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A B S T R A C T   

Tuberculosis (TB) is the top bacterial infectious disease killer and one of the top ten causes of death worldwide. 
The emergence of strains of multiple drug-resistant tuberculosis (MDR-TB) has pushed our available stock of anti- 
TB agents to the limit of effectiveness. This has increased the urgent need to develop novel treatment strategies 
using currently available resources. An adjunctive, host-directed therapy (HDT) designed to act on the host, 
instead of the bacteria, by boosting the host immune response through activation of intracellular pathways could 
be the answer. The integration of multidisciplinary approaches of repurposing currently FDA-approved drugs, 
with a targeted drug-delivery platform is a very promising option to reduce the long timeline associated with the 
approval of new drugs - time that cannot be afforded given the current levels of morbidity and mortality asso-
ciated with TB infection. The deficiency of vitamin A has been reported to be highly associated with the increased 
susceptibility of TB. All trans retinoic acid (ATRA), the active metabolite of vitamin A, has proven to be very 
efficacious against TB both in vitro and in vivo. In this review, we discuss and summarise the importance of 
vitamin A metabolites in the fight against TB and what is known regarding the molecular mechanisms of ATRA as 
a host-directed therapy for TB including its effect on macrophages cytokine profile and cellular pathways. 
Furthermore, we focus on the issues behind why previous clinical trials with vitamin A supplementation have 
failed, and how these issues might be overcome.   

1. Tuberculosis 

Ending Tuberculosis (TB) by 2030 was listed in the UN sustainable 
development goals as it kills more people globally than any other 
infection (Health – United Nations S, 2021). The COVID-19 pandemic is 
significantly impacting TB case-finding, management and access to 
treatment, leading to a drop in diagnosis and an increase in deaths 
compared with previous years. According to the latest 2021 World 
Health Organization (WHO) global TB report, 5.8 million people newly 
diagnosed with TB in 2020. In the same year 1.3 million HIV negative 
and 214,000 HIV positive people died from TB (Global tuberculosis 
repor, 2021). There is only one approved TB vaccine, the Bacille 
Calmette-Guérin (BCG) vaccine. A meta-analysis estimated that the 
BCG’s duration of protection in pediatric populations is generally up to 
10 years (Abubakar et al., 2013). The efficacy of the BCG vaccine against 

TB in adults is highly variable, ranging from 0 to 80% in different 
geographic locations (Mangtani et al., 2014). This sounds the alarm 
globally for the need of new treatment strategies to achieve the UN and 
WHO goals by 2030. 

Mycobacterium tuberculosis (Mtb), the causative microorganism of TB 
discovered by Robert Koch, is transmitted via inhalation of respiratory 
droplets containing Mtb bacilli, which are then phagocytosed by alve-
olar macrophages (AM) as well as other phagocytes. Mtb blocks phag-
olysosomal maturation, avoids destruction, and remains dormant inside 
the macrophage (Kiran et al., 2016; Pai et al., 2016). The host-mediated 
Th1 response involves granuloma formation which often results in 
containment of infection in healthy individuals, but not eradication of 
the infection – so-called latent TB infection (LTBI) (Saunders et al., 
1999). TB granuloma has been studied in the lungs of TB patients (Long 
et al., 1998) explant tissues (Tsai et al., 2006) animal models (Via et al., 
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2008) and in vitro models (Puissegur et al., 2004). These studies have 
found that Mtb-infected monocytes undergo differentiation into several 
cell types including mononucleated giant cells (MNGCs), macrophages 
and epithelioid cells. One the other hand, Mtb can continue to multiply 
causing cell rupture and bacterial dissemination to other parts of the 
lungs and body, leading to active TB disease which is considered as the 
contagious state (active TB) (Esmail et al., 2014). 

Standard treatment for TB includes an intensive phase consisting of 
two months of pyrazinamide (PZA), isoniazid (INH), rifampin (RIF), and 
ethambutol (EMB) followed by a continuation phase of 4 months of INH 
and RIF (Nahid et al., 2016). However, poor patient adherence can be an 
issue due to the long duration of treatment and the drugs’ side effects 
(Cohn, 2000), which can contribute to the rise of MDR strains. MDR-TB 
is defined as Mtb resistant to at least isoniazid and rifampicin. Treatment 
regimens of MDR-TB include the use of at least 5 drugs for 5–7 months in 
the intensive phase and 4 drugs in the continuation phase, with a total 
treatment duration of 15–21 months (Nahid et al., 2019). Extensive drug 
resistant TB (XDR-TB) is defined as resistance to rifampicin, isoniazid 
and the second line fluoroquinolones and aminoglycosides (Pai et al., 
2016). Thus, new TB treatment strategies should be considered to 
overcome the issue of drug resistance, increase the options available for 
these difficult-to-treat patients and improve regimen tolerance - thereby 
improving treatment adherence. 

2. Host directed therapy (HDT) for TB 

Despite an estimated one quarter of the world’s population having 
LTBI, only 10 million people had active TB infections in 2019 (R, 2020). 
Thus, the host immune system is capable of successfully controlling the 
infection in the majority of those infected and it should not be under-
estimated. The concept of HDTs describes therapeutic strategies that 
target host immune responses to augment beneficial features of fighting 
the bacteria and reduce harmful effects of tissue damage (O’Connor 
et al., 2016). The most attractive features of this treatment strategy are 
the lower potential of developing drug resistance by Mtb, the possibility 
to use a HDT as a vaccine adjuvant or as a prophylactic for close con-
tacts, and HDT’s potential to improve the overall pathology of TB dis-
ease by limiting excessive inflammation. 

Additionally, the repurposing of licensed medications as HDT is 
considered as a faster approach for market access and lowering indus-
trial development-related costs (Fatima et al., 2021; Oprea et al., 2011). 
In parallel with the interest in drug repurposing and HDT, there has been 
great interest in new drug delivery approaches to facilitate drug tar-
geting to the site of primary Mtb infection in the lungs and alveolar 
macrophages (Batalha et al., 2019; Kalombo et al., 2019; Dua et al., 
2018). A new chemical entity (NCE) can take up to 20 years to gain 
market authorisation under the current regulations. There has been a 
renewed focus on the benefits of drug repurposing as part of the global 
efforts to tackle COVID-19. The repurposing of approved drugs could be 
an answer to reduce the long drug development timelines that the TB 
community cannot afford. 

HDT for Mtb infection includes a number of pathways targeted by a 
broad range of compounds including but not limited to; autophagy in-
ducers such as rapamycin and the antihyperglycemic agent metformin 
(Coleman et al., 2018; Gutierrez et al., 2004; Singhal et al., 2014; 
Vashisht and Brahmachari, 2015), metabolic regulators such as the lipid 
lowering statins (Parihar et al., 2014), cytokine modulators (Murray, 
1994), corticosteroids (Critchley et al., 2013) and protein kinase in-
hibitors such as Imatinib (Napier et al., 2011). Clinical practice guide-
lines recommend multi-drug combination regimens to effectively treat 
TB, reduce the risk of relapse and reduce the development of resistance 
(Nahid et al., 2019). Therefore, any new HDT formulation could be 
considered as an adjunctive treatment to the current regimens. 

The host immune response to Mtb infection is very complex and 
many host functions that are important in the early stages are considered 
detrimental at later stages (Roca and Ramakrishnan, 2013). Genetic 

variation is also an important factor to be considered in the era of 
personalized medicine. These variations in host immunity may signifi-
cantly impact the response to HDT to a greater extent than classical 
antimicrobials (Tobin et al., 2012; Olaru et al., 2016). Thus, it is 
important to have a comprehensive understanding of the mechanisms of 
action of HDTs and their interaction with the host immune system in 
order to properly implement them in the current treatment regimens, 
and prevent any underestimation of their clinical effects. 

2.1. Vitamins as HDT 

It is well-known that TB is a disease of poverty that occurs mainly in 
low- and middle-income countries (R, 2020). Epidemiological evidence 
shows that nutritional status and body mass index affects the host 
response to TB (Tellez-Navarrete et al., 2021; Lonnroth et al., 2010). 
Similarly, the nutritional status of the host may be important for the 
efficacy of any manipulation of the host immune response. Micro-
nutrients are of great importance in the ability of the immune system to 
fight against microbes. Several promising HDT including vitamins have 
been studied for their ability to influence the host cell metabolism and 
gene regulation (Newton et al., 2020; Carlberg, 1999). In patients with 
Mtb infection, levels of vitamins A, C and E are lower than in healthy 
individuals, which leads to increased oxidative stress. Administration of 
these vitamins may reduce oxidative stress and reduce excessive 
inflammation and thereby support more favourable immune responses 
(Amaral et al., 2021; Kurutas, 2016). Vitamins B, C, E and A are 
considered as antioxidants that reduce cell damage caused by free rad-
icals (Mora et al., 2008). Pyridoxine (vitamin B6) is usually prescribed 
with isoniazid (INH) to reduce the risk of peripheral neuropathy (Snider, 
1980). Vitamin E might have a role in TB due to its anti-inflammatory 
effects which may also reduce tissue damage in TB lungs (Mora et al., 
2008). 

