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Abstract

Statistical imputation of classical HLA alleles in case-control studies has become established as a valuable tool for identifying
and fine-mapping signals of disease association in the MHC. Imputation into diverse populations has, however, remained
challenging, mainly because of the additional haplotypic heterogeneity introduced by combining reference panels of
different sources. We present an HLA type imputation model, HLA*IMP:02, designed to operate on a multi-population
reference panel. HLA*IMP:02 is based on a graphical representation of haplotype structure. We present a probabilistic
algorithm to build such models for the HLA region, accommodating genotyping error, haplotypic heterogeneity and the
need for maximum accuracy at the HLA loci, generalizing the work of Browning and Browning (2007) and Ron et al. (1998).
HLA*IMP:02 achieves an average 4-digit imputation accuracy on diverse European panels of 97% (call rate 97%). On non-
European samples, 2-digit performance is over 90% for most loci and ethnicities where data available. HLA*IMP:02 supports
imputation of HLA-DPB1 and HLA-DRB3-5, is highly tolerant of missing data in the imputation panel and works on standard
genotype data from popular genotyping chips. It is publicly available in source code and as a user-friendly web service
framework.
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Introduction

Statistical imputation of classical human leukocyte antigen

(HLA) alleles from SNP genotypes in case-control studies has

become established as a valuable tool for identifying and fine-

mapping signals of disease association in the MHC. Application of

the HLA type imputation framework HLA*IMP [1,2] has, for

example, helped to fine-map secondary HLA-based risk effects in

multiple sclerosis [3], contributed to characterizing an HLA-

related gene-gene interaction in psoriasis [4], and was essential in

refuting a suspected strong HLA contribution to childhood B-cell

precursor acute lymphoblastic leukaemia [5]. Classical HLA allele

imputation has, in other settings, been used to identify particular

amino acids within classical peptides contributing to disease risk

[6].

Classical HLA allele imputation is complicated by hyperpoly-

morphism (HLA-B , for example, has dozens of common alleles

and w2000 rare alleles) and the complex haplotype structure of

the HLA region, justifying the development of specialized

imputation machinery. Linkage disequilibrium (LD) between loci

usually declines with distance, as LD is broken down by

recombination. In the HLA, however, this is not always

empirically true. Many comparatively distant SNPs carry infor-

mation on the allelic state of the classical HLA genes [7]. Fully

capturing this information is not trivial. For example, a commonly

used model in statistical genetics, the Li and Stephens approxi-

mation [8], does not allow for explicit modelling of long-distance

LD relationships due to its reliance on a first order Markov chain.

HLA*IMP therefore uses a particular formulation of the Li and

Stephens approximation that assigns equal weight to all selected

SNPs irrespective of distance from the classical locus of interest

[2]. We have since demonstrated (e.g., [1]) that this formulation

leads to highly accurate HLA type imputations, at least when

reference and imputation panel are derived from the same

population.

For the increasingly important use case of multi-population

studies (where the reference and analysis panels consist of samples

taken from multiple, possibly diverse, populations), HLA type

imputation has, however, remained challenging: Imputation

accuracy is limited by the extent to which the reference panel

captures the diversity of the target population and current methods

typically rely on single-source reference panels of Northern

European origin [1,9].

The obvious solution, successfully applied in SNP genotype

imputation [10,11,12], is to make use of diverse multi-population

reference panels. However, an additional challenge of multi-

population classical HLA type imputation is that single HLA

alleles can appear on multiple SNP haplotype backgrounds [7], a

phenomenon we refer to as ‘‘haplotypic heterogeneity’’. More-

over, genetic data obtained from multiple data sets from different
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populations is likely to contain systematic genotyping artefacts.

Here we present HLA*IMP:02, an HLA type imputation method

that is particularly aimed at inference in multi-population and

multi-ethnicity settings. That is, it is designed to accommodate

both haplotypic heterogeneity and genotyping error.

Inference under HLA*IMP:02 is based on a graphical model of

the haplotype structure of the MHC region. We motivate this

choice by restating an observation made by Browning and

Browning [13]: Graphical haplotype models are well-suited to

model LD relationships spanning different scales of distance

(‘‘variable-length Markov chains’’), which fits with the HLA

region’s empirically observed LD structure. We present an

algorithm to build such models from a set of reference genotype

data. The main design features of the algorithm are that it takes

into account haplotype uncertainty introduced by potential

genotyping error, that it allows for haplotypic heterogeneity and

that it tailors the graphs to make them maximally informative

about the allelic state of the HLA loci. Our algorithm can be

viewed as a probabilistic generalization of the works of Browning

and Browning [14]. Compared with HLA*IMP, HLA*IMP:02

also offers a couple of practical advantages: it is highly tolerant of

missing data in the inference panel and supports imputation of

HLA-DPB1 and HLA-DRB3-5.

It is instructive to explicitly consider how the design of

HLA*IMP:02 leads to an improved ability to deal with hetero-

geneous data, as compared to HLA*IMP:

N Data representation: HLA*IMP:02 builds a combined locus-

specific haplotype graph model of the whole dataset. In

HLA*IMP, in contrast, reference genotype data is phased and

separated by HLA alleles. All further steps are based on these

allelic groups (one for each HLA allele in the reference panel).

This design prevents HLA*IMP from sharing SNP haplotype

information across haplotypes carrying different HLA alleles.

N Maximising imputation performance: HLA*IMP:02, uses all

available SNPs in the HLA region. However, while building

the haplotype graph no two internal haplotype states that

exhibit different association patterns to HLA alleles are

combined, thus maintaining accuracy specifically for HLA

allele prediction. HLA*IMP, in contrast, carries out a process

of SNP selection, identifying SNPs in the region that are

informative for accurate prediction of HLA types. Finding a set

of consistently informative SNPs becomes increasingly difficult

as the degree of stratification in the reference panel increases.

N Inference model: In the haplotype-graph approach of

HLA*IMP:02, haplotypes are not grouped in advance. If an

allele appears on multiple SNP haplotypes, there will be

multiple paths through the graph leading to the allele.

Inference is based on comparing the likelihoods of all possible

paths. Ambiguity therefore typically only arises if two or more

alleles share the same SNP haplotypes, but not if one allele

appears on more than one background. Additional heteroge-

neity in the reference panel (characterized by alleles appearing

on more than one unique background) does not decrease the

model’s ability to correctly infer HLA genotypes. HLA*IMP,

in contrast, appears to suffer decreased performance in both

scenarios (one allele/multiple backgrounds, multiple alleles/

one background). This is perhaps because inference under

HLA*IMP is based on finding the most similar group of

haplotypes (implemented through a particular formulation of

the Li and Stephens [8] Hidden Markov Model, HMM).

