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Abstract

The cytokine TGFb provides important information during embryonic
development, adult tissue homeostasis, and regeneration. Alter-
ations in the cellular response to TGFb are involved in severe human
diseases. To understand how cells encode the extracellular input
and transmit its information to elicit appropriate responses, we
acquired quantitative time-resolved measurements of pathway acti-
vation at the single-cell level. We established dynamic time warping
to quantitatively compare signaling dynamics of thousands of indi-
vidual cells and described heterogeneous single-cell responses by
mathematical modeling. Our combined experimental and theoreti-
cal study revealed that the response to a given dose of TGFb is deter-
mined cell specifically by the levels of defined signaling proteins.
This heterogeneity in signaling protein expression leads to decompo-
sition of cells into classes with qualitatively distinct signaling
dynamics and phenotypic outcome. Negative feedback regulators
promote heterogeneous signaling, as a SMAD7 knock-out specifically
affected the signal duration in a subpopulation of cells. Taken
together, we propose a quantitative framework that allows predict-
ing and testing sources of cellular signaling heterogeneity.
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Introduction

Cells sense their surrounding using cell-surface receptors and signal-

ing pathways that transmit the corresponding information from the

cell membrane to the nucleus. Cellular signaling is able to quantita-

tively respond to fine-grained inputs, for example, during

development, when morphogens precisely determine cell fates

according to spatial localization (Gurdon et al, 1998). However, it

remains poorly understood how mammalian cells encode and

decode quantitative information about extracellular inputs. Recent

studies have shown that temporal dynamics of pathway activity can

contribute to specific information processing and determine cellular

responses (Purvis & Lahav, 2013). To measure dynamics of cellular

signaling, live-cell imaging of fluorescent reporters emerged as a

powerful approach (Spiller et al, 2010). In addition to providing

unparalleled temporal resolution, it allowed to follow signaling in

thousands of individual cells over time. This revealed that geneti-

cally identical cells frequently respond in different ways to the same

external stimulus. For p53, TNF-a, and NF-jB signaling, it has been

demonstrated that due to non-genetic heterogeneity, the signaling

dynamics of each individual cell determine the phenotypic response

to extracellular stimulation (Geva-Zatorsky et al, 2006; Ashall et al,

2009; Spencer et al, 2009; Tay et al, 2010; Purvis et al, 2012; Lee

et al, 2014).

Further studies confirmed that precise information transmission

is in general limited by non-genetic heterogeneity, leading to dif-

ferences in differentiation programs (Chang et al, 2008; Goolam

et al, 2016), drug resistance (Cohen et al, 2008; Sharma et al, 2010;

Paek et al, 2016), and viral pathogenesis (Weinberger et al, 2005).

Heterogeneity in signaling emerges from various molecular sources

including cell cycle stage, external influences such as the microenvi-

ronment, or stochastic intracellular events (Loewer & Lahav, 2011;

Snijder & Pelkmans, 2011). Stochasticity may arise due to the

stochastic dynamics of biochemical reactions in a signaling pathway

(Rand et al, 2012), or from noise in gene expression that leads to

cell-to-cell variability in the concentrations of signaling proteins

(Feinerman et al, 2008). We therefore need a quantitative time-

resolved characterization of mammalian signaling systems at the

single-cell level to understand and predict how each individual cell

will respond to a given extracellular input.

A crucial extracellular input during embryonic development,

adult tissue homeostasis, and regeneration is the cytokine TGFb
(Schmierer & Hill, 2007; Heldin et al, 2009). TGFb stimulation
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prevents uncontrolled tissue growth by inducing cell cycle arrest

and apoptosis and can trigger epithelial-to-mesenchymal transition

(EMT), a conversion of adherent epithelial cells into a migratory,

mesenchymal phenotype (Gonzalez & Medici, 2014). TGFb signaling

is dysregulated during pathological conditions such as organ fibrosis

and cancer. In tumorigenesis, the pathway plays a dual role: Many

early-stage tumors evade the tumor-suppressive, cell cycle inhibi-

tory role of TGFb, whereas its EMT-promoting function frequently

induces metastasis of late-stage tumors (Ikushima & Miyazono,

2010). Thus, a specificity switch from one cellular response to

another can occur in TGFb signaling. The underlying molecular

changes are currently unclear and may involve changes in the

expression of transcription factors (Mullen et al, 2011) and signaling

proteins (Piek et al, 2001), or altered temporal dynamics of the

pathway (Nicolás & Hill, 2003).

TGFb initiates signaling through binding to and activation of its

serine/threonine kinase transmembrane receptors (TGFbRI and

TGFbRII). Ligand binding triggers receptor-mediated phosphoryla-

tion of SMAD2/3, which then heterotrimerize with SMAD4, translo-

cate to the nucleus and bind to target gene promoters for

transcriptional regulation (Feng & Derynck, 2005). This results in

gene expression changes including the downregulation of classical

epithelial and cell cycle genes and upregulation of mesenchymal

markers (Massagué, 2005). Additionally, TGFb target genes include

negative feedback regulators of the pathway.