Vitamin derivatives are cheap, widely available and prescribed for 
many prophylactic and therapeutic indications. In the pre-antibiotic era, 
micronutrients in cod liver oil such as vitamin D and vitamin A were 
administered as anti-infective agents for many conditions including TB 
(Semba, 1999a). Vitamin D is a fat soluble endogenous vitamin that 
undergoes metabolism from 7-dehydrocholesterol to 25-dihydroxyvita-
min D3, then to 1,25-dihydroxyvitamin D3 (1,25D) and acts on the 
vitamin D receptor, heterodimerising with the nuclear retinoid X re-
ceptor family (RXR) (Mora et al., 2008). Vitamin D is currently licenced 
for treatment of osteoporosis and psoriasis (Leyssens et al., 2014). Lower 
vitamin D levels are associated with higher mortality in critically ill 
patients (Leaf et al., 2015). The antimycobacterial effects of vitamin D 
have been documented since the 1980s; Mtb infected human macro-
phages treated with (1,25D) showed slowed bacterial growth (Crowle 
et al., 1987). It exerts its antimicrobial activity via a 37-amino acid 
protein, called cathelicidin antimicrobial peptide (CAMP), generated by 
immune cells (Liu et al., 2007). It also exerts a host-protective effect by 
modulating the T-helper 1 (Th1) proinflammatory response which might 
be useful in avoiding excessive inflammation (Mora et al., 2008). 

3. Vitamin A deficiency as a risk factor for tuberculosis: 
Epidemiology and causes 

3.1. Epidemiology of vitamin A deficiency 

In developed, high resource settings such as Europe, dietary surveys 
indicate that few children or adults have a vitamin A intake lower than 
what is recommended (900 mcg for adult men and 700 mcg for adult 
women) (Mensink et al., 2013). Unsurprisingly, the sequelae of vitamin 
A deficiency (VAD), which are rarely seen in these settings, are usually 
the result of restrictive diets or malabsorption, and are the subject of 
case reports (Lin et al., 2011; Simkin et al., 2016). It is estimated that 
1.1% of all global mortality, and 1 in 5 deaths from diarrheal illness are 
attributable to VAD. Likewise, 1.5% of global disability adjusted life 
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years have been attributed to VAD. VAD causes xerophthalmia and is the 
leading cause of acquired blindness in children. Night-blindness affects 
2% of African and 0.5% of South East Asian children (Organization, 
2009; Sommer and Vyas, 2012; Sherwin et al., 2012). 

Vitamin A has a central role in development, growth, cell prolifera-
tion, epithelial integrity, and immunity (Wiseman et al., 2017). 
High-risk populations are those in low resource settings where crop 
yields and infrastructure are poor, where diets are low in fat and where 
populations depend on rice, which lacks carotenoids. Within these 
populations, young children following weaning, and pregnant women 
are at particularly high risk given their increased requirements (Orga-
nization, 2009; Sherwin et al., 2012). Consequently, high-dose vitamin 
A supplementation is recommended by the World Health Organization 
for all children aged 6–59 months and pregnant women in settings 
where vitamin A deficiency is prevalent (Guideline: vitamin A supp, 
2021; O recommendations on an, 2021). In fact, meta-analyses evalu-
ating the efficacy of vitamin A supplementation in these children have 
estimated a relative risk reduction in all-cause mortality of about one 
quarter (Imdad et al., 2011; Mayo-Wilson et al., 2011). Vitamin A sup-
plementation is also recommended in the treatment of severe acute 
malnutrition, as it reduces mortality (Organization, 2021). 

3.2. Vitamin A deficiency in infectious diseases 

Plasma retinol levels are lower in patients with infectious disease 
rather than other disease types (Chau et al., 2000). Whether this is a 
cause or an effect of infection (or more likely both) is difficult to unpick. 
As discussed above, supplementation has successfully reduced 
infection-related mortality in certain populations, which supports the 
hypothesis that VAD results in immune dysfunction and infection 
(Imdad et al., 2011; Mayo-Wilson et al., 2011). However, inflammation 
also reduces plasma retinol and retinol binding protein-4 (RBP4) levels 
(Larson et al., 2017; Louw et al., 1992). Retinol is excreted in the urine of 
patients with infections (Alvarez et al., 1995; Stephensen et al., 1994) 
and certain infections, giardiasis or ascariasis for example, might reduce 
intestinal absorption of vitamin A (Al-Mekhlafi et al., 2010; de Gier 
et al., 2014). Also, in the absence of inflammation, low circulating 
retinol levels only reflect liver vitamin A stores when they are severely 
depleted, making its interpretation more difficult (Larson et al., 2017). 

Notwithstanding, hyporetinolaemia and VAD have been associated 
with many types of infections: a large, prospective, longitudinal cohort 
study of Colombian children found significant relationships between 
plasma retinol levels and reductions in the risks of gastroenteritis, res-
piratory tract infections, otitis and need for medical attention (Thornton 
et al., 2014). VAD is associated with an increased severity of measles 
infection. A Cochrane systematic review found that two doses of vitamin 
A significantly reduced the mortality of young children with measles 
(Frieden et al., 1992; Yang et al., 2005). Hyporetinolaemia was not 
associated with progression of HIV infection in the 1990s, but is an in-
dependent predictor of non-response to interferon therapy for Hepatitis 
C virus infection, unlike vitamin D (Bitetto et al., 2013; Tang et al., 
1997). Giardiasis, ascariasis, or infection with any soil-transmitted 
helminth have repeatedly been found to be associated with VAD 
(Al-Mekhlafi et al., 2010; de Gier et al., 2014; Suchdev et al., 2014). 
While retinol supplementation supports host anti-helminthic cytokine 
responses in children with Ascaris infections, routine supplementation 
following deworming does not appear to reduce reinfection rates or 
intensity in endemic settings (Long et al., 2006; Al-Mekhlafi et al., 
2014). Oh et al., report that VAD was significantly more prevalent in 
patients with pulmonary nontuberculous mycobacterial disease than 
healthy controls (Oh et al., 2019). 

3.3. Vitamin A deficiency in active tuberculosis 

Many case-control studies have found an association between TB and 
low retinol levels or VAD. These studies have a wide geographic spread, 

and were undertaken in South Korea (Oh et al., 2017), Ethiopia (Keflie 
et al., 2018), India (Ramachandran et al.), Tanzania (Mugusi et al., 
2003) and South Africa (Plit et al., 1998). While our understanding of 
vitamin A’s immunological role and promising in vitro results suggest a 
direction of causality, the systemic inflammatory responses of TB pa-
tients complicate the interpretation of these case-control studies as 
providing strong evidence for VAD causing TB-risk. However, two 
important prospective cohort studies following high-risk groups over 
time lend strong support to the theory that hyporetinolaemia is a risk 
factor for active TB. Aibana et al., followed 6751 HIV-negative house-
hold contacts (HHCs) of TB cases in Peru for one year. Even after 
adjusting for many confounders, the authors found that HHCs with 
baseline VAD had more than a 10-fold increased risk of developing TB, 
or 20-fold for those aged between 10 and 19 years. Notably, there was a 
stepwise increase in TB risk with each vitamin A quartile, even for 
contacts who were not deficient (Aibana et al., 2017). In addition, 
Tenforde and colleagues followed HIV positive patients starting antire-
troviral therapy (ART) in nine countries. When comparing those who 
developed active TB within 96 weeks, and after adjusting for con-
founders, pre-ART VAD was associated with a 5.3 hazard ratio of 
developing active TB. This risk remained significant even after adjusting 
for Vitamin D status (Tenforde et al., 2017). Two studies have investi-
gated the association of vitamin A deficiency and severity of TB diseases. 
In Indonesia, a cross sectional study of 300 smear positive TB patients, 
found VAD in 64% of patients with severe disease but only 37% of pa-
tients with mild disease (Pakasi et al., 2009). However, in Morocco, 
Qrafli et al., examined 44 smear positive TB cases and did not find an 
association between plasma retinol and TB disease severity (Qrafli et al., 
2017). 

In summary, multiple lines of evidence suggest that infection is 
associated with hyporetinolaemia and that, reciprocally, VAD is asso-
ciated with an increased risk of several infections affecting the respira-
tory or gastrointestinal mucosa in children, and an increased risk of 
acquiring active tuberculosis in adults. Randomised controlled trials 
that intervene to correct VAD and measure the incidence of active TB are 
needed to determine if VAD is causally associated with TB and if 
correction of VAD is a clinically effective prophylactic strategy for TB. 
These trials could focus on high-risk groups with VAD such as patients 
starting antiretroviral therapy for HIV, as studied by Tenforde et al. 
(2017), or household contacts of TB cases, as studied by Aibana et al. 
(2017). Indeed, supplementation of vitamin A should be trialed irre-
spective of vitamin A status given the inverse correlation between 
baseline serum retinol level and risk of active TB even among 
non-deficient contacts. 