Additional heterogeneity in an allele’s SNP background

necessarily reduces group-wise average similarity and dilutes

the model’s ability to correctly infer HLA genotypes.

We carry out three experiments to investigate the performance

of HLA*IMP:02 on reference panels of varying heterogeneity. In

the first experiment, we apply HLA*IMP:02 to a homogeneous

(predominately British) reference panel and show that it performs

as well as HLA*IMP in this baseline scenario. In the second

experiment, we demonstrate that HLA*IMP:02 achieves high

imputation accuracy at 4-digit HLA type resolution (reflecting

primary sequence of the HLA proteins) when applied to an

integrated cross-European reference panel, clearly outperforming

HLA*IMP. In the third experiment, we use a highly heteroge-

neous multi-ethnic reference panel to impute HLA genotypes of

Asian, African-American, African, European and Hispanic indi-

viduals. We show that accuracy for the European individuals

remains essentially unchanged by making the reference panel

more heterogeneous and that the model achieves high imputation

accuracy for the other ethnicities at 2-digit resolution, which

reflects the serological properties of the HLA alleles (see

Subsection ‘‘Validation’’ for a precise definition in our context).

Materials and Methods

HLA*IMP:02
We use an acyclic probabilistic finite automaton (‘‘haplotype

graph’’, see Figure 1) to represent haplotype structure in the HLA

region [14,15]. The haplotype graph describes the haplotype

structure of SNPs around the classical HLA loci. In Figure 1, each

possible path through the graph also passes through an edge

carrying an HLA allele, and therefore specifies a corresponding

HLA genotype. The likelihood of any particular path depends on

the branching structure of the graph (as specified by the

probabilities on the edges in Figure 1) as well as on the observed

SNP genotypes from an individual that we want to make inference

for. For example, if we observe the SNP genotypes TTA?TA (the

question mark stands for the unknown HLA allele, and we only

consider the haploid case here for simplicity), the likelihood of the

path passing through the bottom nodes (and the 1501 allele) is 0.2,

Author Summary

The human leukocyte antigen (HLA) proteins influence
how pathogens and components of body cells are
presented to immune cells. It has long been known that
they are highly variable and that this variation is associated
with differential risk for autoimmune and infectious
diseases. Variant frequencies differ substantially between
and even within continents. Determining HLA genotypes is
thus an important part of many studies to understand the
genetic basis of disease risk. However, conventional
methods for HLA typing (e.g. targeted sequencing,
hybridisation, amplification) are typically laborious and
expensive. We have developed a method for inferring an
individual’s HLA genotype based on evaluating genetic
information from nearby variable sites that are more easily
assayed, which aims to integrate heterogeneous data. We
introduce two key innovations: we allow for single HLA
types to appear on heterogeneous backgrounds of genetic
information and we take into account the possibility of
genotyping error, which is common within the HLA region.
We show that the method is well-suited to deal with multi-
population datasets: it enables integrated HLA type
inference for individuals of differing ancestry and ethnicity.
It will therefore prove useful particularly in international
collaborations to better understand disease risks, where
samples are drawn from multiple countries.

Multi-Population Classical HLA Type Imputation
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and the likelihood of all others paths is 0 (not allowing for any

deviations from the edge labels for the sake of this argument). For

ATA?GA, the case is also clear: 0301 is the only possible allele. If we

now change the second-last genotype to T (yielding ATA?TA), there

are two possible paths. The one passing through 1501 has a

likelihood of 0.012, and the other one passing through 0301 has a

likelihood of 0.056. Conditional on the observed SNP genotypes,

1501 is therefore approximately twice as probable as 0301.

Changing the second and third genotypes would not influence this

result (which relates back to our introductory comments on the

variable length of captured LD relationships: the first position

influences inference, the second and third do not).

In order to use haplotype graphs for imputation, there are two

general problems to address: how to construct a haplotype graph

from a set of reference data, and how to use an existing graph for

imputing the genotype of an additional individual. Methods to

construct and use haplotype graph-like objects from a set of

reference data were discussed by Ron et al. [15] and introduced

into the field of statistical genetics by Browning [13] and Browning

and Browning [14]. The work we present here can be viewed as a

probabilistic generalization of the works of Ron et al. [15] and

Browning and Browning [14]. To use haplotype graph models

specifically for HLA type inference, we have developed solutions to

two related tasks: how to build a haplotype graph model from the

reference panel allowing for errors in SNP genotype data and

haplotypic heterogeneity and how to boost accuracy for HLA

allele imputations. A full and formal description of the

HLA*IMP:02 algorithm can be found in the Supporting Text

S1. Here we provide outline of our algorithm and the inference

process, highlighting where we generalized and extended previous

approaches.

Constructing a haplotype graph from a set of reference data

(including both SNP and HLA genotypes) is an iterative process,

consisting, as in BEAGLE, of three main steps:

N Initialization: for each individual, populate the set H of current

haplotype estimates by sampling from the uniform distribution

over all genotype-consistent haplotype pairs. In contrast to

BEAGLE, we preserve missing data in the generated

haplotype pairs.

N Probabilistic graph construction: build a haplotype graph

object from the set H of current haplotype estimates. Each

element in H corresponds to one path through the graph

which is going to be constructed. We define a probability

distribution over possible paths for each element in H and

probabilistically attach the elements in H to nodes in the

graph. This enables us to allow for genotyping errors and

missing data in H and puts some part of the probability mass

of similar haplotypes on the same nodes, even if they differ in

single positions (by setting the probability of genotyping error

to 0, one obtains the deterministic BEAGLE/Ron et al. [15]

mode of haplotype propagation through the graph). In the

process of building the graph, we collapse similar nodes for

reasons of parsimony and computational efficiency. In defining

node similarity, we introduce criteria that relate to each node’s

pattern of association with the HLA loci along the graph, and

prevent collapsing two nodes that exhibit differing patterns of

LD with HLA alleles (by setting the set of the loci that these

additional criteria apply to the empty set, one obtains the

conventional similarity criterion from BEAGLE/Ron et al.

[15]).

