibody for 1 h and infected 

with ZIKV with MOI = 0.05 (A, B, and D) or MOI = 1 (C). At 72 h (A, B, and D) or 48 h 

(C) post-infection, cellular ZIKV RNA was quantified by qPCR and the percentage of 

infected cells were measured by flow cytometry (D). Mean ± SD of n = 3. *p < 0.05, **p < 

0.01, ***p < 0.001, ****p < 0.0001, by Student’s t test.

(E) αvβ5 inhibitor, SB273005 represses ZIKV infection. TS576 cells were pre-treated with 

indicated concentrations of SB273005 or DMSO for 1 h and infected with ZIKV with MOI 

= 0.05 for 72 h. The percentage of infected cells were measured by flow cytometry. Cell 

viability was measured in TS576 cells treated with indicated concentration of SB273005 for 

3 days. Mean ± SD of n = 3. *p < 0.05, **p < 0.01, ***p < 0.001 by Student’s t test.

(F) αvβ5 inhibitor, cilengitide, represses ZIKV infection. ZIKV infection assay was 

performed as (E) with indicated concentrations of cilengitide. Cell viability was measured in 
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TS576 cells treated with indicated concentration of cilengitide for 3 days. Mean ± SD of n = 

3. *p < 0.05, ****p < 0.0001 by Student’s t test.

(G and H) αvβ5 is a broad dependent factor for different ZIKV strains. TS576 was 

pretreated with antibody or drug as (E) and then infected with MR766 (G) or Paraiba strain 

(H) at MOI 0.5 for 48 h. Cellular ZIKV RNA was quantified by qPCR. Mean ± SD of n = 3. 

**p < 0.01, ***p < 0.001 by Student’s t test.

(I and J) αvβ5 is essential for ZIKV endocytosis, but not for binding in TS576 cells. (I) 

TS576 cells were treated with 2.5 μg/mL anti-integrin αvβ5 or isotype antibody for 1 h and 

then challenged with ZIKV with MOI = 20 at 4°C for 2 h. Cells were washed, and total 

RNA was extracted and quantified. (J) Cells were treated as in (I) and then after washing, 

infected cells were transferred to 37°C for 4 h, and un-internalized virions were removed by 

Accumax. Total cellular RNA was extracted, and ZIKV RNA was quantified by qPCR. 

Mean ± SD of n = 3. **p < 0.01 by Student’s t test. ns, not significant.

(K) Inhibiting αvβ5 does not affect ZIKV replication. TS576 was transfected with 500 ng 

ZIKV-ZsGreen replicon RNA and then pretreated with 2.5 μg/mL αvβ5 antibody or isotype 

antibody. 48 or 72 h after transfection, cells were collected for RNA quantification of ZIKV. 

Mean ± SD of n = 3. ns, not significant by Student’s t test.

(L and M) αvβ5 is essential for ZIKV infection in primary human fetal brain-derived neural 

stem cells (hfNSC). hfNSC was pretreated with 2.5 μg/mL αvβ5 antibody or isotype 

antibody, DMSO, or 2.5 μM SB273005 or 2.5 μM cilengitide for 1 h, and then challenged 

with MR766 at MOI = 1 for 72 h. (L) ZIKV E protein was stained by immunofluorescence 

assay. (M) Total cellular RNA was extracted and ZIKV RNA was quantified by RT-PCR. 

Mean ± SD of n = 3. ****p < 0.0001 by Student’s t test.

(N and O) αvβ5 is essential for ZIKV endocytosis, but not for binding in hfNSC. (N) hfNSC 

were treated with 2.5 μg/mL anti-integrin αvβ5 or isotype antibody for 1 h and then 

challenged with MR766 with MOI = 20 at 4°C for 2 h. Cells were washed, and total RNA 

was extracted and quantified. (O) Cells were treated as in (I) and then after washing, infected 

cells were transferred to 37°C for 4 h, and un-internalized virions were removed by 

Accumax. Total cellular RNA was extracted and ZIKV RNA was quantified by qPCR. Mean 

± SD of n = 3. **p < 0.01 by Student’s t test. ns, not significant.
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Figure 4. ZIKV Virions Directly Interact with Integrin αvβ5 and FAK Activation Is Essential for 
ZIKV Infection
(A) Principle of the ZIKV-integrin ELISA assay. Purified integrin αvβ5 was coated on 96-

well ELISA plate and incubated with MR766. Bound virus was detected by biotin-

conjugated anit-E antibody and HRP-streptavidin.

(B) ZIKV virions interacted with integrin αvβ5. Purified integrin αvβ5 or BSA was coated 

on 96-well plate overnight at 4°C and incubated with MR766 or media for 2 h at 4°C. Bound 

virus was detected by biotin-conjugated anit-E antibody and HRP-streptavidin. Absorbance 

(450 nm) was measured for each well to quantify the bound virions. Mean ± SD of n = 3. 