Previous experimental and theoretical studies quantitatively

characterized the mechanisms shaping the temporal dynamics of

SMAD signaling (Clarke & Liu, 2008; Schmierer et al, 2008; Zi

et al, 2012). One important mechanism that limits the duration of

the signal is the depletion of extracellular TGFb due to internaliza-

tion of receptor–ligand complexes, followed by lysosomal TGFb
degradation (Clarke et al, 2009; Zi et al, 2011). Internalization of

signaling complexes may also deplete TGFb receptors from the cell

membrane (Vizan et al, 2013), thereby contributing to a refractory

period in which cells are insensitive to further TGFb stimuli

(Vizan et al, 2013; Sorre et al, 2014). In the nucleus, phosphatases

such as PPM1A revert the phosphorylation of SMAD2/3 and facili-

tate their export to the cytoplasm (Lin et al, 2006). Finally, tran-

scriptional feedbacks acting at multiple levels including receptor

deactivation (Valdimarsdottir et al, 2006; Wegner et al, 2012) or

SMAD dephosphorylation (Wang et al, 2014a) contribute to signal

termination.

Previous quantitative analyses of SMAD signaling mainly

focused on average behavior of a cell population at defined time

points, whereas the long-term response at the level of individual

cells is much less well characterized. Recent studies revealed that

SMAD2-SMAD4 complex formation and nuclear translocation of

fluorescently labeled SMAD proteins occur with pronounced cell-

to-cell variability (Warmflash et al, 2012; Zieba et al, 2012).

Heterogeneous signaling behavior at selected time points post-

stimulation was shown to be partially related to cell density and

cell cycle stage (Zieba et al, 2012). However, to understand how

TGFb signaling elicits defined responses in a cell-specific and

concentration-dependent manner, we need to systematically char-

acterize its dynamics on the single-cell level and integrate experi-

mental measurements with quantitative mathematical models of

the underlying molecular interactions. This would allow us to

predict how individual cells react to a given input and to design

targeted perturbations of the pathway to exploit its role in health

and disease.

To this end, we combined live-cell imaging of fluorescent SMAD2

and SMAD4 fusion proteins with automated image analyses to quan-

titatively characterize long-term dynamics of TGFb signaling in indi-

vidual cells. Based on clustering of thousands of time courses, we

identified six cellular subpopulations with qualitatively distinct

signaling behavior and concluded that the phenotypic response of

an individual cell is determined by the temporal dynamics of SMAD

nuclear translocation. We described the dynamics of these subpopu-

lations and of the complete heterogeneous cell population using a

quantitative modeling approach. This theoretical and experimental

approach revealed that heterogeneity in signaling arises from vary-

ing levels of signaling proteins. A CRISPR/Cas9-mediated knock-out

of SMAD7 confirmed our model prediction that a major part of the

observed heterogeneity can be attributed to fluctuations in feedback

proteins. Taken together, we present a framework to characterize

the response of cellular subpopulations to external cues and to

quantitatively model the underlying molecular mechanisms of

signaling heterogeneity. Furthermore, our results place the cell-

specific temporal dynamics of SMAD signaling as an important

determinant of the variegated cell fates elicited by TGFb stimuli.

Results

Quantitative imaging of SMAD nuclear translocation at the
single-cell level

A key step in TGFb signaling is the translocation of SMAD transcrip-

tion factor complexes from the cytoplasm to the nucleus. To moni-

tor this translocation event in individual cells with high temporal

and spatial resolution, we established a live-cell reporter system

based on the breast epithelial cell line MCF10A, an established

model for TGFb signaling (Zhang et al, 2014). To this end, we

generated a stable clonal cell line expressing a YFP-SMAD2 fusion

protein under the control of a constitutive promoter as well as

histone H2B-CFP as a nuclear marker (Fig 1A). Western blot analy-

sis revealed that the amount of SMAD2-YFP fusion protein corre-

sponds to approximately 50% of the endogenous SMAD2 protein

(Fig 1B). We validated that this overexpression did not perturb the

dynamics of SMAD2 signaling by monitoring TGFb1-induced phos-

phorylation of endogenous SMAD2 in the parental and reporter cell

lines (Figs 1C and EV1A). Furthermore, qPCR analysis revealed that

the induction of well-characterized SMAD target genes in response

to TGFb1 stimulation remained essentially unchanged (Fig EV1B).