N Resampling: Construct the diploid HMM induced by the

constructed haplotype graph and re-populate H. If a

predefined number of iterations has not been exceeded, fit

this HMM to the reference genotype data, re-populate H with

haplotype samples from the HMM (imputing missing data)

and go to step 2. Like Browning and Browning [16], we use an

HMM that allows for genotyping error.

The HMM resulting from the final iteration is used to generate

HLA type estimates for all following imputation operations

(BEAGLE, in contrast, builds joint haplotype graphs of imputation

and reference panels, and carries out imputation as part of this

procedure, which requires special measures for assuring conver-

gence if the joint set is dominated by samples from the imputation

dataset).

Availability, Performance, Usability
Source code for HLA*IMP:02 is available from http://

oxfordhla.well.ox.ac.uk (free for academic use). Compiling and

Figure 1. Features of haplotype graph models. Illustration of the features of haplotype graph models. Haplotype graphs are a subclass of
connected directed graphs and belong to the class of acyclic probabilistic finite automata. Their most important properties are illustrated here: 1)
They are leveled, i.e. each vertex v has an associated positive number 1, and all edges emanating from v at level l lead to a vertex at level lz1 and
represent the same genetic locus. Vertices at level T are final vertices with no outgoing edges, and there is a path from every vertex in the graph to
one of the final vertices. 2) Edges carry ‘‘emission symbols’’ which are emitted when an edge is traversed (in the figure: the symbols after the ‘‘|’’
character adjacent to the edges), and there are no two edges emanating from the same vertex which carry the same symbol. 3) Each vertex has an
edge probability distribution over its attached edges (in the figure: the numbers in front of the ‘‘|’’ character adjacent to the edges), according to
which an edge is selected conditional in being at that vertex.
doi:10.1371/journal.pcbi.1002877.g001

Multi-Population Classical HLA Type Imputation
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running the program requires a standard UNIX server environ-

ment (ideally with multiple CPU cores and §64 GB RAM).

To give an idea of the expected runtime, producing the graph

for HLA-A for the first experiment presented in the ‘‘Results’’

section took approximately 137 CPU hours (user plus system time

for a single CPU; the program supports parallelization via

openMP, so that the actual runtime on modern multi-CPU

systems is much lower); carrying out inference for a single

individual required approximately 4 CPU seconds (user plus

system time).

Like HLA*IMP, HLA*IMP:02 is also available as a front-end/

back-end web service that integrates data preparation, QC and

imputation. Figure 2 shows the steps typically required to produce

HLA type imputations, starting from SNP genotypes (for example

in PLINK [17], CHIAMO [18] or VCF formats). The system

supports virtually all currently employed genotyping platforms,

including genotyping arrays from Affymetrix, Illumina, and the

Immunochip. The front-end converts genotype data into the

format used by HLA*IMP:02, carries out quality control based on

data completeness and aligns SNP genotypes to the positive strand

(as defined in HapMap). All output data from the front-end can be

directly uploaded to the HLA*IMP:02 server. Run in standard

mode, the HLA*IMP:02 back-end will also produce allele- and

locus-specific cross-validation estimates of accuracy, specific to the

SNPs available in the user dataset. To ensure data protection and

security, sample identifiers have to be anonymized prior to

submission. The server stores all user data in a specially protected

area, with no read access for the normal web server processes.

Upon completion of an imputation job, the server generates a

secondary access key, which is directly sent to the user; only the

combination of access key and user account password will enable

access to the imputation results.

HLA*IMP:01
We compare the performance of HLA*IMP:02 to HLA*IMP,

which we refer to as ‘‘HLA*IMP:01’’ for clarity. HLA*IMP:01 has

been described elsewhere [1,2]. Windows of 400 SNPs around the

classical HLA loci and population prior frequencies, estimated from

the reference panel, for classical HLA alleles were found to give good

results, and these settings are identical to those used by the Internet

implementation of HLA*IMP (http://oxfordhla.well.ox.ac.uk) and

those used for recent genome-wide association studies [3,4,19].

Validation
We validate HLA type imputations at the genotype level in a

locus-specific manner, i.e. compare two unordered sets with two

elements each for each individual and locus, one set (I )

representing the imputation results and the other (L) containing

the lab-derived types. We only consider individuals who carry two

HLA alleles typed at 4-digit resolution at the locus under

validation or one allele at 4-digit resolution and one missing

allele. For 2-digit (serological properties of the HLA alleles)

validation, we consider the same individuals, but we set the last 2

digits of each HLA allele to ‘00’ (this will lead to an underestimate

of accuracy in some cases, as there are some serologically defined

2-digit allele groups that map to more than one pair of leading two

digits). We may or may not apply a posterior probability call

threshold T on the per-allele level (see Section ‘‘HLA type

inference’’ of the Supporting Text S1 for a description of how we

calculate allele-specific posterior probabilities) to our imputations

before validating.

If there is no missing data in L, there are three possible cases:

N 0 imputations left after thresholding: we count 0 correctly

imputed alleles out of 0.

N 1 imputation (I1) left after thresholding: we count 1 correctly

imputed alleles out of 1 if I1[L, otherwise 0 out of 1.

N 2 imputations left after thresholding: we count 0 correct

imputations out of 2 if (I16[L) ^ (I26[L), 1 out of 2 if

(I1[L) �_ (I2[L), 2 out of 2 otherwise. (�_ is the ‘‘exclusive

OR’’ operator, which is true if and only if exactly one of the

arguments is true).

If L~fmissing,Ag (i.e. only one allele has been typed), there

are also three possible cases:

N 0 imputations left after thresholding: we count 0 correctly

imputed alleles out of 0.

N 1 imputation (I1) left after thresholding: we count 1 correctly

imputed alleles out of 1 if I1~A, otherwise 0 out of 1.

N 2 imputations left after thresholding: we count 1 correct

imputations out of 1 if I1~A or I2~A or both.

In terms of thresholding strategies, we use either no threshold;

or a threshold of T = 0.7 for both models; or a threshold of T = 0.7

for HLA*IMP:01 (as recommended in Dilthey et al. [1]) and a

threshold matched to obtain equal call rates for HLA*IMP:02.

The last strategy is only employed to ensure comparability of

Figure 2. Standard workflow for HLA*IMP:02. Standard workflow for HLA*IMP:02: standard output data from popular genotyping platforms, for
example current Illumina or Affymetrix chips, are converted into the HLA*IMP format using the locally installed front-end program. The front-end also
carries out necessary steps of quality control, such as aligning SNP strandedness. The output files from the front-end are submitted to the HLA*IMP:02
server, which processes the data and produces imputations (posterior probabilities over pairs of alleles as well as a ‘‘best guess’’ pair of two alleles
with associated quality scores).
doi:10.1371/journal.pcbi.1002877.g002
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results for the first baseline experiment (see next section), in which

we compare the performance of HLA*IMP:01 and HLA*IMP:02

on a homogeneous dataset.