***p < 0.001 by Student’s t test.

(C) ZIKV binding to integrin αvβ5 is neutralized by αvβ5 blocking antibodies. Purified 

integrin αvβ5 or BSA was coated on 96-well plate overnight at 4°C and incubated with 

αvβ5 blocking antibody (P1F6, 5 μg/mL) at 37°C for 30 min, and then incubated with 

MR766 or media for 2 h at 4°C. Bound virus was detected by biotin-conjugated anit-E 

antibody and HRP-streptavidin. Absorbance (450 nm) was measured for each well to 

quantify the bound virions. Mean ± SD of n = 3. **p < 0.01 by Student’s t test.

(D) FAK is activated by ZIKV infection. Western blot analysis of phosphorylated FAK (pi-

FAK) or FAK was performed in mock or ZIKV (MOI = 50)-infected TS576 cells for 

Wang et al. Page 30

Cell Rep. Author manuscript; available in PMC 2020 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



indicated time points. GAPDH was shown as loading control. One representative of three 

independent experiments is shown.

(E and F) FAK inhibitor, VS-4718 represses ZIKV infection. TS576 cells were pre-treated 

with indicated concentrations of VS-4718 or DMSO for 1 h and infected with ZIKV with 

MOI = 0.05 for 72 h. The percentage of infected cells were measured by flow cytometry. 

Cell viability was measured in TS576 cells treated with indicated concentration of VS-4718 

for 3 days (E). ZIKV RNA was quantified by RT-PCR (F). Mean ± SD of n = 3. ***p < 

0.001, ****p < 0.0001 by Student’s t test.

(G–I) Knock down of FAK inhibits ZIKV infection. TS576 cells were transduced with three 

different shRNAs or shRNA pool for 2 days and then infected with ZIKV with MOI = 0.05 

for 72 h. The knock down efficiency was determined by measuring the expressions of FAK 

using RT-PCR (G). The percentage of infected cells were measured by flow cytometry (H). 

ZIKV RNA was quantified by RT-PCR (I). Mean ± SD of n = 3. **p < 0.01, ***p < 0.001, 

****p < 0.0001 by Student’s t test.
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Figure 5. Integrin β5 (ITGB5) Expression Correlates with ZIKV Susceptibility and Contributes 
to ZIKV Neurotropism
(A) Surface level of integrin αvβ5 on TS576, microglia, 293FT, Jurkat, and H9 cells were 

monitored by flow cytometry. Blue shading represents cell staining with a control isotype 

antibody, red shading represents cell staining with αvβ5 antibody. A representative of three 

independent experiments is shown.

(B) The indicated cells were challenged with ZIKV-ZsGreen at an MOI of 1 for 2 days. 

Infected cells were shown as ZsGreen-positive cell and were quantified by flow cytometry. 

Mean ± SD of n = 3.

(C and D) Single-cell transcriptomics data from developing human cerebral cortex were 

extracted from Nowakowski et al. (2016). Violin plots showing distribution of expression 

levels of ITGB5 (C) and SOX2 (D) across single cells of each respective cell type including 

neuron, interneuron, radial glia, astrocyte, microglia, endothelial, and IPC are presented.

(E) Overexpression of integrin β5 in Jurkat cells. Surface levels of integrin αvβ5 on Jurkat 

cells were measured by flow cytometry. Blue shading represents empty vector transduced 

cells, red shading represents β5-overexpression vector transduced cells. Both cells were 

stained with αvβ5 antibody. A representative of three independent experiments is shown.
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(F–I) Expression of integrin β5 converts Jurkat cells susceptible to ZIKV infection. Empty 

vector (e.v.) or β5-overexpression vector transduced cells were infected with ZIKV-ZsGreen 

(F–H) at MOI = 5 for 72 h. (F) Green fluorescence field and bright field were shown to 

illustrate the ZIKV-infected cells. (G) The ZsGreen-positive cells were quantified by flow 

cytometry. Mean ± SD of n = 3. (H) Total cellular RNA was extracted, and ZIKV RNA was 

quantified by RT-PCR. Mean ± SD of n = 3. (I) Empty vector or β5-overexpression vector 

transduced cells were infected with MR766 at MOI = 5 for 48 h. Total cellular RNA was 

extracted and ZIKV RNA was quantified by RT-PCR. Mean ± SD of n = 3. ***p < 0.001 by 

Student’s t test.
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Figure 6. Inhibition of Integrin αvβ5 Alleviates ZIKV-Induced Pathology in hNSCs and Mouse 
Brain
(A and B) Inhibition of integrin αvβ5 ameliorates ZIKV-induced malformation of 3D NSC 

neurospheres. The neurospheres of iPSC-derived NSCs were mock-infected or infected with 

MR766 at MOI = 1. The infected cells were mock-treated or treated with 2.5 μM cilengitide 

or 2.5 μg/mL αvβ5 blocking antibody or 2.5 μM SB273005. (A) 72 h post-infection, bright 

field images of neurospheres are shown. (B) Neurosphere size was quantified by ImageJ and 

the size distribution is shown. Box and whisker plots show 10th–90th percentiles. N >50 

neurospheres per group. **p < 0.01, *p < 0.05 by Student’s t test.