4. Vitamin A metabolism 

4.1. Vitamin A absorption & storage 

Dietary vitamin A takes the forms of preformed retinoids, retinol or 
retinyl esters, found in animal food sources and pro-retinoid caroten-
oids, such as β-carotene found in plant food sources. Vitamin A ab-
sorption is negatively correlated with fever (Aklamati et al., 2010). 
Retinyl esters are converted to retinol in the intestinal lumen and ca-
rotenoids are converted to retinol in enterocytes. Retinol is then ester-
ified in the enterocyte by lecithin retinol acyltransferase (LRAT) and 
secreted in chylomicrons into circulation via the lymphatic system – a 
process important to host defense in a murine model of TB infection 
(Blaner et al., 2016; Li et al., 2014; Kono and Arai, 2015; Trasino et al., 
2020). Hepatocytes endocytose circulating chylomicron remnants. 
Retinol-binding protein 4 (RBP4) is synthesised in hepatocytes and binds 
to retinol in the endoplasmic reticulum, at which point retinol-RBP4 is 
either shipped to stellate cells for storage or secreted into circulation for 
transport to target tissues (Kono and Arai, 2015). Almost all of the 
body’s total retinoid is stored in hepatic stellate cells in retinyl ester 
form (Blaner et al., 2016; Li et al., 2014). 
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4.2. Vitamin A transport 

There are several pathways through which retinol is delivered to 
target tissues, including as dietary retinoids in chylomicrons (before 
liver processing) or as liver-secreted retinyl esters bound to VLDL (Bla-
ner et al., 2016; Steinhoff et al., 2021). However, nearly all of circulating 
retinoids are in the form of retinol bound to Retinol Binding Protein 4 
(RBP4) and a second protein, transthyretin (TTR) in a 1:1 ratio (Blaner 
et al., 2016; Li et al., 2014). RBP4 is a 21 kDa lipocalin protein that 
chaperones hydrophobic retinol in the circulation (Berry et al., 2012a, 
2012b) (Fig. 1). RBP4 is required for deployment of liver retinoid stores, 
and retinol is required for the secretion of RBP4 from hepatocytes 
(Blaner et al., 2016). Low circulating RBP4 levels can indicate VAD, 
however only after liver stores are depleted (Li et al., 2014). RBP4 
mutations are associated with visual defects, obesity, cardiovascular 
disease and hypertriglyceridemia (Steinhoff et al., 2021). RBP4 is a 
negative acute phase response protein that is downregulated in 
inflammation, such as in the postoperative period (Louw et al., 1992). 
Retinol and RBP4 were inversely correlated with CRP in Cameroonian 
women and children, but positively correlated with haemoglobin 

(Engle-Stone et al., 2011). This complicates the interpretation of retinol 
or RBP4 levels as indicators of vitamin A sufficiency or deficiency in 
inflammatory states. Unsurprisingly, RBP4 levels are lower in TB pa-
tients (Keicho et al., 2012). A recent proteomic study by Jarsberg et al., 
found that in African patients, TTR levels improved faster with TB 
treatment than RBP4, which depends on liver retinoid stores for its 
secretion. This suggests that vitamin A deficiency, and not just the in-
flammatory response, causes low RBP4 in this group of TB patients 
(Jarsberg et al., 2021). In the inflammatory state, another 
retinol-binding protein may take over the function of RBP4: Serum 
amyloid A (SAA) was shown to be responsible for transport of retinol to 
myeloid cells during bacterial infection (Hu et al., 2019; Derebe et al., 
2014). SAA delivers retinol to RA-producing intestinal myeloid cells, 
where it binds to the transmembrane receptor LRP1 (Bang et al., 2021). 

Another, unexplored factor that may reduce retinol-RBP4 levels in 
TB patients is urinary excretion. While only trace amounts are excreted 
in healthy adults and children, substantial quantities are excreted in 
patients with fever, pneumonia, sepsis and rotaviral diarrhea (Alvarez 
et al., 1995; Stephensen et al., 1994). RBP4 levels are also correlated 
with obesity, hepatic steatosis, triglyceride levels and VLDL-cholesterol 

Fig. 1. Vitamin A is delivered to target cells in several ways: Retinyl esters (in green) can be delivered within chylomicrons post-prandially or within liver-secreted 
VLDL. Retinoic acid (in red), can be produced by neighbouring cells and delivered, bound to albumin. However, 90% of all circulating retinoids are in the form of 
retinol (in blue), bound to RBP4 and TTR. Retinol can diffuse freely across cell membranes or in certain cells, following dissociation of TTR, can also be channelled 
through the surface receptor STRA6, which triggers a JAK-STAT3/5 signalling cascade. Intracellularly, retinol is bound to Cellular Retinol Binding Protein (CRBP), 
which also binds retinal (in purple). If not esterified by LRAT, retinol can be reversibly oxidised to retinal by short-chain dehydrogenases or alcohol dehydrogenases. 
Retinal can then be irreversibly oxidised to retinoic acid by members of the aldehyde dehydrogenase 1a family. ATRA (in red), the predominant isoform of retinoic 
acid, is bound to Cellular Retinoic Acid Binding Protein 1 or 2 (CRABP1, CRABP2), or Fatty Acid Binding Protein 5 (FABP5). CRABP1 preferentially delivers ATRA to 
Cytochrome P450 26 (CYP26) for degradation to polar metabolites, whereas CRABP2 delivers ATRA to its primary nuclear receptor, the RAR:RXR heterodimer, to 
activate transcription of its target genes. If the ratio of FABP5 to CRABP2 is high, ATRA is preferentially delivered to an alternative nuclear receptor, the PPARδ/β: 
RXR heterodimer. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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levels. In obese patients undergoing bariatric surgery, weight loss was 
independently associated with a reduction in RBP4 (Broch et al., 2010; 
Stefan et al., 2007; von Eynatten et al., 2007). While weight loss is 
emblematic of TB disease, and it is tempting to hypothesise that 
TB-induced weight loss is another factor reducing circulating 
retinol-RBP4, these cohorts are quite distinct. 

Transthyretin (TTR) is a 55 kDa protein that prevents renal excretion 
of retinol-RBP4 by binding the complex in circulation (Steinhoff et al., 
2021; Berry et al., 2012a). Interestingly, TTR also serves as a transporter 
of thyroxine and tri-iodothyronine. Like RBP4, TTR is a negative acute 
phase protein that is suppressed in inflammatory states. Agranoff et al., 
analysed the serum of 179 culture-confirmed TB cases and 170 controls 
with other inflammatory or infectious conditions. They found that TTR 
was one of the most discriminatory proteins between cases and controls 
(Agranoff et al., 2006). 

4.3. Vitamin A cell entry 

TTR needs to dissociate with the retinol-RBP4 complex before the 
retinol-RBP4 complex can associate with its cell surface receptor 
(STRA6). STRA6 binds RBP4, and facilitates the transmembrane chan-
nelling of retinol to an intracellular acceptor, the cellular retinol binding 
protein (CRBP) (Kono and Arai, 2015; Steinhoff et al., 2021). 
Retinol-RBP4 also phosphorylates STRA6, triggering a signalling 
cascade that ends in STAT3 and STAT5 activation and SOCS3 signalling 
(Fig. 1). This retinol-RBP ‘sensing’ is thought to underlie the known link 
between vitamin A homeostasis and insulin resistance, and represents an 
effector pathway of vitamin A in addition to those mediated by retinal 
and retinoic acid (Muenzner et al., 2013; Berry et al., 2011). However, 
most cellular uptake of retinol from the retinol-RBP4-TTR complex is not 
through STRA6, and retinol is thought to diffuse freely across the cell 
membrane (Berry et al., 2011). In fact, while retinol has beneficial 
anti-TB effects in human monocyte-derived macrophages (MDM), they 
do not express STRA6 (Coleman et al., 2018; Norseen et al., 2012). As 
STRA6 is not necessary for cellular entry of retinol, its primary function 
is thought to be that of ‘sensing’ and signalling (Berry et al., 2011). 

4.4. Enzymes involved in vitamin A metabolism 

While retinol itself is inert, its metabolite retinal is essential for 
vision and its metabolite retinoic acid exerts many effects by activating 
nuclear receptors in its target cells. These active metabolites are man-
ufactured in situ in target cells from retinol, or alternatively retinoic acid 
diffuses from neighbouring cells. Retinoic acid has three isoforms: all- 
trans retinoic acid (ATRA), 9-cis RA and 13-cis RA, with ATRA being 
the most abundant and active isoform (Gonçalves et al., 2019). These 
metabolites are produced in a two-step oxidation reaction in the target 
tissues. Firstly, retinol is reversibly oxidised to retinal by the widely 
expressed alcohol dehydrogenases (ADH), and short-chain dehydro-
genase/reductases (SDR) when retinol is protein-bound (Blomhoff and 
Blomhoff, 2006). Secondly, members of the aldehyde dehydrogenase 
(ALDH) family irreversibly oxidise retinal to ATRA or its isomers. These 
include ALDH1a1, ALDH1a2 and ALDH1a3 (Fig. 1). While oxidation of 
retinol to retinal is not tissue restricted, the tissue-specific expression of 
the ALDH1a enzymes determines which tissues are capable of producing 
vitamin A’s active metabolites (Duester et al., 2003; Isoherranen and 
Zhong, 2019; Stevison et al., 2015). 

There is some evidence suggesting that human macrophages express 
these enzymes and are capable of producing ATRA. DHRS9, an SDR, is 
highly expressed in regulatory macrophages that suppress T cell prolif-
eration, and reduced in interferon gamma-stimulated macrophages 
(Riquelme et al., 2017). In keeping with this, the expression of DHRS9 
and ALDH1a2 were significantly lower in caseous TB lung tissue than in 
unaffected tissue, although the cells expressing these enzymes were not 
identified (Kim et al., 2019). In a rabbit model of TB infection, ALDH1a2 
was significantly reduced in lung tissue following infection (Kim et al., 

2019). Similarly, mice infected with Trichuris muris had reduced ALDH 
activity in their intestinal macrophages (Erkelens and Mebius, 2017). 
ALDH1a2 expression was detected in alternatively activated macro-
phages in murine liver during Schistosoma mansoni infection and IL-4 
also induced its expression in peritoneal macrophages in vivo and in 
bone marrow derived macrophages (BMDM) in vitro (Broadhurst et al., 
2012). Niu et al. reported that resting murine BMDM do not express 
ALDH1a1, ALDH1a 2 or ALDH1a 3 but rather synthesise ATRA using the 
enzyme ALDH3b1 (Niu et al., 2016). Human intestinal macrophages 
express ALDH1a1 and ALDH1a2, but not ALDH1a3 (Sanders et al., 2014; 
Denning et al., 2011). ALDH1a activity was detected in human alveolar 
macrophages using a low-specificity Aldefluor assay (Coleman et al., 
2013). Overall, there is a paucity of data identifying which vitamin 
A-metabolising enzymes are expressed in the human macrophage 
populations. 