At the per-locus level, we use concordance (which is, at the per-

locus level, identical to PPV) as a measure of accuracy. We also

provide more detailed statistics at the allele level (see below).

Data
The experiments presented in this paper are based on different

combinations of two datasets.

The first set, denoted ‘‘Golden Set’’ (GS), has been described

elsewhere [1] and comprises 2512 individuals from the 1958 Birth

Cohort (http://www.b58cgene.sgul.ac.uk/), the HapMap CEU

[20] and the CEPH CEU+ [7] cohorts. Genotyping of the GS was

carried out on the Illumina 1.2M and Affymetrix Genome-Wide

Human SNP Array 6.0 chips. HLA typing methods vary

according to the original cohort. Protocols for 1958 BC HLA

genotyping are described online (https://www-gene.cimr.cam.ac.

uk/public_data/HLA/HLA.shtml). CEU and CEU+ were typed

using exon-sequencing methods.

The second set, denoted ‘‘HLARES_ALL’’, has been provided

by GlaxoSmithKline and comprises (post quality control, as

described in Dilthey et al. [1]) 1460 individuals from diverse,

though mainly European or European-ancestry, populations (see

Supporting Table S2). The individuals in HLARES_ALL were

drawn from several clinical trials and typed on the Illumina 1 M

SNP genotyping platform, and classical HLA type information

(derived by exon sequencing) is available for many of them (see

Table 1 for details). Genome-wide principal components analysis

(PCA) of the samples in HLARES_ALL was carried out using the

program EIGENSTRAT [21].

We resolve ambiguous HLA type information by using the

maximum population frequency call. Besides that, we treat all

HLA genotypes ‘‘as is’’; that is, we make no attempt to control, for

example, for changes of HLA nomenclature or allele databases.

This might lead to slight underestimates of accuracy (in the worst

case, we do not recognize identical alleles as identical).

In the first experiment (homogeneous reference), we evaluate

the performance of statistical HLA type imputation (HLA-A , -B , -

C , -DQA1 , -DQB1 and -DRB1) on cross-European samples, based

on a mainly British reference panel. We use the GS as reference

panel to impute classical HLA types of those samples in

HLARES_ALL with self-declared European ancestry (HLARE-

S_EU) and measure concordance with lab-derived HLA type

information where available. Supporting Table S2 describes the

distribution of countries the individuals in HLARES_EU were

sampled from. There are 6056 SNPs in the extended MHC region

(xMHC, here defined as the chromosomal region on chromosome

6 from position 25,921,129 to position 33,535,328, build 36; see

Horton et al. [22]) in the intersection of the GS and HLARES_EU

datasets. To mirror the context in which HLA*IMP:01 was

applied in recent genome-wide association studies [3,4,19], we

further restrict the available SNP set to those also present in one of

them [3], resulting in 2020 SNPs.

In the second experiment (medium heterogeneity), we evaluate

the performance of statistical HLA type imputation on European

samples, based on a cross-European reference panel. To obtain a

cross-European reference panel (GS&HLARES_EU), we merge

the GS and HLARES_EU datasets, keeping only SNPs in the

intersection of the two panels (6056 xMHC SNPs). We randomly

split GS&HLARES_EU into two panels, and use the first one

(GS&HLARES_EU 2/3, containing approximately 2/3 of the

original data) as reference, and the second one (GS&HLAR-

ES_EU 1/3, approximately 1/3 of the original data) as validation

panel. Referring to the increased population structure in

GS&HLARES_EU 2/3 as compared to GS, we call GS&HLAR-

ES_EU 2/3 a heterogeneous reference panel. We measure

concordance with experimentally-derived HLA type information

where available. We use the data on additional loci present in

GS&HLARES_EU (HLA-DPB1 , -DRB3 , -DRB4 , -DRB5) to

evaluate how well their allelic states can be imputed. Also, in a

variation of the second experiment, we modify the SNP density in

the xMHC region to investigate to what extent performance will

depend on the selected SNP genotyping platform and data

missingness profiles.

In the third experiment (high heterogeneity), we evaluate the

performance of statistical HLA type imputation on multi-ethnic

samples, based on a multi-ethnic reference panel. To obtain a

multi-ethnic reference panel (GS&HLARES_ALL), we merge the

GS and HLARES_ALL datasets. We also include the HapMap

YRI cohort [20], as individuals self-reporting as of African

ancestry constitute a subset of HLARES_ALL. We keep all

available SNP genotypes from the intersection of GS and YRI

(7733 SNPs from GS of which 7632 xMHC SNPs are also present

in YRI), and combine them with the SNP genotypes from

HLARES_ALL (6050 SNPs, setting the remaining 1582 SNP

genotypes to ‘‘missing’’). The resulting set GS&HLARES_ALL

has 7632 xMHC SNPs. We randomly split GS&HLARES_ALL in

two panels, and use the first one (GS&HLARES_ALL 2/3,

containing approximately 2/3 of the original data) as reference,

and the second one as (GS&HLARES_ALL 1/3, approximately

1/3 of the original data) as validation panel. We call GS&HLAR-

ES_ALL 1/3 a ‘‘highly heterogeneous’’ reference panel. Note that

GS&HLARES_ALL is still dominated by samples of European

origin. We measure concordance with experimentally-derived

HLA type information where available.

Table 1 provides a summary of the number of individuals and

HLA alleles present in all reference and validation panels.

Results

We have repeated some of the initial HapMap-based experi-

ments from Dilthey et al. [1] to investigate the effects of the

methodological innovations proposed in this paper (see Supporting

Table S1 and Section ‘‘Properties of the presented model and

parameter inference’’ in the Supporting Text S1). We find that

allowing for path uncertainty has a positive effect across all

examined loci. The additional localization criteria, though

theoretically appealing, do not consistently improve accuracy

across loci (see Supporting Text S1, Section ‘‘Properties of the

presented model and parameter inference’’). Based on our initial

experiments, localization is not used for HLA-B and HLA-DRB1 .