To measure SMAD2-YFP translocation in living cells, we

performed time-lapse imaging over a 24-h time interval after a satu-

rating TGFb1 stimulus. In the example cell shown, SMAD2 predomi-

nantly located to the cytoplasm in the absence of TGFb1 as expected

and strongly accumulated in the nucleus within 1 h of stimulation

(Fig 1D). After this initial response, SMAD2 relocalized to the cyto-

plasm, before it accumulated in the nucleus again about 5 h post-

stimulation. Nuclear SMAD2 then remained elevated at varying

levels throughout the experiment. As we aimed to compare SMAD2

dynamics in hundreds of cells, we employed automated image anal-

ysis to quantify the nuclear and cytoplasmic SMAD2 concentrations

and expressed the signaling pathway activity as their ratio (nuc/cyt
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ratio, Figs 1E and EV1C–F, Appendix Fig S1 and Appendix II.A and

II.B). This measure was robust against correlated fluctuations due to

heterogeneity of transgene expression or measurement aberrations

such as photobleaching and reproducible between biological repli-

cates (Fig EV1G). We validated that changes in the nuc/cyt ratio of

SMAD2 reflect the kinetics of receptor-mediated phosphorylation of

endogenous SMAD2 (Fig EV1H and I). When cells divided during

the duration of the experiment, we only followed one of the daugh-

ter cells and merged mother and daughter trajectories before and

after division (see Appendix II.A).

Using this approach, we observed substantial heterogeneity in

the response to the saturating stimulus (Fig 1F). Most cells showed

nuclear SMAD2 accumulation shortly after the initial stimulus.

However, some cells immediately adapted to a low signaling plateau

afterward, whereas others were characterized by renewed nuclear

translocation of SMAD2. The average response of all cells in the

population revealed signaling dynamics similar to biochemical

measurements of cell populations in previously published studies

(Inman et al, 2002; Clarke et al, 2009; Zi et al, 2011; Vizan et al,

2013). Importantly, nuclear translocation of SMAD2 was dependent
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Figure 1. Dynamics and variability of SMAD2 signaling in single cells.

A Fluorescent reporter system to measure SMAD signaling dynamics in individual cells. SMAD2 was fused to the yellow fluorescent protein mVenus (YFP) under the
control of the human ubiquitin C promoter (UbCp) with the selection marker G418 (Geneticin). As a nuclear marker, histone 2B (H2B) was fused to the cyan
fluorescent protein mCerulean (CFP) under the control of UbCp with the selection marker hygromycin.

B Western blot analysis of endogenous and YFP-tagged SMAD2 in a stable clonal reporter cell line and the corresponding parental cell line. Cells were stimulated
with 100 pM TGFb1 and analyzed after 3 h. GAPDH was used as a loading control.

C Western blot analysis of SMAD2 activation in SMAD2-YFP reporter and parental MCF10A cells. Cells were stimulated with 100 pM TGFb1, and SMAD2
phosphorylation was analyzed at indicated time points. GAPDH was used as a loading control.

D, E Live-cell time-lapse microscopy images of MCF10A cells expressing SMAD2-YFP following treatment with 100 pM TGFb1 (D). White circles indicate the segmented
nucleus, and the estimated cytoplasmic area is represented by red annuli. The indicated cell was tracked over 24 h and the corresponding nuclear-to-cytoplasmic
(nuc/cyt) SMAD2-YFP ratio plotted over time (E).

F Time-resolved analysis of the SMAD2 nuclear to cytoplasmic localization for eight individual cells (thin lines) compared to the median nuc/cyt SMAD2 ratio of the
entire population (thick line) upon stimulation with 100 pM TGFb1. See Appendix Table S1 for number of cells analyzed.

G Median nuc/cyt SMAD2 ratio for reporter cells stimulated with 100 pM TGFb1 and treated with TGBbRI kinase inhibitor (SB431542) at indicated time points. At all
time points, SMAD2 nuclear translocation was dependent on TGFb receptor activity. See Appendix Table S1 for number of cells analyzed.
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on TGFb receptor activity at all time points, as signaling was

rapidly and synchronously terminated in all cells by the specific

inhibitor SB431542 (Fig 1G; Inman et al, 2002). We observed

comparable heterogeneous dynamics for SMAD4 nuclear transloca-

tion using a similarly engineered and validated reporter cell line

(Appendix Fig S2).

Dynamic features of SMAD signaling encode
phenotypic responses

Next, we investigated whether heterogeneous signaling was limited

to saturating TGFb1 concentrations or a characteristic feature of the

pathway at all stimulus levels. We treated cells with varying TGFb1
doses and quantified SMAD2 localization over a 24-h period. Inter-

estingly, we again observed pronounced cell-to-cell variability

(Fig 2A). At low stimulation levels, cells either showed almost no

response to the input or transient nuclear SMAD2 accumulation

over the first 5 h. At higher TGFb1 concentrations, most cells

showed an initial response to the input. However, the extent and

duration of renewed nuclear SMAD2 translocation at later time

points were highly variable: A single-cell response to 25 pM TGFb1
could be transient and of limited amplitude, resembling trajectories

typically observed upon stimulation with 5 pM TGFb1 (Fig 2A). In

essence, dynamic signaling responses were overlapping between

input levels and therefore only partially determined by the strength

of the extracellular stimulus.