Blocking the oxidation of retinol to ATRA in human macrophages 
with the ALDH inhibitor N,N-diethylaminobenzaldehyde (DEAB) un-
dermines their ability to kill Mtb (Coleman et al., 2018). Enhancing the 
cellular production of ATRA in human macrophages by increasing the 
expression of these enzymes may benefit the host response to Mtb, 
acting as a HDT. ALDH1a-family enzyme induction by IL-4, GM-CSF and 
PPAR-γ agonists has been observed in human monocyte-derived den-
dritic cells (DCs) (Kim et al., 2019; Agace and Persson, 2012; Gyöngyösi 
et al., 2013). This approach may be constrained by a negative feedback 
inhibition of ATRA on ALDH1a1 expression (Ito et al., 2014). 

4.5. Carrier proteins 

Intracellular retinoid-binding proteins chaperone the hydrophobic 
retinoids in the cytosol. Cellular Retinol-Binding Proteins (CRBP) bind 
retinol and retinal. Cellular Retinoic Acid-Binding Proteins, ubiquitous 
CRABP1 and more selectively-expressed CRABP2, bind ATRA (Bushue 
and Wan, 2010). CRABP2 is expressed in human MDMs (Kreutz et al., 
1998). It has been suggested that the expression of these carrier proteins, 
and not the oxidation enzymes, is the rate-limiting step in the production 
of ATRA (Niu et al., 2016). In addition, there is evidence to suggest that 
the relative expression of CRABP1, CRABP2 and fatty acid binding 
protein 5 (FABP5) may determine the fate of ATRA – whether it is 
degraded and which nuclear receptors are activated. In summary, 
CRABP1 may target ATRA for degradation by cytochrome P450 en-
zymes, CRABP2 delivers ATRA to the Retinoic acid receptor (RAR) nu-
clear receptor and FABP5 delivers ATRA to the PPAR δ/β nuclear 
receptor (Al Tanoury et al., 2013; Larange and Cheroutre, 2016; Napoli, 
2017). PPAR-γ agonists increase CRABP2 expression, and thus may in-
crease the protective effects resulting from ATRA delivery to the RAR 
receptor (Gyöngyösi et al., 2013) (Fig. 1). 

4.6. Degradation by cytochrome P450 

ATRA is degraded to polar metabolites by members of the Cyto-
chrome P450 26 family (CYP26A1, CYP26B1 and CYP26C1) (Iso-
herranen and Zhong, 2019; Guo et al., 2015) (Fig. 1). The expression of 
these enzymes is strongly increased by ATRA, which may cause 
treatment-resistance if ATRA is used as a HDT (Chen et al., 2019). CYP26 
inhibitors used alone, or in combination with ATRA, are worth consid-
ering when exploring ATRA as a HDT for Mtb. 

5. ATRA as a promising host directed therapy for TB 

Vitamin A cannot be synthesised de novo in the body and must be 
obtained from diet (Palace et al., 1999). All trans retinoic acid (ATRA), 
known as Tretinoin, is the active metabolite of vitamin A. Tretinoin is 
currently used as treatment for acne and acute promyelocytic leukaemia 
(APL) (Alizadeh et al., 2014). Our lab has previously reported that 
human alveolar macrophages display ALDH1a activity and produce 
ATRA and this induces FoxP3+ regulatory T-cells that supress 

A.Z. Bahlool et al.                                                                                                                                                                                                                              



Current Research in Immunology 3 (2022) 54–72

59

inflammation and thus reduce unwanted tissue damage caused by the 
immune system (Coleman et al., 2013). Three vitamin A metabolites; 
ATRA, 13-cis retinoic acid and retinyl acetate resulted in dose-dependent 
inhibition of the growth of several mycobacterium species in vitro. ATRA 
and 13-cis retinoic acid were the most effective against Mtb (Greenstein 
et al., 2012). One of the earliest reports of the role of retinoic acid in TB 
was in 1989, and showed that RA was bacteriostatic against Mtb in 
human MDMs if added before infection at physiologic concentration or 
at pharmacological concentrations after infection (Crowle and Ross, 
1989). 

Retinoids regulate gene transcription which is mediated by binding 
to RAR and RXR (Huen and Kim, 2015). Each family of these receptors is 
associated with three subtypes (alpha, beta, gamma) and each one of 
them can present in several isoforms (Das et al., 2014). Human RARs can 
be activated by the ligands all-trans RA, 9-cis RA, 13-cis RA, etretinate 
and acitretin, while the ligands for human RXRs are only 9-cis RA and 
bexarotene (Huen and Kim, 2015). RXRs can form homodimers or het-
erodimers with RAR and other receptors such as vitamin D receptor 
(VDR), bile acids Farnesoid X Receptor (FXR) and fatty acids peroxi-
somal proliferator activated receptors (PPAR) (Bushue and Wan, 2010). 
Therefore, several signalling pathways can be activated. The RAR/RXR 
heterodimer is mainly responsible for the biological activity of RA and it 
is believed that most of the RA effects are mediated by this receptor 
dimer (Lei and De Thé, 2003). The RXR-RAR heterodimers bind to 
certain retinoic acid responsive elements (RAREs) located in target gene 
promoters and regulate gene expression (Rochette-Egly and Chambon, 
2001; Chatagnon et al., 2015; Rochette-Egly and Germain, 2009). In 
addition to the genomic mechanisms, non-genomic mechanisms of RA 
have been discussed. Studies have reported that RA can activate ERK1/2 
kinases (Bruck et al., 2009; Waetzig et al., 2019; Cañón et al., 2004) 
which may have a role in cytoskeletal rearrangement and neurite 
outgrowth (Pan et al., 2005). Also, retinoylation (RA acylation) - a 
post-translational alteration of proteins by eukaryotic cells (Das et al., 
2014) which may have a role in cell differentiation (Takahashi and 
Breitman, 1989). 

5.1. Mechanisms of action 

RA can act on many different cells of both the innate and adaptive 
immune systems (Oliveira et al., 2018). For example, RA may induce 
proinflammatory cytokines production by DCs, which promotes the 
differentiation of effector T cells (Hall et al., 2011a). In natural killer 
(NK) cells, RA suppresses the human NK cell cytotoxicity activated by 
IFN-α (Abb et al., 1982). RA is essential for B cell production of IgA 
antibodies playing a multifactorial role in mucosal immunity (Mora 
et al., 2006). ATRA also inhibits the production of the proinflammatory 
cytokines TNF-α and IL-12 and potentiates IL-10 production in the 
THP-1 monocyte cell line and human cord blood mononuclear cells 
(CBMCs) (Wang et al., 2007). The effects of ATRA on T cells seem to be 
dependent on the cytokine milieu. In the steady state ATRA functions, in 
combination with TGFβ, to maintain homeostasis and tolerance through 
the induction of regulatory T-cells (T-regs). However, in a 
pro-inflammatory microenvironment ATRA can tip the balance in favour 
of Th17 and Th1 or Th2 T cell responses (Erkelens and Mebius, 2017; 
Hall et al., 2011b). In this section, we will discuss the effects that ATRA 
exerts on macrophages during TB infection. 

5.2. Promoting autophagy 

It has been previously reported that ATRA promotes autophagy in 
promyelocytic leukaemic cells (Trocoli et al., 2011). Mtb infection in-
hibits autophagic flux in human macrophages (Petruccioli et al., 2012). 
ATRA also promotes autophagy in human macrophages infected with 
Mtb, which results in increased bacterial clearance, by enhancing 
colocalisation of Mtb with autophagic vesicles and acidified lysosomes. 
The same effect was reported when ATRA precursors retinol and retinal 

were used, which was due to their metabolism into ATRA (Coleman 
et al., 2018). The normal level or serum retinol is 0.7–2.8 μmol per liter 
(Michaëlsson et al., 2009). Exposure to ATRA (5 μM) in the absence of 
macrophages had no effect on Mtb growth in comparison to control, 
which indicates that the antimycobacterial effect of ATRA is based on 
the signalling within the cell and it is not directly toxic to Mtb at this 
concentration (Coleman et al., 2018). However higher doses of ATRA 
(13.3 μM, 4 μg/mL) can directly inhibit growth of mycobacteria 
(Greenstein et al., 2014). 

TANK-binding kinase 1 (TBK1), is important for autophagic clear-
ance of Mtb, it can regulate type I interferon response induced by dsDNA 
(Pilli et al., 2012). The STING/TBK1/IRF3 pathway is activated by Mtb 
via cytosolic sensing of its DNA (Manzanillo et al., 2012). ATRA’s 
antimycobacterial effect is autophagy dependent and inhibition of 
autophagy, by blocking TBK1, prevented killing of Mtb (Saitoh et al., 
2009). Blocking the canonical autophagy pathway resulted in reduced 
co-localisation of Mtb bacilli with lysosomes and thus reduced the 
antimycobacterial ability of ATRA. The data indicates that ATRA 
enhanced the ability of human macrophages to kill Mtb by autophagy 
and is dependent on PI3 kinase and Beclin-1 (Coleman et al., 2018). 
Interestingly, the vaccine strain of M. bovis, BCG, was found to be 
resistant to killing by ATRA (Coleman et al., 2018). Mtb expresses the 
ESX1 secretory system which secretes ESAT-6 allowing bacterial dsDNA 
to escape from phagosomes and be detected by cytosolic DNA sensors 
whereas BCG lacks ESX1 and thus remains undetected (Davenne and 
McShane, 2016). (Fig. 2) (Table 1). 