On a homogeneous reference panel (first experiment, GS),

HLA*IMP:02 achieves the same level of performance as

HLA*IMP (see Table 2). Measured at six classical HLA loci

(HLA-A , -B , -C , -DQA1 , -DQB1 and -DRB1), HLA*IMP:02

achieves an average 4-digit resolution accuracy of 94% at an

average call rate of 97%, vs. 93% accuracy at a call rate of 97% for

HLA*IMP:01 (call threshold T = 0.7 for HLA*IMP:01 and

matched to obtain equal or higher call rates for HLA*IMP:02).

Locus-specific performance is very similar for both models. We

observe the lowest accuracy at HLA-DQA1 (88%) and the lowest

call rate at HLA-DRB1 (90%).

On a heterogeneous reference panel (second experiment,

GS&HLARES_EU 2/3), HLA*IMP:02 achieves an average

accuracy of 97% at an average call rate of 97% (see Table 3).

HLA*IMP:01, in contrast, achieves an average accuracy of 93% at

an average call rate of 93% (using a call threshold of T = 0.7 for
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both models). The most problematic locus for HLA*IMP:02 is

HLA-DRB1 , with an achieved accuracy/call rate of 95%/91%.

Even without call threshold, HLA*IMP:02 achieves an all-loci

average accuracy of 96% (vs. 90% for HLA*IMP:01). At T = 0.00,

HLA*IMP:02 outperforms HLA*IMP:01 at every locus, by 6% on

average. Applied to HLA-DPB1 and the allelic state of the DRB

paralogs (see Supporting Table S3), HLA*IMP:02 achieves an

accuracy of 90% on DPB1 without any call threshold. Due to the

limitations of the data set, we can only evaluate the performance at

the DRB paralogous loci at 2-digit resolution, including one

pseudo-allele for absence from a haplotype. We find the

imputations to be correct in §94% of cases (T = 0.00, very

similar results obtained for HLA*IMP:01, data not shown).

HLA*IMP:02 produces well-calibrated imputations (see Support-

ing Figure S1).

By analyzing allele- and locus-specific error profiles, we can

identify factors influencing the imputation accuracy of

HLA*IMP:02 (see Figure 3). First, we note that most alleles are

imputed reliably at 4-digit resolution, in particular those with

higher frequencies in the reference panel. Alleles that exhibit

problems at 4-digit imputation are typically correctly imputed at 2-

digit resolution. Second, we can distinguish between at least three

classes of problems. Some alleles, for example HLA-A*33:01, are

not present in the reference dataset at all. They can therefore not

be correctly imputed. Other alleles, for example HLA-B*27:02,

are present in the reference dataset, but at low frequencies. Non-

calls and 4-digit errors accumulate for these alleles. Third, some

alleles, for example DRB1*01:01, are better represented in the

reference panel, but there are still some problems with imputing

them correctly. We note that these error modes are also seen in

HLA*IMP:01 and that the identified classes of error also apply to

the homogeneous reference experiment (see Supporting Figures

S2, S3, S4). Finally, there is another abundant type of error, seen

only in HLA*IMP:01 and not observed in the low heterogeneity

case, which drives the observed drop in performance difference

relative to HLA*IMP:02: classification problems for well-repre-

sented alleles. It seems likely that this is due to within-Europe

population structure and heterogeneity in haplotype backgrounds,

which the model of HLA*IMP:01 cannot take into account

appropriately. We provide allele-specific measures of sensitivity,

specificity, PPV and r2, based on HLA*IMP:02, for the first two

experiments in Supporting Tables S4 and S5.

To investigate how strong an effect the utilized SNP genotyping

array and missing data in the imputation dataset will have on

expected accuracy, we carry out a variation of the second

experiment. Instead of separately evaluating a range of genotyping

platforms and missingness profiles, we present two generic

experiments, focusing on SNP density in the xMHC region: we

Table 2. Baseline validation on a homogeneous reference panel.

Threshold Locus # Validated HLA*IMP:02 HLA:IMP:01

Call Rate Accuracy T Call Rate Accuracy T

T = 0.00 HLA-A 574 1.00 0.96 1.00 0.90

HLA-B 2002 1.00 0.90 1.00 0.93

HLA-C 596 1.00 0.96 1.00 0.96

HLA-DQA1 446 1.00 0.87 1.00 0.87

HLA-DQB1 758 1.00 0.98 1.00 0.97

HLA-DRB1 1730 1.00 0.88 1.00 0.89

T = Matched HLA-A 574 0.96 0.96 0.55 0.94 0.91 0.700

HLA-B 2002 0.98 0.92 0.40 0.98 0.94 0.700

HLA-C 596 0.99 0.96 0.60 0.99 0.97 0.700

HLA-DQA1 446 0.99 0.88 0.40 0.99 0.88 0.700

HLA-DQB1 758 0.99 0.98 0.60 0.99 0.97 0.700

HLA-DRB1 1730 0.90 0.93 0.60 0.90 0.93 0.700

Non-thresholded and thresholded HLARES validation results for HLA*IMP:02 and HLA*IMP:01: the complete GS is used to impute HLARES_EU samples. Accuracy (PPV) is
measured at 4-digit resolution. ‘‘# Validated’’ refers to the number of validated alleleles (pre-thresholding). Note that the call threshold for HLA*IMP:02 was matched to
obtain equal or higher call rates than with HLA*IMP:01.
doi:10.1371/journal.pcbi.1002877.t002

Table 3. Multi-population European validation results.

Threshold Locus
#
Validated HLA*IMP:02 HLA:IMP:01

Call
Rate Accuracy

Call
Rate Accuracy

T = 0.00 HLA-A 808 1.00 0.97 1.00 0.91

HLA-B 1646 1.00 0.95 1.00 0.89

HLA-C 752 1.00 0.96 1.00 0.91

HLA-DQA1 194 1.00 0.97 1.00 0.87

HLA-DQB1 934 1.00 0.98 1.00 0.92

HLA-DRB1 1358 1.00 0.91 1.00 0.87

T = 0.70 HLA-A 808 0.98 0.97 0.94 0.94

HLA-B 1646 0.96 0.97 0.93 0.92

HLA-C 752 0.99 0.97 0.94 0.94

HLA-DQA1 194 0.96 0.98 0.93 0.90

HLA-DQB1 934 0.99 0.98 0.94 0.94

HLA-DRB1 1358 0.91 0.95 0.89 0.92

Medium heterogeneity non-thresholded and thresholded cross-validation
results for HLA*IMP:02 and HLA*IMP:01: GS&HLARES_EU 2/3 is used to impute
GS&HLARES_EU 1/3. Accuracy (PPV) is measured at 4-digit resolution. ‘‘#
Validated’’ refers to the number of validated alleleles (pre-thresholding).
doi:10.1371/journal.pcbi.1002877.t003
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randomly delete 70% and 90% of the SNP genotypes from the

inference panel (independently for each individual, to minimize

sampling effects), while the graph from the second experiment

remains unchanged. In the 70% scenario, each individual remains

with w1500 SNPs in the xMHC region, which is comparable to

the SNP density of many 500 K arrays. In the 90% scenario,

approximately 600 SNPs in the xMHC region remain, which is

substantially less than the number provided by older e300 K

genotyping arrays. We observe that even with low SNP densities,

the observed performance of HLA*IMP:02 is relatively stable:

Setting 70% of the SNP genotypes in the inference panel

(GS&HLARES_EU 1/3) to ‘‘missing’’, the drop in achieved

per-locus accuracy is §1% (at a call threshold of T = 0.00, see

Table 4). Setting 90% of the SNP genotypes in the inference panel

to ‘‘missing’’, the maximum loss in accuracy is 5% for all loci but

DQA1 (probably related to the smaller amount of reference data

Figure 3. Per-allele accuracies on a diverse European reference panel (HLA*IMP:02). Per-allele analysis of HLA*IMP:02 imputation accuracy
for six classical loci in the GS&HLARES_EU cross-European validation experiment at a call threshold of T = 0.70. The x-axis represents the different HLA
alleles in the validation panel. The downward blue bars indicate how often each allele appears in the reference panel (the GS&HLARES_EU 2/3
dataset). Imputation success is indicated by the upward stack plots: green indicates correct imputations at 4-digit HLA type resolution; orange
indicates correct imputations at 2-digit resolution; black indicates alleles below the call threshold; red indicates incorrect imputations. Non-calls and
imputations which are only correct at 2-digit resolution accumulate in the alleles which are rare or not present at all in the reference panel.
doi:10.1371/journal.pcbi.1002877.g003
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for this locus, see Table 1), where it is 7%. Of note, many

reference panel SNPs are present on the Immunochip platform;

repeating the second experiment constrained to the Immunochip

SNP set for the imputation panel shows virtually the same results

as the 70% experiment (data not shown).

Increasing the heterogeneity in the reference panel (third

experiment, GS&HLARES_ALL 2/3) by including individuals of

other ethnicities (African-ancestry, Asian, Hispanic, third exper-

iment) only slightly decreases the achieved performance on the

European validation samples for HLA*IMP:02 (see Table 5),

yielding an average accuracy of 97% and an average call rate of

95% (T = 0.70). At 4-digit resolution, performance on the non-

European samples is markedly lower, with an average accuracy

and an average call rate of 87% (T = 0.70). Imputation accuracy is

lowest for the Asian samples (average accuracy 76% at T = 0.00)

and comparable for African-ancestry and Hispanic samples (84%

and 85% respectively, at T = 0.00). There are more pronounced

locus-specific differences in the non-European validation data: In

the African-ancestry samples and at T = 0.00, for example,

accuracy at HLA-DRB1 is at 71%, whereas it is at 97% at HLA-

C . At 2-digit resolution, alleles are imputed more reliably: average

accuracy at T = 0.00 is 90% for Asian samples (ranging from 78%

at HLA-B to 98% at HLA-DRB1); 93% for samples of African

ancestry (ranging from 82% at HLA-B to 100% at HLA-C/DQA1/

DQB1); and 99% for Hispanic samples (ranging from 97% at HLA-

B to 100% at all other loci);

Discussion

Better imputation of classical HLA alleles is an important goal

in enabling association studies to understand the genetic risk of

many complex and infectious diseases. We have developed

HLA*IMP:02, a statistical model for the imputation of classical

HLA types, which attempts to address problems arising in

performing imputation from multiple heterogeneous (both in

experimental origin and ethnicity) data sets. We have shown that

HLA*IMP:01 (our previous method; [1,2]) and HLA*IMP:02

achieve similar levels of performance on homogeneous reference

panels, but that HLA*IMP:02 clearly outperforms HLA*IMP:01

on heterogeneous European reference panels, yielding accuracies

and call rates §95% at 4-digit resolution in nearly all European

scenarios. Using HLA*IMP:02 instead of HLA*IMP:01 can

therefore be expected to increase power and accuracy in cross-

European genome-wide association studies.

The improved performance of HLA*IMP:02 (when compared

with HLA*IMP:01) is likely due to the path-based approach that

allows for HLA alleles to appear on multiple haplotype

backgrounds, a known consequence of population stratification

in the HLA region. To further investigate this hypothesis, we have

examined the local haplotype structure around the HLA-A*02:01

allele in GS&HLARES_EU, as inferred (and used) by

HLA*IMP:01 (Supporting Figure S5, part B). From visual

inspection of the figure, it is clear that there are at least three

major haplotypic backgrounds for 02:01 (when inspecting the

corresponding figure for the GS, we find two major haplotypic

backgrounds; Supporting Figure S5, part A). What is more, when

comparing the haplotypes that HLA*IMP:01 correctly imputes

with those that it doesn’t, we find that there are features which

appear virtually exclusively in the second group (marked in S11

part B). Interestingly, these features are also present in the group of

haplotypes that serve as reference panel, but the model does not

seem to utilize this information in the right way. This is consistent

with our interpretation that the model of HLA*IMP:01 does not

cope well with haplotypic heterogeneity. HLA*IMP:02, on the

other hand, can accommodate haplotypic heterogeneity and

imputes A*02:01 nearly perfectly in the same experiment.

The observed performance of HLA*IMP:02 is relatively stable

under high levels of missing data in the inference panel. This

property represents an important improvement upon

HLA*IMP:01, which offered no conceptually consistent way

(except for repeating the computationally intensive process of SNP

selection) towards dealing with missing SNPs in the inference

panel. Of note, the HLA*IMP:02 back end web service will

automatically carry out the SNP density experiment presented

here, constraining the set of available SNPs to those found in the

user dataset. The results from this experiment (including average

per-locus accuracies and PPV, sensitivity and specificity for each

allele) are included in the archive file which contains the main

imputations.

The model of HLA*IMP:02 could handle pre-phased data in a

straightforward way. There is no evidence to suggest that recent

encouraging results from SNP genotype imputation [23] do not

apply to pre-phasing with the aim of HLA type imputation.