TGFb is known to control cell fate in a dose-dependent manner

(Schmierer & Hill, 2007). Accordingly, we find that changing the

TGFb1 stimulus alters the median SMAD2 response and expression

levels of selected target genes in cell populations (Figs 2B and

EV2A and B). How does the SMAD pathway encode dose-

dependent information despite the strong cellular heterogeneity

observed in our single-cell measurements? We hypothesized that

phenotypic responses are determined by the individual pattern of

SMAD translocation in a given cell rather than by the amount of

ligand applied to a population. To quantify pair-wise differences

between single-cell time courses, we used dynamic time warping

(DTW), a method for non-linear alignment in the time domain,

which is frequently employed in speech analysis (Sakoe & Chiba,

1978). Compared to simpler metrics such as Euclidean distance,

DTW is more robust against distortions in the time domain and

therefore emphasizes dynamic patterns while preserving dif-

ferences in amplitudes (Fig EV2C). To improve its applicability to

biological systems, we modified DTW by introducing an elastic

constraint on stretching a given time series (cDTW, see

Appendix Fig S3 and Appendix II.C for more information on cDTW

implementation and performance).

Using this approach, we calculated the similarity between time

courses for thousands of cells stimulated with six different doses

of TGFb1, grouped them using hierarchical clustering, and

defined six response classes of SMAD signaling (Fig EV2D–F,

Appendix II.D). The median time courses of the response classes

showed qualitatively distinct signaling behavior (Fig 2C). Class 1

is defined by a minimal response to stimulation; its members can

therefore be considered non-responders. The other classes show

either transient (classes 2 and 3) or sustained dynamics (classes

4–6) of varying levels and duration. As expected, increasing

ligand concentrations induced a shift from non-responders toward

transient and then sustained signaling (Fig 2D). However, this

transition is not sharp, but gradual, implying that cells from

several signaling classes can be observed upon stimulation with a

given dose. Accordingly, cells stimulated with the same TGFb
concentration are more distinct in their dynamics than cells

grouped into a common signaling class: This was visualized by a

higher number of cells with positive silhouette scores in the lower

versus the upper panel of Fig 2E. Positive silhouette scores indi-

cate that trajectories were more similar to others in their own

group compared to any other group according to cDTW scores

(see also Appendix II.D).

We next investigated whether phenotypic responses are primar-

ily determined by the extracellular concentration of the ligand or by

the dynamics of SMAD signaling. To this end, we analyzed TGFb-
induced changes in proliferation for all cells belonging to a signaling

class or treated with the same extracellular stimulus. We observed

that in general, SMAD signaling activity correlated with reduced cell

divisions as expected. Sorting cells according to signaling classes

indicated that sustained accumulation of SMAD in the nucleus

affected cell cycle progression more profoundly then transient

SMAD translocation (Fig 2F). Cell motility was altered both by tran-

sient and sustained SMAD signaling, although changes remained

modest for the first 24 h after (Fig 2G). We detected more robust

increases in motility when directed movements were analyzed for a

60-h period post-stimulation (Fig EV2G and H). In all cases, signal-

ing classes provided a better separation of phenotypic outcomes

compared to ligand concentration as judged by the magnitude of

effects and the appearance of gradual differences between groups

(Figs 2F–G and EV2I–J) This supports our hypothesis that the

dynamics of signaling, and not the stimulus dose, encode for cellu-

lar behavior.

Dynamics of SMAD signaling are determined by the state of
individual cells

Our results so far suggest that heterogeneity in the signaling path-

way disturbs transmission of the extracellular signal, that is, the

ligand concentration. As a consequence, cells respond to a given

input with individual SMAD dynamics that can be grouped in signal-

ing classes. What determines which signaling class a cell belongs

to? Previous studies investigating single-cell responses suggest at

least three potential sources of cell-to-cell variability: cell cycle, local

density, or variations in protein levels (Loewer & Lahav, 2011;

Snijder & Pelkmans, 2011).

To determine whether cell cycle state impacts TGFb signaling,

we imaged cells for 24 h before stimulating them with different

TGFb1 concentrations (Fig EV3A). We then sorted cells either

according to the last division before the stimulus or according to the

amplitude of the response. However, we did not observe any obvi-

ous correlation between cell cycle state and SMAD signaling compe-

tence (Figs 3A and EV3B). To quantify their relation, we mapped

SMAD signaling responses for each individual cell in the new

dataset to the previously defined signaling classes (Fig 3B). This

mapping was achieved by calculating Euclidian distances of

single-cell time courses in both datasets and assigning new trajecto-

ries to the signaling class of the most similar single-cell response

from the previous experiment (Appendix II.H). As expected, we

observed similar distributions of cell division times for all signaling
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Figure 2. SMAD dynamics decompose into distinct signaling classes.

A Time-resolved analysis of SMAD2 nuclear to cytoplasmic localization for varying stimulus levels. Nuc/cyt SMAD2 ratios for eight individual cells (thin lines) as well as
the population median (thick line) are shown. See Appendix Table S1 for number of cells analyzed.