5.3. Reducing intracellular cholesterol and inducing lysosomal 
acidification 

Host-derived lipids (cholesterol and fatty acids) play an important 
role in the interaction between immune cells and Mtb (Brzostek et al., 
2009; KM et al., 2018). In caseous TB granuloma, genes that are 
involved in lipid metabolism and cholesterol accumulation are upre-
gulated (Kim et al., 2010). Moreover, the presence of foamy macro-
phages in granulomata and host hypercholesterolemia are correlated 
with poor protection against Mtb (Martens et al., 2008; Gatfield and 
Pieters, 2000). Persistence of Mtb within macrophages is dependent on 
cholesterol – an important nutrient for the bacteria (Griffin et al., 2011, 
2012). Moreover, Mtb utilises host lipids to reduce metabolic stress 
which affects pathogen virulence and immunogenicity (Koo et al., 2012; 
Lee et al., 2013). Accumulation of lipids in lysosomes changes the 
lysosome microenvironment by altering its pH to favour Mtb survival 
(Cox et al., 2007). 

ATRA is known to induce cholesterol efflux in macrophages (Costet 
et al., 2003; Escher et al., 2003). During Mtb infection ATRA reduces the 
total cellular cholesterol concentration in macrophages, which is 
thought to contribute to its antimicrobial activity (Wheelwright et al., 
2014a). Mutations in NPC2, which is a lysosome-to-endoplasmic retic-
ulum lipid transporter, are the cause of Niemann-Pick disease, a lyso-
somal lipid storage disorder that is characterised by increased 
intracellular cholesterol accumulation (Newton et al., 2020). NPC2 
expression is decreased in caseous TB granuloma and Mtb infected cells. 
Treatment with ATRA is associated with increased expression of NPC2, 
which leads to lower cholesterol content and lysosomal acidification in 
monocytes and MDMs. The loss of NPC2 expression or inhibition of 
cholesterol efflux, induced cholesterol accumulation inside the cell and 
ablated ATRA-induced antimicrobial activity (Wheelwright et al., 
2014a). Retinoic acid can also signal through PPAR-β-RXR heterodimers 
and may alter lipid metabolism and glucose homeostasis – variables 
known to be important in cellular TB host defense (Mora et al., 2008). 
Also, ATRA shifts the metabolism of LPS-activated MDMs toward 
glycolysis, leading to the activation of NLRP3 inflammasome which is 
required for the production of IL-1β (Alatshan et al., 2020). A recent 
paper used Mtb CRISPR interference screening in a human macrophage 
infection model to identify the Mtb genes required to survive in 
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ATRA-treated macrophages, and showed that ATRA treatment starves 
Mtb of cholesterol and its downstream metabolite propionyl coenzyme 
A. ATRA did this in part by upregulating macrophage expression of 
ABCA1 and ABCG1, two cholesterol efflux pumps that have previously 
been shown to be upregulated in human MDMs by ATRA (Costet et al., 
2003; Babunovic et al., 2022). (Fig. 2) (Table 1). 

5.4. Synergy between ATRA and vitamin D 

ATRA and vitamin D are basic components of a healthy diet and have 
been shown to be linked to a protective immune response against TB 
(Coleman et al., 2018; Liu et al., 2007). The combination of ATRA and 
vitamin D has many biological effects on myeloid cells in vitro including 
enhancing the levels of DC-SIGN molecule, which is important for Mtb 
uptake by human DCs and antigen presentation to T-cells (Tallieux et al., 
2003). The combination also increases expression of mannose receptors 
and decreases Mtb growth by inducing reactive oxygen species (ROS) 
and autophagy in human THP-1 macrophages (Estrella et al., 2011a). In 
addition to increased expression of antigen presenting and chemotactic 
receptors, a multinucleated giant cell (MNGC) phenotype was induced 
in the THP-1 cells treated with vitamin D and ATRA, in addition to 
enhanced localisation of Mtb in protease rich lysosomal compartments 
that hinder bacterial replication was observed (Estrella et al., 2011a). 
Interestingly, we observed a similar MNGC phenotype in THP-1 cells 
stimulated with ATRA alone, with or without Mtb infection (O’Connor 

et al., 2019). 
Mtb resides inside a tryptophan aspartate containing coat protein 

(TACO) -coated stable phagosome that prevents phagosome lysosome 
fusion in macrophages (Ferrari et al., 1999). Cholesterol mediates the 
phagosomal association of TACO protein that prevent degradation of 
Mtb in lysosomes (Gatfield and Pieters, 2000). The synergistic activity of 
both vitamins have the ability to downregulate the expression of TACO 
gene in human macrophages (Anand and Kaul, 2003). Another study has 
revealed that the combination of chenodeoxycholic acid (CDCA) with 
retinoic acid had the ability to downregulate TACO gene transcription, 
through FXR/RXR pathway in which the two receptor heterodimerise 
and cause downregulation of TACO protein and phagolysosomal matu-
ration, which led to poor intracellular survival of Mtb (Anand and Kaul, 
2005) (Fig. 2). 

5.5. Regulation of Nitric oxide (NO) and surface receptors in 
macrophages 

Nitric oxide plays an important role in the control of chronic Mtb 
infection by stimulating heat-shock protein (HSP) production which 
starts the stationary phase of Mtb growth (Ryndak et al., 2015; Cun-
ningham-Bussel et al., 2013). The Mtb-infected phagosome has less 
iNOS activity and reduced respiratory burst capacity (Tomioka et al., 
2012; Banerjee and Bhattacharyya, 2014). Macrophages express several 
receptors that mediate cross-talk with T-cells -such as HLA-DR which 

Fig. 2. ATRA’s mechanisms of action as a HDT against Mtb. (A) Mtb is phagocytosed by macrophages and contained in phagosomes but survives by utilising host- 
derived cholesterol and iron for its metabolism and inhibiting fusion with lysosomes. (B) ATRA increases macrophage expression of a key pro-autophagy protein, 
Beclin-1. ATRA also reduces the expression of tryptophan–aspartate containing coat protein (TACO) and IL-10 and increases the expression of cytokines IL-1β and 
TNF⍺. These factors enable phagolysosomal maturation. (C) ATRA upregulates macrophage expression of multiple cholesterol efflux pumps, such as NPC2, ABCA1 
and ABCG1. NPC2 shuttles cholesterol from lysosomes to the endoplasmic reticulum, increasing lysosomal acidity. (D) ABCA1 and ABCG1 reduce intracytoplasmic 
and intraphagosomal cholesterol concentrations. This starves Mtb of its fuel source, reducing its ability to synthesise ATP. (E) ATRA reduces macrophage intracellular 
iron concentrations, reducing the availability of a key Mtb nutrient, and increases cellular NOS production. (F) ATRA increases macrophage HLA-DR expression, 
increasing their ability to present Mtb antigens to T helper cells. (G) ATRA induces maturation and functional depletion of regulatory MDSCs. (H) ATRA increases 
dendritic cell expression of DC-SIGN, augmenting their antigen-presentation ability. (I) ATRA leads to isotype switching of IgA antibodies in B cells. (J) ATRA in-
creases the counts of CD4+ and CD8+ T cells in vivo and regulates CD4+ polarisiation. 
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Table 1 
In vitro and in vivo studies of ATRA as a HDT against Mtb.   

Author ATRA Dose (Route) Mycobacterial 
Strain Used 

Cell Type or Animal Findings Ref 

In Vitro Coleman et al. ATRA 5 × 10− 6 M H37Ra 
BCG 

Murine BMDM 
Human MDM 

Promotion of autophagy 
Reduced Mtb burden 

23 

Crowle et al. ATRA 1 × 10− 5 M Mtb Erdman (ATCC 35801) Human MDM Reduced Mtb burden 131 
Wheelwright et al. ATRA 1 × 10− 8 M H37Ra 

H37Rv 
Human monocytes 
Human MDM 

Reduced intracellular cholesterol 
Reduced Mtb burden 

169 

Babunovic et al. ATRA 1, 10 × 10− 6 M H37Rv Murine BMDM, 
THP-1, Human MDM 

Reduced intracellular cholesterol 
Reduced Mtb burden 

171 

Estrella et al. ATRA 1 × 10− 6 M with vitamin D3 H37Ra 
H37Rv 

THP-1 Increased antigen presentation 
Promotion of autophagy 
Increased ROS production 
Reduced Mtb burden 

173 

Anand et al. ATRA 0.5 × 10− 6 M with chenodeoxycholic acid H37Rv THP-1 Promotion of autophagy 
Reduced Mtb burden 

177 

Abd-Nikfargam et al. 13-cis-RA 
500–2000 × 10− 6 M 

H37Ra U937 Increased antigen presentation 
Increased NO production 
Reduced Mtb burden 

184 

O’Connor et al. ATRA 17 × 10− 6 M H37Ra THP-1 Reduced IL-10 
Reduced Mtb burden 

174 

In Vivo O’Connor et al. ATRA 2.5 mg/kg (intratracheal) H37Rv BALB/c mice Reduced pathology 
Reduced Mtb burden 

174 

Yamada et al. ATRA 1 g/kg (oral) H37Rv LEW/CrlCrlj rats Reduced pathology 
Reduced Mtb burden 
Increased CD4, CD8 T cells 
Increased TNFɑ, IL-1β 