However, in light of the complex regional haplotype structure and

high levels of diversity, we believe that the effect of pre-phasing on

HLA type imputation accuracy needs to be studied in more detail.

At 2-digit resolution, HLA*IMP:02 achieves average accuracies

§90% for all tested ethnicities using a multi-ethnic reference panel.

These results suggest that the model’s ability to deal with

heterogeneity in the reference set extends to highly diverse panels.

Moreover, extensions of the reference panel in a way that matches

imputation study panels can be expected to furthermore increase (4-

digit) performance, in particular for samples that are not well-

represented by the current reference. We illustrate this effect in

Figure 4 for HLA-DRB1 , one of the more challenging loci for HLA

type imputation. The figure displays samples from HLARES_ALL

1/3 stratified by the samples’ first two principal components (it is

well-known that PCA can be used to control for population

stratification [24] and is informative of relatedness [25]). In one

experiment, we use an exclusively European reference to impute the

samples (left-hand panel). In the other experiment, we make use of

the full reference panel GS&HLARES ALL 2/3 (right-hand panel).

Particularly samples in the periphery of PC space benefit from

improving reference panel size and match with the imputation

panel, whereas samples in the proximity of European data are

hardly affected. Averaged over all loci, accuracy for the non-

European samples increases by 8% when including the non-

European reference data (data not shown). These observations are

consistent with results from SNP genotype imputation, where using

matched and diverse reference panels is also known to have a

positive effect on accuracy [11,12,26,27].

Table 4. Missing data in the inference panel.

Locus # Validated 70% missing 90% missing

HLA-A 808 0.96 0.94

HLA-B 1646 0.95 0.93

HLA-C 752 0.95 0.94

HLA-DQA1 194 0.96 0.90

HLA-DQB1 934 0.97 0.95

HLA-DRB1 1358 0.90 0.86

4-digit resolution accuracies (PPV) when 70% and 90% of the inference panel
SNP genotypes (GS&HLARES_EU 1/3) in the second experiment are randomly
set to ‘‘missing’’. No call threshold is employed. ‘‘# Validated’’ refers to the
number of validated alleleles.
doi:10.1371/journal.pcbi.1002877.t004
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Table 5. Multi-ethnic validation results.

Threshold Population Locus # Validated Call Rate Accuracy 4-digit Accuracy 2-digit

T = 0.00 African-American/African HLA-A 30 1.00 0.73 0.83

HLA-B 44 1.00 0.73 0.82

HLA-C 30 1.00 0.97 1.00

HLA-DQA1 28 1.00 1.00 1.00

HLA-DQB1 30 1.00 0.87 1.00

HLA-DRB1 34 1.00 0.71 0.91

Asian HLA-A 28 1.00 0.79 0.96

HLA-B 110 1.00 0.68 0.78

HLA-C 28 1.00 0.82 0.89

HLA-DQA1 22 1.00 0.73 0.91

HLA-DQB1 36 1.00 0.83 0.89

HLA-DRB1 102 1.00 0.72 0.98

European HLA-A 824 1.00 0.96 0.97

HLA-B 1662 1.00 0.95 0.98

HLA-C 752 1.00 0.97 0.99

HLA-DQA1 206 1.00 0.96 0.99

HLA-DQB1 924 1.00 0.97 0.99

HLA-DRB1 1356 1.00 0.90 0.99

Hispanic HLA-A 28 1.00 0.82 1.00

HLA-B 126 1.00 0.63 0.97

HLA-C 36 1.00 0.92 1.00

HLA-DQA1 28 1.00 0.93 1.00

HLA-DQB1 40 1.00 0.97 1.00

HLA-DRB1 128 1.00 0.80 0.98

T = 0.70 African-American/African HLA-A 30 0.93 0.79 0.89

HLA-B 44 0.89 0.79 0.85

HLA-C 30 1.00 0.97 1.00

HLA-DQA1 28 1.00 1.00 1.00

HLA-DQB1 30 0.93 0.89 1.00

HLA-DRB1 34 0.59 1.00 1.00

Asian HLA-A 28 0.96 0.81 1.00

HLA-B 110 0.71 0.85 0.91

HLA-C 28 0.86 0.79 0.88

HLA-DQA1 22 0.82 0.78 0.94

HLA-DQB1 36 0.83 0.90 0.93

HLA-DRB1 102 0.74 0.83 1.00

European HLA-A 824 0.95 0.97 0.98

HLA-B 1662 0.95 0.97 0.99

HLA-C 752 0.99 0.97 0.99

HLA-DQA1 206 0.97 0.97 0.99

HLA-DQB1 924 0.99 0.98 0.99

HLA-DRB1 1356 0.87 0.95 0.99

Hispanic HLA-A 28 1.00 0.82 1.00

HLA-B 126 0.75 0.73 0.97

HLA-C 36 0.94 0.97 1.00

HLA-DQA1 28 0.86 0.96 1.00

HLA-DQB1 40 0.95 1.00 1.00

HLA-DRB1 128 0.73 0.88 1.00

High heterogeneity non-thresholded and thresholded cross-validation results for HLA*IMP:02, stratified by ethnicity of the imputed samples. GS&HLARES_ALL 2/3 is used to
impute GS&HLARES_ALL 1/3. Accuracy (PPV) is measured at 4-digit resolution and at 2-digit resolution. ‘‘# Validated’’ refers to the number of validated alleleles (pre-thresholding).
doi:10.1371/journal.pcbi.1002877.t005
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In summary, the model of HLA*IMP:02 contributes to solving

the important challenge of making HLA type inference from

combined multi-population reference panels. Raising the accuracy

of 4-digit imputation accuracy for non-European populations to

the level currently observed for European samples is an important

future goal that will require collection of reference data from other

populations. However, the framework developed here should

enable such integration to happen without compromising accuracy

in European-ancestry populations.

Supporting Information

Figure S1 Calibration HLA*IMP:02. Calibration plot

HLA*IMP:02, second experiment, medium heterogeneity. The red

points show expected (x-axis) and achieved mean accuracies (y-axis) in

each bin of step size 0.1, and the blue line is a plot of x = y. Note that

the first four data points (bins 0–3) are only based on 37 individuals.