B Median nuc/cyt SMAD2 ratio of cells stimulated with varying concentrations of TGFb1 over 24 h. See Appendix Table S1 for number of cells analyzed.
C Individual cells were clustered into six signaling classes according to their time-resolved nuc/cyt SMAD2 ratio using dynamic time warping (DTW). Each line

represents the median over all cells of the indicated cluster. Cells stimulated with varying TGFb1 concentrations as indicated in (B) were included in the analysis.
D Distributions of signaling classes depending on TGFb dose.
E Silhouette plots of cells sorted according to TGFb concentration (upper panel) or signaling classes (lower panel). Plots provide a graphical representation of how well

the nuc/cyt SMAD2 ratios of each cell correspond to trajectories of other cells in its own group according to the cDTW measure. Positive silhouette scores indicate
that SMAD2 responses are more similar to the own group, while negative scores signify that the corresponding trajectory is closer to any of the other groups. In
general, signaling classes provide better separation than sorting according to stimulus levels.

F Cell proliferation shown as number of cell divisions per cell within 24 h after a TGFb stimulus. Cells were sorted according to TGFb concentrations (upper panel) or
signaling classes (lower panel).

G Motility of each cell as summed distance covered between 20 and 24 h after stimulation with TGFb (in pixel). Cells were sorted according to TGFb concentrations
(upper panel) or signaling classes (lower panel). White lines indicate median; boxes include data between the 25th and 75th percentiles; whiskers extend to maximum
values within 1.5× the interquartile range; crosses represent outliers. See Appendix Table S1 for number of cells analyzed.
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classes (Figs 3C and EV3C). We further excluded a cell cycle effect

using a synchronization protocol: Cells arrested in G2 showed a

median TGFb-induced SMAD2 translocation indistinguishable from

an unsynchronized population (Fig EV3D).

As our data indicated that heterogeneity in SMAD2 signaling is

independent of cell cycle state, we next investigated whether SMAD

signaling of a given cell is influenced by the number and distance of

its neighbors. To this end, we calculated a local cell density score

for each cell of the population based on the weighted distance of

cells in a 640 lm radius (Fig EV3E, Appendix II.E). We found that

cell density is not sufficient to explain signaling heterogeneity under

our reference culture conditions, as the distribution of density scores

was overlapping for all signal classes (Figs 3D and EV3F). Finally,

we used the information theoretical measures mutual information

and entropy to calculated to which extent signaling heterogeneity

can be explained by cell cycle and cell density and determined an

upper bound of below 5% for each process (Fig EV3G and H,

Appendix II.E).

Having excluded a major role for cell cycle and cell density, we

asked more generally whether signaling heterogeneity arises from

differences in the cellular state or from stochastic dynamics of the

signaling pathway itself. Previous work on other signaling pathways

had shown that sister cells analyses can help tackling this question

(Geva-Zatorsky et al, 2006; Spencer et al, 2009; Sandler et al,

2015): If recently divided cells show similar signaling responses,

heterogeneity likely arises from cellular state which is assumed to

be similar for both sister cells. In contrast, a divergent response in

sister cells would indicate that the signaling response is intrinsically

unpredictable and stochastic. To analyze the response of sister cells

upon TGFb stimulation, we used a dataset of over 6,000 cells from

11 independent experiments, all treated with 100 pM TGFb1, and
identified cell division events at any time point after stimulation
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Figure 3. Heterogeneity in SMAD dynamics determined by cellular state.

A Heat map of SMAD2 translocation in individual cells over time. Cells were imaged for 24 h before stimulation with 100 pM TGFb1. Each horizontal line represents a single
cell, and the nuc/cyt ratio is shown as indicated in the legend. Time of cell division is indicated by white marks. Cells were sorted either by the time of the last division
before stimulation (left) or by the amplitude of their response (right). Cell cycle and response are not correlated. See Appendix Table S1 for number of cells analyzed.

B Mapping of SMAD2 translocation dynamics in individual cells to previously identified signaling classes (compare Fig 2C). Cells were imaged for 24 h before
stimulation with varying TGFb1 concentrations (Fig EV3A). For each trajectory, the most similar signaling class was determined using Euclidian distance to the
median dynamics of the previously defined clusters (Fig 2C) as a similarity measure. Median nuc/cyt SMAD2 ratios for resulting mapped subpopulations are shown.
See Appendix Table S1 for number of cells analyzed.

C Time of last cell division before stimulus for each signaling class (defined in B). Distributions are overlapping; no significant trend in cell division time is observable.
White lines indicate median; boxes include data between the 25th and 75th percentiles; whiskers extend to maximum values within 1.5× the interquartile range;
crosses represent outliers. See Appendix Table S1 for number of cells analyzed.

D Cell density before stimulus for each signaling class (defined in B). Density scores represent a weighted sum of all neighboring cells within 640 lm distance.
Distributions are overlapping; no significant trend in cell density is observable. White lines indicate median; boxes include data between the 25th and 75th percentiles;
whiskers extend to maximum values within 1.5× the interquartile range; crosses represent outliers. See Appendix Table S1 for number of cells analyzed.