(C) Inhibition of integrin αvβ5 reversed ZIKV-induced cell death of hNSCs. The 

neurospheres of iPSC-derived NSCs were mock-infected or infected with MR766 at MOI = 

1. The infected cells were mock-treated or treated with 2.5 μM cilengitide or 2.5 μg/mL 

αvβ5 blocking antibody or 2.5 μM SB273005. Cell viability was measured 48h post-

infection. Mean ± SD of n = 4. ***p < 0.001 by Student’s t test.

(D) Cilengitide significantly decreases ZIKV infection in mouse brain. C57BL/6 mice (4- to 

5-week-old) were administered with IFNAR1 monoclonal antibody (mAb) (MAR1-5A3) 

before 1-day prior infection. Then the mice were challenged with MR766 (2 × 104 plaque-

forming unit [PFU]/mouse) by intraperitoneal (i.p.) injection. Mice were treated with 

integrin inhibitor (cilengitide) (20 mg/kg body weight) daily by i.p. PBS was used as a 
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vehicle control. Mice were sacrificed and brain was collected and analyzed using RT-PCR. 

Mean ± SD of n = 4. ****p < 0.0001 by Student’s t test.

(E and F) Cilengitide reduces the ZIKV infection in the cortical region of mouse brain. Mice 

were treated as in (D). (E) ZIK-infected neural stem cell marker (Nestin)-positive cells were 

quantified as described earlier (Youssef et al., 2019; Zhang et al., 2019). (F) Images showing 

immunostaining of neural stem cell marker (Nestin) (red) with ZIKV envelope antigen 

antibody (ZIKV-E) cells (green) in the cortex region. MZ, marginal zone; CP, cortical plate; 

SP, subplate zone; IZ, intermediate zone. Representative of 2 mice in each group. *p < 0.05, 

**p < 0.01 by Student’s t test.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

αvβ5 blocking antibody Millipore Cat# MAB1961Z, RRID:AB_94466

αvβ3 blocking antibody Millipore Cat# MAB1976Z, RRID:AB_11212117

AF488-conjugated anti-αvβ5 BioLegend Cat# 920010, RRID:AB_2629782

AF488-conjugated mouse IgG1 BioLegend Cat# 400132, RRID:AB_400129

Anti-phosphorylated FAK Abcam Cat# ab81298, RRID:AB_1640500

Anti-FAK Abcam Cat# ab131435, RRID:AB_11154758

anti-ZIKV-E Millipore Cat# MAB10216, RRID:AB_827205

Anti-Nestin Abcam Cat# ab134017, RRID:AB_2753197

Anti-Sox2 Abcam Cat# ab97959, RRID:AB_2341193

Anti-cleaved caspase 3 Sigma Cat# C8487, RRID:AB_476884

Anti-GFAP Sigma Cat# G3893, RRID:AB_477010

Bacterial and Virus Strains

MR766 National Institutes of Health LC002520.1

Paraiba Stevenson Laboratory KX280026.1

ZsGreen strain Mutso et al., 2017 N/A

Chemicals, Peptides, and Recombinant Proteins

SB273005 Selleck Chemicals Cat# S7540

cilengitide Sigma Cat# SML1594

VS-4718 Selleck Chemicals Cat# S7653

NITD008 R&D Cat# 6045/1

Deposited Data

Raw and analyzed data This paper GEO: GSE139142

Experimental Models: Cell Lines

TS576 Dr. Frank Furnari Lab N/A

Human iPSC derived neural stem cells (hiNSC) Dr. Frank Furnari Lab N/A

H9 ATCC HTB-176

Jurkat NIH AIDS Reagent Program Cat# 177

293FT ATCC CRL 11268

human fetal NSCs (hfNSC) Thermo Fisher A15654

Vero ATCC CCL-81

microglia Dr Jonathan Karn Lab N/A

Experimental Models: Organisms/Strains

Mouse model: C57BL/6J Jackson Labs N/A

Oligonucleotides

Primers for crispr screening, shRNA, RT-PCR, and 
vector, see Table S3

This paper N/A

Recombinant DNA

ITGB5_sgRNA1 This paper N/A

ITGB5_sgRNA2 This paper N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

ITGB5_sgRNA3 This paper N/A

ITGB5_sgRNA4 This paper N/A

plvx-ITGB5 This paper N/A

ITGB5_sg 1 mut This paper N/A

ITGB5_sg 2 mut This paper N/A

Software and Algorithms

GraphPad Prism 8 Software RRID: SCR_002798 https://www.graphpad.com/

ImageJ Software ImageJ; RRID: SCR_003070 https://imagej.nih.gov/ij/
download.html

FlowJo Software Version 10 https://www.flowjo.com/solutions/flowjo/
downloads
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