(TIF)

Figure S2 Per-allele analysis for HLA*IMP:02/
HLARES. Per-allele analysis of HLA*IMP:02 imputation accu-

racy for six classical loci in the HLARES validation experiment

(first experiment, homogeneous reference) at a call threshold of

T = 0.70. The x-axis represents the different HLA alleles in the

validation panel. The downward blue bars indicate how often each

allele appears in the reference panel (the GS dataset). Imputation

success is indicated by the upward stack plots: green indicates

correct imputations at 4-digit HLA type resolution; orange

indicates correct imputations at 2-digit resolution; black indicates

alleles below the call threshold; red indicates incorrect imputa-

tions.

(TIF)

Figure S3 Per-allele analysis for HLA*IMP:01/
HLARES. Per-allele analysis of HLA*IMP:01 imputation

accuracy for six classical loci in the HLARES validation

experiment (first experiment, homogeneous reference) at a call

threshold of T = 0.70. The x-axis represents the different HLA

alleles in the validation panel. The downward blue bars indicate

how often each allele appears in the reference panel (the GS

dataset). Imputation success is indicated by the upward stack plots:

green indicates correct imputations at 4-digit HLA type resolution;

orange indicates correct imputations at 2-digit resolution; black

indicates alleles below the call threshold; red indicates incorrect

imputations.

(TIF)

Figure S4 Per-allele analysis for HLA*IMP:01/
GS&HLARES_EU. Per-allele analysis of HLA*IMP:01 imputa-

tion accuracy for six classical loci in the GS&HLARES_EU

validation experiment (second experiment, medium heterogeneity

reference) at a call threshold of T = 0.70. The x-axis represents the

different HLA alleles in the validation panel. The downward blue

bars indicate how often each allele appears in the reference panel

(the GS dataset). Imputation success is indicated by the upward

stack plots: green indicates correct imputations at 4-digit HLA

type resolution; orange indicates correct imputations at 2-digit

resolution; black indicates alleles below the call threshold; red

indicates incorrect imputations.

(TIF)

Figure S5 Barcode plot for HLA-A*02:01 in in GS and
GS&HLARES_EU. This plot shows the inferred haplotype

structure (‘‘barcode plot’’) for HLA-A*02:01 in the first (based

on GS, part A) and second experiment (based on GS&HLAR-

ES_EU, part B). Each row represents one haplotype, and each

SNP is depicted as a little square. The colouring of the boxes

indicates whether the haplotype carries the major SNP allele

(bright box) or a minor allele (dark box). The black/white rows

Figure 4. Accuracy comparison between complete and European-restricted reference panels. PCA-stratified accuracy comparison (HLA-
DRB1) between the complete reference panel (GS&HLARES_ALL, right plot) and a European-restricted reference panel (left side) for the high
heterogeneity scenario (imputing GS&HLARES_ALL 1/3, only samples from HLARES displayed). In each quadrant, mean accuracy (PPV) is indicated by
color. The red triangle indicates the (approximate) centre of the European reference data. Note that incorporating the non-European reference data
increases accuracy in particular for the non-European samples.
doi:10.1371/journal.pcbi.1002877.g004
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represent the haplotypes carrying the 02:01 allele in the reference

panel. Red and green rows represent haplotypes carrying 02:01 in

the validation panel, with green indicating successful imputation

and red indicating misimputation. We only show SNPs selected by

HLA*IMP:01 in the process of SNP selection, and the inferred

haplotypes are taken from the phased reference panel for

HLA*IMP:01. The inferred haplotype structure in the second

experiment in more complex than in the first experiment.

Comparing correctly and incorrectly imputed haplotypes in the

second experiment, it is clear that there are features (highlighted)

which appear virtually exclusively in incorrectly imputed haplo-

types (although they are present in the reference panel). Note that

A*02:01 is imputed virtually perfectly by HLA*IMP:02 in this

experiment, consistent with our hypothesis that HLA*IMP:02 is

more tolerant of heterogeneous haplotype structures.

(TIF)

Table S1 HapMap-based BC58 validation accuracy. Accu-

racies (PPV) for the HapMap-based BC58 validation, as described in

Leslie et al. [2] and Dilthey et al. [1]. No call threshold is employed.

The column ‘‘HLA*IMP:02’’ refers to the full model with error

parameters ! = 0 and localization (other parameters set to accommo-

date the much reduced sample size). In column I, the error probabilities

for sampling from the graph (mS ) and for building the graph mB are set

to 0 (all other parameters equal to the column ‘‘HLA*IMP:02’’). In

column II, the error probability for building the graph is set to 0, and in

column III, the error probability for sampling from the graph is set to 0.

In column IV, localization is deactivated.

(DOCX)

Table S2 Countries and ethnicities in HLARES. Country

and ethnicity of samples in the HLARES_EU and HLARES_ALL

datasets.

(DOCX)

Table S3 HLA-DPB1 and DRB3-5. HLARES_EU cross

validation for additional loci and structural variation (second

experiment, medium heterogeneity): 2/3 of the HLARES_EU

dataset are used as reference to impute the remaining 1/3. No call

threshold is employed. Accuracy (PPV) for HLA-DPB1 measured

at 4-digit resolution, at 2-digit resolution (including one pseudo-

allele for absence) for DRB orthologs.

(DOCX)

Table S4 HLA-DPB1 and DRB3-5. Allele-specific sensitivity,

specificity, PPV and r2 for the first experiment (HLA*IMP:02, GS

{w HLARES_EU). ‘‘NValidation’’ specifies how often an allele

appears in the validation data (according to classical typing results,

which we treat as the truth in this experiment). ‘‘NImputation’’

specifies how often an allele appears in the imputations for the

validation data. The following columns specify sensitivity,

specificity, PPV and r2 for each allele. All numbers are based on

‘‘best-guess’’ called alleles.

(DOCX)

Table S5 HLA-DPB1 and DRB3-5. Allele-specific sensitivity,

specificity, PPV and r2 for the second experiment (HLA*IMP:02,

GS&HLARES_EU 2/3 {w GS&HLARES_EU 1/3). ‘‘NVali-

dation’’ specifies how often an allele appears in the validation data

(according to classical typing results, which we treat as the truth in

this experiment). ‘‘NImputation’’ specifies how often an allele

appears in the imputations for the validation data. The following

columns specify sensitivity, specificity, PPV and r2 for each allele.

All numbers are based on ‘‘best-guess’’ called alleles.

(DOCX)

Text S1 The HLA*IMP:02 model and algorithms.
Mathematical and algorithmic characterization of the haplotype

graph model of HLA*IMP:02, allowing for integrating over path

uncertainty and localization.

(PDF)
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