E Analysis of SMAD2 translocation dynamics in sister cells. SMAD2 translocation dynamics in sister cells after division and unrelated cell pairs with the same nuc/cyt
SMAD2 ratio were compared using cDTW. Resulting similarity scores were aligned in time and compared to those from randomly selected cell pairs. Effect size (solid
lines) and 95% confidence intervals (shaded areas) were estimated by bootstrapping. The analysis shows that recently divided cells are more similar than control cell
pairs and remain correlated over time, indicating that heterogeneity arises from differences in cellular state. See Appendix Table S1 for number of cells analyzed.
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(Appendix II.G). We then tracked both sister cells and quantified

their divergence by calculating cDTW distances of the correspond-

ing SMAD2 time courses in a sliding window after division events.

The cDTW distances were aligned to the time of sister cell division,

and compared to a set of control cells that by chance had identical

nuc/cyt ratios at a certain time point. Both sister cell and control

groups were normalized to the average cDTW distance of random

cell pairs (Appendix II.G). Upon alignment of division times, this

approach yields an estimation of the time-dependent divergence of

sister cells. Interestingly, we found the SMAD2 response to be more

correlated in sister cells than in control cell pairs (Fig 3E). While

correlation between control cell pairs was lost rapidly within 4 h

after stimulation, similarity between sister cells decreased more

slowly and sister cells remained significantly correlated throughout

the observation period. This indicates that cellular state is an impor-

tant source of variability, and that the signaling pathway itself

responds to a large degree deterministically.

While sister cells showed a correlated response after division,

their similarity decreased with time and reached a minimum at

around 6 h (Fig 3E). Similar signaling divergence times were

reported in previous sister cell studies, where heterogeneity had

been attributed to stochastic expression of signaling proteins (Geva-

Zatorsky et al, 2006; Spencer et al, 2009). We therefore hypothe-

sized that SMAD2 signaling heterogeneity is mainly caused by vary-

ing concentrations of signaling proteins. While this hypothesis is

difficult to test experimentally, it predicts that a deterministic ordi-

nary differential equation model of the signaling pathway would be

able to reproduce the population heterogeneity if protein concentra-

tions are sampled from biologically relevant distributions (log-

normal distributions; Newman et al, 2006).

A mechanistic model describes population-average SMAD
signaling dynamics

To test this prediction, we devised a three-tiered modeling strategy

(Fig 4A): We initially derived a mechanistic model of the signaling

pathway based on previous literature and calibrated it to median

responses of cell populations. Advancing in resolution, we then

derived six subpopulation models by fitting to the median time

courses of the observed signaling classes, allowing only variation in

the expression of signaling proteins and leaving kinetic parameters

fixed to their population-average value. Finally, we generated popu-

lations of single-cell models by repeated simulation of each subpop-

ulation model with sampling of signaling protein concentrations

from log-normal distributions. The final cell population was assem-

bled by combining single-cell simulations from all subpopulations

according to the proportions of signaling classes observed in the

experimental data.

The topology of the SMAD signaling model comprises three main

modules (Fig 4B, Appendix III.A and III.B): The receptor module

describes receptor–ligand binding and trafficking of TGFb receptors

between plasma membrane and endosomal compartments (Di

Guglielmo et al, 2003; Zi et al, 2011; Vizan et al, 2013). The SMAD

module includes receptor-mediated phosphorylation of SMAD2,

complex formation with SMAD4, nucleo-cytoplasmic shuttling of

SMAD complexes and signal termination by nuclear dephosphoryla-

tion of SMAD2 (Schmierer & Hill, 2005; Schmierer et al, 2008; Vizan

et al, 2013). The feedback module describes SMAD-induced

expression of a generic feedback regulator, which acts by inhibiting

TGFb receptors. It represents the combined activity of inhibitory

molecules such as SMAD6, SMAD7, and SMURFs (Chen & Meng,

2004; Legewie et al, 2008).

The kinetic parameters of the mass action-based ordinary dif-

ferential equations (ODEs) were estimated by simultaneously fitting

the model to time-resolved population-average data of nuclear

SMAD2-YFP and SMAD4-YFP translocation for varying doses of

TGFb1 (Figs 4C and EV4A). To further constrain the receptor and

feedback modules, we fitted time-resolved Western blot data of

receptor levels as well as perturbation experiments in which TGFb1
was repeatedly added to the medium or receptor signaling was

halted using the TGFb receptor inhibitor SB-431542 (Fig EV4B–G

and Appendix Table S4 and Appendix III.C and III.D). The resulting

best-fit model represents the average behavior of the cell population

and explained the N fitted data points within experimental variation

(v2 = 5019; N = 4,992).