193 

Mourik et al. ATRA 2 mg/kg (subcutaneous) with vitamin D3 and α-Galactosylceramide H37Rv BALB/c mice Reduced Mtb burden 
Reduced relapse 
Increased CD8 T cells, Reduced MDSCs 
Increased TNFɑ 

199 

Knaul et al. ATRA 5 mg pellet (subcutaneous) H37Rv 
BCG 

C57BL/6 mice 
129S2 mice 

Reduced MDSCs 
Reduced Mtb burden 
Increased CD4, CD8 T cells 

209 

Riccomi et al. ATRA 300 μg (oral) with subunit vaccine H37Rv 
BCG 

CB6F1 mice Increased CD4 T cells 
Increased mucosal IgA 
Increased IFNγ, IL-17 
Limited later inflammation 

224  
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plays a major role in presentation of antigen to helper T cells (Lekkou 
et al., 2004) - and other receptors that bind Mtb cell wall components, 
altering cytokine secretion. For example, CD14 which may make mac-
rophages more responsive to chemokines enabling bacterial detection by 
the immune system (Estrella et al., 2011b). Treatment with 13-cis reti-
noic acid, the isomer and prodrug of ATRA, led to increased expression 
of HLA-DR and CD14 in U937 macrophagesinhibited the growth of the 
attenuated H37Ra strain of Mtb in vitro and induced NO generation. It 
was not determined in this study whether inhibition of Mtb growth was 
dependent on reactive nitrogen species (Abd-Nikfarjam et al., 2018). 
(Fig. 2) (Table 1). 

5.6. Reducing intracellular iron 

The Mtb-containing phagosome accumulates cellular iron which fa-
vours the growth of the bacteria (Johnson et al., 2010). ATRA down-
regulates cellular transferrin receptors, therefore reducing the supply of 
iron in phagosomes (Iturralde et al., 1992). Gene expression of periph-
eral blood mononuclear cells (PBMCs) taken from cynomolgus ma-
caques post vaccination with BCG and post challenge was compared 
with gene expression when the animals were naïve. Gene expression 
data revealed an up-regulation of iron regulatory genes in animals that 
developed TB and down-regulation of these genes in disease controllers, 
indicating the ability to successfully withhold iron could be important in 
TB disease control and lowering intracellular iron can limit the infection 
(Wareham et al., 2014). (Fig. 2) (Table 1). 

5.7. Alterations in cytokine expression and immune cell numbers in vivo 

Retinoic acid has the ability to stimulate both innate and adaptive 
immune response (Iwata, 2003; Ma et al., 2005). Aging rats fed with 
marginal vitamin A diet had a low number of peripheral blood mono-
nuclear cells and low cell lytic efficacy of natural killer (NK) cells in 
addition to changes in the distribution and function of T and B cells 
compared to rats fed a vitamin A replete diet (Paterson et al., 1987; 
Dawson et al., 1999; Chen and Ross, 2004). Rats infected with the 
pathogenic strain of Mtb (H37Rv) and treated with ATRA orally were 
found to have smaller lung granuloma compared with the untreated 
group (Yamada et al., 2007). Significant increases in the counts of CD4+, 
CD8+ T cells, α/β T cells, CD25+ T cells, and CD163-positive mono-
cyte/macrophages were observed in rats treated with ATRA (Yamada 
et al., 2007). 

Cytokines play critical roles in the host defense mechanism against 
TB (Yamada et al., 2000; Sugawara et al., 1999; S et al., 2001) and ATRA 
can influence their expression. In a 2D in vitro model of Mtb infection, 
ATRA inhibited IL-10 secretion by THP1 macrophages (O’Connor et al., 
2019), which may allow phagolysosomal maturation to proceed, as 
previously reported (O’Leary et al., 2011). Retinoic acid has a role in the 
regulation of IFN-γ signalling by regulation of several components of the 
IFN-γ signalling pathway (Luo and Ross, 2005). The mRNA levels of 
IL-1β, TNFα, and iNOS mRNA expression were elevated in the lung tis-
sues of rats with TB treated orally with RA and in in vitro treated bron-
choalveolar lavage (BAL) cells (Yamada et al., 2007). A TB mouse model 
treated with ATRA, vitamin D3, and alpha-galactosylceramide plus the 
standard antibiotics showed increased TNF-α protein levels in the lungs 
during the treatment course in addition to increased CD8+ cells, 
compared to antibiotics alone (Mourik et al., 2017). Our in vivo evalu-
ation of ATRA loaded Poly lactic-co-glycolic acid (PLGA) microparticles 
and free ATRA (2.5 mg/kg of ATRA) delivered locally to the lungs of 
BALB/c mice infected with H37Rv Mtb strain, demonstrated reduced 
bacterial burden in comparison to controls, both as a standalone or 
adjunctive to rifampicin. In addition, treatments reduced both lesion 
size and pulmonary pathology in this model (O’Connor et al., 2019), 
which might reflect the simultaneously anti- and pro-inflammatory ef-
fects of ATRA. One possible explanation of reduced inflammation 
following ATRA treatment is the expansion of regulatory T-cells in the 

lungs (Coleman et al., 2013). (Fig. 2) (Table 1). 

5.8. Depleting myeloid suppressor cells 

Myeloid-derived suppressor cells (MDSCs) are a diverse population 
of myeloid origin that negatively regulate immune function (Garg, 
2021). In cancer, MDSCs have been shown to regulate immunity at the 
tumour site (Haverkamp et al., 2011). Research done in animal models, 
has demonstrated the inhibition of antimicrobial activity by MDSC 
(Garg et al., 2017; Delano et al., 2007). Elevated suppressive myeloid 
cells in blood and pleural effusions of TB patients have been reported in 
active TB patients (Du Plessis et al., 2013). Immune regulation through 
MDSCs is multifunctional and includes deprivation of environmental 
nutrients necessary for T-cell function, induction of regulatory T-cells or 
IL-10 secretion and inhibition of interferon gamma (IFN-γ) production 
(Gabrilovich et al., 2012; Gabrilovich and Nagaraj, 2009). Th1 cytokines 
are required for fighting the infection but can also lead to excessive 
inflammation and tissue damage; the interaction between T lymphocyte 
and myeloid cells may provide a delicate balance for disease control 
(O’Garra et al., 2013). 

Targeted inhibition of MDSCs may contribute to successful anti-TB 
treatment. ATRA was shown to induce maturation and functional 
depletion of MDSCs (Mora et al., 2008) and decreases MDSCs frequency 
(Leukes et al., 2021). Knaul et al., found that in murine model of TB, 
MDSCs accumulate and reside in lung parenchyma providing a niche for 
Mtb propagation. ATRA treatment decreased lung MDSCs, increased 
T-cell numbers and diminished the capacity of mycobacteria infected 
bone marrow derived MDSCs to suppress T-cell proliferation without 
affecting cytokine responses or cell death in their model (Knaul et al., 
2014). Targeting MDSCs using ATRA may be beneficial in treating pa-
tients with drug resistant TB and the elderly with elevated MDSCs 
(Verschoor et al., 2013). The combination of ATRA and 
alpha-galactosylceramide has been found to convert MDSCs into 
immunogenic antigen-presenting cells (Lee et al., 2012). Data has shown 
that ATRA increased CD1d expression on antigen-presenting cells, 
which is required for activation of natural killer T (NKT) cells (Chen 
et al., 2013). Moreover, the addition of immunotherapy consisting of the 
clinically approved drugs all trans retinoic acid, 1,25(OH)2-vitamin D3, 
and a-galactosylceramide to the standard antibiotic treatment reduced 
bacterial load in the lungs after 5 weeks of treatment and reduced 
relapse of disease at 13 weeks post treatment course which was 
accompanied by decreased numbers of MDSCs in a mouse model of TB 
(Mourik et al., 2017). To what extent the beneficial effects of ATRA on 
TB pathogenesis in the above-mentioned studies (Paterson et al., 1987; 
Banerjee and Bhattacharyya, 2014) are due to depletion of MDSCs 
and/or the ability of ATRA to boost macrophage microbicidal activity 
remains to be determined (Fig. 2) (Table 1). 

5.9. ATRA as a vaccine adjuvant 

Most microbes including Mtb invade the human body through 
mucosal surfaces and thus, strengthening mucosal immunity is a pivotal 
factor in host defence against those microbes (Hellfritzsch and Scherlieβ, 
2019). Mucosal immunity elicits effective humoral and cellular immune 
responses both at the mucosa and systematically (Srivastava et al., 
2015). However, there is an urgent need to develop safe and effective 
vaccine adjuvants to induce a mucosal immune response. 

Retinoic acid (RA) has been proven to induce immune modulation at 
mucosal sites (Erkelens and Mebius, 2017). It controls DCs homeostasis 
at mucosal sites (Evans and Reeves, 2013) and regulates differentiation 
of CD4+ T-cells toward Th1/Th17 polarisation (Hall et al., 2011b), 
which is required for an effective response in the early stages of Mtb 
infection. Antigen presentation in presence of retinoic acid (RA) confers 
a mucosal homing phenotype on B and T cells (Mora et al., 2006; Iwata 
et al., 2004). The effect of RA on B cells leads to isotype switching of IgA 
antibodies (Lee et al., 2016) and it induces homing of antigen specific T 
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cells in mucosal surfaces including the lungs (Tan et al., 2011). In the 
absence of RA-mediated signalling, defective T-cell differentiation oc-
curs at the mucosa and other tissues (Surman et al., 2014; Kaufman 
et al., 2011). RA is essential for the differentiation of mucosal DCs 
(Cassani et al., 2012). These effects could explain why people with VAD 
are more susceptible to infection as previously mentioned. 