We next asked whether our mechanistic model can correctly

predict the dynamics of SMAD signaling for previously untested

experimentally conditions. To assess the robustness of our model

predictions, we analyzed 30 independent model fits with a similar

goodness of fit obtained from local multistart optimization (see

Appendix III.D). Notably, only few kinetic parameter values in the

model could be identified based on the available data and were con-

fined to narrow ranges in all 30 fits (Table EV1, Appendix Fig S4

and Appendix III.E). Nevertheless, all models robustly predicted that

signaling is terminated once TGFb in the medium is depleted by

cellular uptake and lysosomal degradation (Massagué & Kelly, 1986;

Koli & Arteaga, 1997; Clarke et al, 2009). To test this, we measured

extracellular TGFb concentration using a luciferase-based reporter

system (Abe et al, 1994) and found that ligand decay at an initial

TGFb1 concentration of 25 pM was completed within 20 h as

predicted (Fig 4D), coinciding with SMAD2 exit from the nucleus

(Fig 4C). We further characterized signal termination by restimulat-

ing cells at different time points after an initial 5 pM stimulus. As

predicted by the models, only restimulation at a late time point led

to a notable response, indicating that the pathway shows refractory

behavior early after an initial TGFb input (Fig 4E and F). This

refractory period is prolonged upon strong stimulation, as the SMAD

response was unaffected by adding additional ligand at all time

points after an initial 100 pM stimulus (Figs 4G and EV4H). Finally,

we pre-incubated MCF10A cells with the general transcription inhi-

bitor DRB 30 min before TGFb1 stimulation to test the model predic-

tion that transcriptional negative feedback shapes the dynamics of

SMAD signaling. In line with model predictions, we found that DRB

increases the signaling amplitude after stimulation with 100 pM

TGFb1 both at peak time and during later signaling phases (Fig 4H).

Taken together, these results show that our deterministic model

faithfully reflects the average dynamics of SMAD signaling in popu-

lations of cells. Model predictions were robust despite limited

parameter identifiability as they most likely depend on identifiable

combinations of parameters.

Varying protein levels determine heterogeneous SMAD signaling

Having implemented a plausible population-average model of the

SMAD pathway, we next set out to test if variation in the concentra-

tion of signaling proteins is sufficient to explain the observed
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Figure 4. Mathematical modeling of TGFb signaling.

A Outline of a tiered approach to model heterogeneous signaling in single cells (see text for details).
B Topology of TGFb pathway model. The oval shapes represent free receptors (blue), ligand (yellow), and ligand–receptor complex (gray). Extension “-e” signifies

endosomal species. Rectangles represent SMAD2 (blue), SMAD4 (green), and generic feedback regulator (yellow). Extensions “p” indicate phosphorylated and “n”
nuclear species. Production and degradation are shown by phi symbols. State transitions and intercompartmental shuttling are indicated with arrows, enzyme
catalysis with circle headed bars, and feedback inhibition with blunt headed bars.

C Calibration of population-average model by fitting to median SMAD2 translocation dynamics of cells stimulated with different TGFb concentrations. Experimental
data points correspond to Fig 2B. Model fits to other datasets are shown in Fig EV4 (see also Appendix Table S4); parameter values are provided in
Appendix Table S5 and Table EV1.

D Medium TGFb degradation over time. Blue line shows the ligand concentration after an initial stimulus with 25 pM TGFb1 as predicted by the best-fit
mathematical model. Shaded area represents the range of predictions from 30 fits with similar goodness of fit obtained from local multistart optimization (see
Appendix III.D). Black stars indicate corresponding experimental measurements. Error bars represent standard deviation from three replicates.

E–G Time-dependent restimulation of the TGFb pathway at varying input levels. Measured median nuc/cyt SMAD2 ratios (*) and model predictions (�) are shown. Solid
lines represent the best-fit model and shaded areas the range of predictions from 30 independent fits (see D). Dashed vertical lines indicate time of second
stimulus, which replenishes the extracellular ligand pool to its initial concentration. (E) 5 pM TGFb1 was applied at 0 h and 3 h. (F) 5 pM TGFb was applied at 0 h
and 8 h. (G) 100 pM TGFb1 was applied at 0 h and 8 h. See Appendix Table S1 for number of cells analyzed.

H Effect of the global transcriptional inhibitor DRB on SMAD signaling. Cells were stimulated with 100 pM TGFb1 in the presence or absence of DRB. Measured
median nuc/cyt SMAD2 ratios (*) and model predictions (�) are shown. Solid line represents the best-fit model and shaded area the range of predictions from 30
independent fits (see D). See Appendix Table S1 for number of cells analyzed.
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cell-to-cell variability and decomposition into signaling classes. To

this end, we quantitatively described signaling classes upon stimula-

tion with 100 pM TGFb1 by fitting six subpopulation models to the

average cluster dynamics (Fig 5A, v2 = 1957.8; N = 1,723). These

subpopulation models comprised the same kinetic parameter values

as the population-average fit, only signaling protein concentrations

(e.g., TGFb receptors or SMAD transcription factors) were allowed

to change within a range of 0.5- to twofold around the initial value

corresponding to the typical cell-to-cell variation observed for intra-

cellular proteins (Appendix IV.A; Sigal et al, 2006a; Feinerman et al,

2008; Spencer et al, 2009).