It has been proposed that immunity against Mtb infection is linked 
with T cells homing to the lungs (Sakai et al., 2014; Woodworth et al., 
2017). The subcutaneous vaccination of mice with the subunit vaccine 
CAF01+H56 in the presence of RA caused increased pro-inflammatory 
cytokine secretion and homing of mucosal H56 specific IgA and Mtb 
specific CD4+ T-cells to the lungs in comparison with mice vaccinated in 
the absence of RA. Although the effect of RA was transient, the host was 
able to better contain the inflammatory response and more Mtb specific 
CD4+PD1+ T-cells were found at later time points which limited host 
damage (Riccomi et al., 2019). Therefore, more attention should be 
given to studying the effect of RA as a mucosal vaccine adjuvant in in-
fectious disease (Table 1). 

6. Clinical trials of vitamin A for TB and why they have failed 

6.1. Clinical trials of vitamin A for TB 

No human clinical trials evaluating ATRA as a TB HDT have been 
undertaken. Only one relevant case report has been published, which 
describes a patient prescribed ATRA for acute promyelocytic leukaemia 
in addition to Mtb therapy, and who developed hypercalcemia as a 
possible adverse effect of ATRA (Abdullah et al., 2018). However, many 
trials evaluating a range of oral doses of retinol supplementation (typi-
cally 5000 IU daily or 200,000 IU as a single dose), as esters, as an 
adjunct to TB therapy have taken place. These trials in Mexico (Armijos 
et al., 2010), Nigeria (Lawson et al., 2010a), Indonesia (Karyadi et al., 
2002; Pakasi et al., 2010), South Africa (Visser et al., 2011; Hanekom 
et al., 1997), Malawi (Semba, 1999b), China (Wang et al., 2020), and 
India (Ginawi, 2021) have included both adult and pediatric (HIV--
seropositive and HIV-seronegative) patients. While some trials have 
indicated a trend towards earlier sputum conversion in the 
retinol-supplemented group (Armijos et al., 2010; Lawson et al., 2010a; 
Karyadi et al., 2002; Pakasi et al., 2010; Visser et al., 2011), a 2016 
meta-analysis found that overall, oral retinol supplementation did not 
significantly affect sputum positivity at 2 weeks, 1 month or 2 months. 
No significant difference in mortality was found (Grobler et al., 2016). 
No trials of retinol or ATRA prescribed for the prevention of active TB in 
contacts, LTBI or other high-risk groups have been undertaken. 

6.2. Why clinical trials have failed 

Both retinol and ATRA enhance the Mtb-killing ability of human 
macrophages in vitro (Coleman et al., 2013; Crowle and Ross, 1989; 
Anand and Kaul, 2005; Wheelwright et al., 2014b; Long et al., 2016; da 
Cunha et al., 2014), and are suggested to hold promise as a HDT for Mtb 
(O’Connor et al., 2016). There are several possible explanations for why 
retinol has failed to improve outcomes in clinical trials in Mtb infection 
(Fig. 3):  

1. Absorption of oral retinol supplementation is negatively correlated 
with fever (Aklamati et al., 2010), and requires a diet containing 
lipids.  

2. Baseline liver vitamin A reserves of TB patients may be severely 
depleted by the subacute Mtb infection itself, the associated 
anorexia, other infections and malnutrition (Stephensen, 2001). This 
is supported by the low baseline retinol levels, low BMI and the lack 
of difference in retinol trajectory between intervention and placebo 
arms observed in many of the trials (Armijos et al., 2010; Lawson 
et al., 2010a; Karyadi et al., 2002; Pakasi et al., 2010; Visser et al., 
2011; Hanekom et al., 1997; Semba, 1999b; Wang et al., 2020).  

3. Infection and fever are strongly associated with urinary retinol 
excretion (Alvarez et al., 1995; Stephensen et al., 1994). This may 
counteract supplementation efforts.  

4. It is possible that in practice, active TB patients present at too late a 
stage, and that retinol would be most effective at enhancing early 
clearance of the bacillus.  

5. The serum carrier proteins that transport retinol to its sites of action, 
RBP4 and TTR, are both significantly reduced in TB patients (Keicho 
et al., 2012; Agranoff et al., 2006). RBP4 is a negative acute phase 
reactant that declines with inflammation (Larson et al., 2017; Louw 
et al., 1992). Baseline C-Reactive Protein (CRP) and Erythrocyte 
Sedimentation Rate (ESR) were elevated among trial patients (Law-
son et al., 2010a; Karyadi et al., 2002; Pakasi et al., 2010; Visser 
et al., 2011; Wang et al., 2020).  

6. Rifampicin is a potent CYP450 enzyme-inducer. As has been shown 
for other CYP450-inducers, rifampicin may significantly increase 
clearance of ATRA and thereby reduce retinol’s effectiveness (Fex 
et al., 1995; Nau et al., 1995). 

7. Inflammation downregulates murine intestinal macrophage expres-
sion of ALDH enzymes which are required for the production of 
ATRA from retinol (Hurst and Else, 2013). In addition, ALDH1a2 and 
DHRS9 expression are reduced in human TB granulomata (Kim et al., 
2019). The macrophages of TB patients may not be capable of 
effectively producing ATRA from retinol.  

8. ATRA is promising as a TB HDT as it both enhances autophagy and 
contributes to immune regulation, reducing unwanted tissue dam-
age. Nevertheless, specific HDTs may be effective only in patients 
with specific TB phenotypes or endotypes (DiNardo et al., 2020, 
2021). 

Two compatible strategies might sidestep several of these obstacles. 
The first is to use ATRA rather than retinol as an adjunct to TB-therapy. 
This would remove the need for retinol absorption, storage, mobilisation 
and the intracellular oxidation of retinol to ATRA. The second is to target 
the lung with ATRA directly rather than systemically by using an inhaled 
formulation. This could increase the concentrations of ATRA at the site 
of interest, while reducing systemic effects. Randomised controlled trials 
of ATRA as an adjunct to TB therapy could first be undertaken in patients 
failing TB therapy with extensively drug-resistant TB (Fig. 3). 

7. Potential of vitamin A as a HDT in other infectious diseases 

7.1. Animal studies 

Retinoic Acid could prove to be an exciting therapy in other in-
fections, as demonstrated by promising results from animal studies. 
ATRA was investigated as a HDT for the opportunistic fungal pathogen, 
Pneumocystis jiroveci in immunosuppressed mice and rats. The rodents 
were commenced on ATRA orally 3 weeks post-inoculation with Pneu-
mocystis. It was observed that ATRA treatment could cure pneumocystis 
pneumonia and greatly reduced lung inflammation, but that it required 
a prolonged course of therapy. Combining ATRA with primaquine was 
as effective as the more toxic first-line therapy, co-trimoxazole (Lei et al., 
2013). Another animal study found that intraperitoneal ATRA 
pre-treatment greatly improved the survival of BALB/c mice when 
challenged with an intravenous infection of the intracellular 
gram-positive rod, Listeria monocytogenes. By day 5 post-infection, none 
of the control mice but 66.6% of the ATRA-treated mice survived. It was 
found that ATRA-treated mice had decreased circulating 
pro-inflammatory cytokines and reduced visceral burdens of bacilli. The 
authors also found that ATRA improved the phagocytosis of 
L. monocytogenes by J774 cells in vitro (Castillo et al., 2015). 

7.2. Human clinical trials 

While ATRA has not been trialed in other infections, several trials 
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have been registered that propose to investigate 13-cis-RA as a treatment 
for COVID-19 infection (NCT04353180, NCT04361422, and 
NCT04663906), which are currently in pre-recruitment stages. Two 
clinical trials of oral retinol as an adjunctive therapy for pneumonia in 
pediatric patients were undertaken in the 1990s. The trials in Guatemala 
and Peru did not observe a clinical benefit to retinol treatment (Kjolhede 
et al., 1995; Stephensen et al., 1998). Retinol has also been proposed as a 
treatment worth investigating for COVID-19 infection in low-resource 
settings (Midha et al., 2020). 

7.3. ATRA for non-infectious diseases 

In addition to ATRA’s established efficacy in the treatment of acute 
promyelocytic leukaemia, its potential use in other infections and 13-cis- 
RA’s established efficacy in the treatment of acne vulgaris, ATRA (given 
orally in capsule formulation) has also been trialed as a treatment in 
several non-infectious diseases. These include emphysema (Mao et al., 
2002; Roth et al., 2006), a phase 1 study in patients with solid tumors 

(Conley et al., 1997), a phase 1 study in pancreatic cancer (Kocher et al., 
2020), a phase 2 study in metastatic breast cancer (Sutton et al., 1997) 
and a phase 2 study in prostate cancer (Trump et al., 1997). These 
studies have established ATRA’s pharmacokinetics and pharmacody-
namics properties, as well as its toxicities in a range of patients. A study 
of ATRA treatment in patients with renal cell carcinoma found that 
ATRA had no effect on the total white cell count, neutrophil count or 
lymphocyte count, but did result in a mild, transient reduction in 
monocyte count (Mirza et al., 2006). While ATRA is generally well 
tolerated, the adverse effects most frequently observed are headache, 
xeroderma, hypertriglyceridemia and cough. RA is also teratogenic and 
contraindicated in pregnancy (Rothman et al., 1010), limiting its po-
tential use as a TB HDT in this population. 

8. Formulation and delivery strategies for ATRA 

Some studies have showed that vitamin A supplementation itself has 
no added value in TB treatment (Lawson et al., 2010a, 2010b). These 
findings could be due to the complex in vivo metabolism of vitamin A to 
ATRA as previously discussed. ATRA displays poor aqueous solubility 
and reduced half-life in plasma (Szuts and Harosi, 1991; Muindi et al., 
1992). At higher concentrations, it can cause toxicity and may not reach 
the target cells in the desired concentration. Therefore, administration 
of ATRA locally to achieve high concentration at the site of infection is 
important to avoid systematic side effects (Gonçalves et al., 2019; 
Guerra et al., 2014). 

Vitamin A is a fat soluble vitamin which requires a formulation step 
before in vivo administration (Huyghebaert et al., 2007). Free ATRA 
cannot be easily aerosolised due to its lipophilicity and inherent insta-
bility during manufacturing and storage. Vitamins are susceptible to 
degradation when exposed to air, heat, light, moisture and certain pHs 
(Estevinho et al., 2016). Loading ATRA into nano/microcapsules has 
been demonstrated to improve its performance by minimizing side ef-
fects and increasing stability and half-life (Gonçalves et al., 2019). 
Several topical lipid based formulations encapsulating retinoic acid have 
been studied for treatment of acne including emulsions, solid lipid 
nanoparticles (SLN), nanostructured lipid carriers (NLC) liposomes, 
niosomes and ethosomes which are known for their biocompatibility 
and sustained release profile (Lin et al., 2013; Silva et al., 2015; Raza 
et al., 2013). In humans, A phase I/II clinical trial of intravenous (IV) 

(caption on next column) 

Fig. 3. ATRA has pleiotropic effects that protect the host against Mtb (lower- 
right box). These include: The co-localisation of Mtb with autophagic vesicles 
and promotion of phagolysosomal maturation through a reduction in the 
expression of TACO and a reduction in IL-10; A reduction in the cellular 
expression of transferrin receptors, reducing the supply of a vital nutrient of 
Mtb – iron; The efflux of another Mtb nutrient, cholesterol, and the acidification 
of lysosomes via increased NPC2 expression; A functional depletion of MDSCs 
and improvement of the homing capacity of B and T cells; And the augmen-
tation of innate immune signalling, characterised by an increase in HLA-DR, 
CD14, DC-SIGN and pro-inflammatory cytokine secretion. There are many 
necessary steps that dietary vitamin A must undertake in order to exert these 
host-protective effects (upper-left box). First, supplemented retinoids must be 
absorbed by enterocytes, secreted in chylomicrons via the lymphatics into cir-
culation and endocytosed by the liver for processing and storage. Retinol must 
then be secreted with its carrier proteins into circulation and delivered to its 
target tissues. Once intracellular, retinol must be converted to its active me-
tabolites in a two-step oxidation reaction before it can be transported to its 
nuclear receptors. However, TB patients present many obstacles to these steps 
(upper-right box). For example, retinoid absorption can be reduced by fever, 
anorexia, or a lipid-poor diet. Retinol’s circulatory carrier proteins (RBP4 and 
TTR) are negative acute phase proteins that are suppressed in TB patients. 
Retinol is excreted from the circulation in urine during fever and infection. The 
macrophages of TB patients may not be capable of producing ATRA from 
retinol, and anti-tuberculous medications may increase the degradation of 
ATRA that is locally produced. Many of these obstacles might be bypassed by 
using inhaled exogenous ATRA as a HDT. 
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ATRA-loaded liposomes for renal cell carcinoma treatment has been 
reported (Boorjian et al., 2007). Polymeric nanocarriers have also been 
studied for RA encapsulation including inhaled poly-lactic-co-glycolic 
acid (PLGA) microparticles for TB (O’Connor et al., 2019) and loading 
ATRA in styrene maleic acid copolymer (Yamamoto et al., 2013). ATRA 
has also been incorporated into collagen-hyaluronate for respiratory 
tissue generation (O’Leary et al., 2016, 2017). The drug can be formu-
lated in multi-drug formulations with another first line anti-TB drug in 
order to reduce the patient’s oral medication burden (O’Connor et al., 
2019). 

Mtb is transmitted by inhalation of contaminated respiratory drop-
lets and the lungs are the main site of infection (Pai et al., 2016). Pul-
monary drug delivery directly to the site of infection leads to less 
systematic toxicity than oral or parenteral delivery and represents a 
promising route to deliver drugs directly to the lungs (O’Connor et al., 
2019; Wauthoz et al., 2011). Drug delivery by inhalation has been used 
since ancient Egyptian times (Sanders, 2007). Despite that, no inhaled 
TB treatment has made it to the market yet. It is worth noting that in 
2018, the FDA approved the first nebulised amikacin liposome inhala-
tion suspension for Mycobacterium avium complex (MAC) (Hoy, 2021). A 
phase I clinical trial of capreomycin dry powder formulation for drug 
resistant TB, demonstrated safety in healthy adult volunteers (Dhar-
madhikari et al., 2013). A study examining the delivery of rifampicin via 
inhalation in pigs found a 7–9 fold increase in concentration of rifam-
picin in the lungs compared to delivery via other routes (Garcia Con-
treras et al., 2015). Delivering ATRA by inhalation may increase its 
potential as a HDT. 

Therefore, administration of ATRA locally to achieve high concen-
tration at the site of TB infection is important to avoid systematic side 
effects and improve treatment efficacy (Gonçalves et al., 2019; Guerra 
et al., 2014). Inhaled ATRA-loaded liposomes were safely administered 
by inhalation in an emphysema patient (Frankenberger et al., 2009). 
Desai et al. prepared ATRA loaded niosomes and evaluated their aerosol 
properties; their results showed good encapsulation efficiency and an 
aerosolised droplet size suitable for inhalation for lung cancer treatment 
(Desai and Finlay, 2002). Our lab has previously prepared PLGA mi-
croparticles of ATRA and this formulation retained antibacterial efficacy 
and reduced pulmonary pathology compared to ATRA solution in a 
mouse model of Mtb (O’Connor et al., 2019). 

In addition to the effect of the cargo, the carrier itself may have a role 
influencing immune cell function (Lawlor et al., 2016). In our study, 
treatment with inhaled ATRA encapsulated in PLGA microparticles led 
to reduced transcription of TNF-α and iNOS in the lungs of Balb/c mice 
infected with H37Rv in comparison to ATRA alone (O’Connor et al., 
2019). The reduction of iNOS is linked to improved disease pathology in 
an acute lung injury model (Zhang et al., 2016). Encapsulation of ATRA 
into drug delivery systems provides the protection and stability required 
for retinoids. Moreover, this strategy provides a controlled drug release 
profile and increases the bioavailability of retinoids in the human body. 
There are several patents of ATRA loaded polymeric nanoparticles 
(20160338984A1 - Particl, 2016) and liposomes (Composite of 
all-trans-re, 2010) including ATRA-loaded liposomal aerosols for de-
livery to the lungs (Liposomal aerosols for de, 2002). Several strategies 
have been studied to increase particle uptake, by actively targeting the 
alveolar macrophages, including decoration of the particle surface with 
mannose (Hatami et al., 2019), glucose (Dube et al., 2014) surfactant 
protein D and A (Kendall et al., 2013; Ruge et al., 2016). 

For any molecule to be delivered via the inhaled route, a suitable 
device is critical. The key role for the devices is to enable aerosolisation 
of particles or droplets effectively by generating optimum aerodynamic 
diameter is 1–5 μm in order to prevent particle exhalation or throat 
impaction (Hickey et al., 2013; Parumasivam et al., 2016). The main 
types of medical devices for inhaled therapies include: 1) pressurised 
metered dose inhaler (pMDI) (Misra et al., 2011). 2) Dry powder in-
halers (DPI) (Misra et al., 2011). 3) Nebulisers, which can be divided 
into three main types depending on the mechanism of aerosol 

generation: jet, ultrasonic and vibrating mesh nebulisers (Misra et al., 
2011). However, nebulisers require a power supply and continuous 
cleaning of the device, which might limit its use and making DPIs a 
suitable choice for developing countries where TB is prevalent. 

9. Concluding remarks 

The effect of ATRA on Mtb occurs via an indirect action on the 
bacteria. More investigation is needed to uncover how ATRA and other 
retinoids boost the microbicidal activity of macrophages and other im-
mune cells. Future animal studies, examining models of both early and 
chronic TB infection, should consider measurement of the effects of 
ATRA on chemokine and cytokines levels, histopathology, cell recruit-
ment and antigen presentation in addition to its effects on bacterial 
viability. Later experimental time points should be considered as the 
benefit of a HDT may be delayed when compared with pathogen- 
directed therapies such as rifampicin. Pharmacokinetic studies 
comparing the inhaled with other possible routes of administration, and 
studying ATRA in combination with conventional TB therapies, are also 
essential. Careful dose-selection for clinical trials is necessary, as the 
ATRA dose effective in TB may not be directly comparable to that used 
for other indications. Less toxic synthetic ATRA analogues should also be 
investigated for their effects on intracellular Mtb growth. Trials evalu-
ating the efficacy of retinoids for the prevention of active TB in high-risk 
groups should be considered. As has occurred in patients with emphy-
sema and several malignancies, pilot trials of adjunctive ATRA in pa-
tients on TB treatment should be pursued. Detailed phenotypic and 
endotypic characterisation of these trial patients may be critical in un-
derstanding and identifying with precision which patients might benefit 
from this promising HDT. 
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concentration of all-trans and 13-cis retinoic acids in patients treated with 
phenytoin, carbamazepine and valproate [Internet] Arch. Toxicol. 69 (8), 572–574. 
https://doi.org/10.1007/s002040050215. Available from:  
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