Finally, we converted subpopulation models to an ensemble of

artificial cells representing the heterogeneity of the entire cell popu-

lation. Artificial single cells belonging to a signaling class were

generated by repeated simulation with signaling protein concentra-

tions varying around the best-fit values of the corresponding

subpopulation model (Appendix IV.B). The full cell population was

assembled in silico by selecting artificial cells from ensembles

according to the proportion of corresponding signaling class

observed experimentally at a stimulus of 100 pM TGFb1 (Fig 2D).

The unknown degree of signaling protein level variation between

individual cells was estimated by comparing the SMAD dynamics in

simulated populations with experimental measurements from live-

cell imaging. To do so, we extracted four signaling features from the

single-cell time courses of SMAD2 translocation (100 pM TGFb1,
Fig 5B): the amplitude of the response at about 60 min (E); the

plateau after the initial response at about 300 min (L); the ratio of

these two quantities characterizing the degree of signal adaptation

(E/L); and the time of the maximal nuc/cyt SMAD2 ratio (T). The

distribution of these features among the cell population was

assessed and the deviation of simulated and measured distributions

quantified as a sum of squared distances (Fig 5C, Appendix IV.B

and IV.C). This model-data comparison was done while assuming

that protein level variation consists of a linear combination of two

log-normally distributed noise contributions: a correlated noise that

simultaneously affects all signaling proteins in a given cell simula-

tion and arises from fluctuations in the global gene expression

machinery (e.g., RNA polymerases and ribosomes), and an uncorre-

lated noise specific for each signaling protein arising from stochas-

ticity in gene expression (Elowitz et al, 2002; Sigal et al, 2006b;

Rhee et al, 2014; Sherman et al, 2015). For simplicity, we assumed

the same extent and type of variation for all signaling proteins. By

systematically altering the magnitude of correlated and uncorrelated

fluctuations, we observed that simulated cell populations robustly

matched the experimental measurements over a wide range of noise

levels around an optimal combination of both values (Fig 5C).

Importantly, using these noise levels, the heterogeneity of the same

signaling features at a lower TGFb concentration could be success-

fully predicted without further fitting (Fig 5E). The total signaling

protein concentrations in the assembled population were continuous

and log-normally distributed as expected for biological cell popula-

tions (Fig EV5A).

To assess whether our tiered modeling approach with quantita-

tive fitting of signaling classes improves the description of cellular

heterogeneity, we compared our results to a simpler modeling

approach in which signaling protein concentrations were directly

sampled around the best-fit values of the population-average model

(Spencer et al, 2009; Paulsen et al, 2011; Gaudet et al, 2012).

Interestingly, this simpler ensemble model described the experimen-

tal data less well and was more sensitive to variation in the corre-

lated and uncorrelated noise contributions (Fig 5D and Appendix

IV.C). Taken together, our modeling approach indicates that varia-

tion in signaling protein concentration is sufficient to quantitatively

explain cell-specific SMAD dynamics.

Negative feedback determines cell-specific responses to TGFb

Having single-cell simulations reflecting cellular heterogeneity at dif-

ferent TGFb concentrations at hand, we asked whether our model

gives rise to the same proportions of signaling classes as experimen-

tally observed. Therefore, we mapped simulated SMAD2 trajectories

from the artificial cell population to the previously observed signal-

ing classes, which resulted in distributions consistent with the

experimental data (compare Figs 2D and 6A). Importantly, as for

the measured data, grouping simulated cells according to signaling

classes yielded a more homogenous separation than grouping

according to stimulus strength (Fig EV5B).

Using these simulations, we further investigated features of cellu-

lar heterogeneity that are not directly accessible experimentally, and

analyzed how cells transition between signaling classes with

increasing TGFb stimulus (Fig 6B). Interestingly, we observe a

massive transition from non-responding and transient signaling

(classes #1–3) to sustained pathway activation (classes #4–6)

between 5 and 25 pM TGFb1. Model analysis indicates that the

switch to sustained signaling emerges because external TGFb
rapidly decays within ~10 h for 5 pM TGFb1, whereas it remains

elevated for about 20 h at 25 pM (Fig 4D). Yet, subpopulation

of cells with transient signaling persist at 25 and 100 pM (classes

#1–3), indicating that SMAD signaling is restricted despite the

continuing presence of ligand, possibly due to high activity of tran-

scriptional negative feedback. To confirm this hypothesis, we

systematically lowered feedback expression in artificial cells and

observed a strong accumulation of cells with high intensity signaling

as expected (Fig 6C; class #6). Importantly, cells with none or tran-

sient SMAD activation (classes #1–3) completely disappear upon

depletion of feedback in the model, providing evidence that signal

termination in these subpopulations indeed relies on negative feed-

back. Similar results were obtained upon stimulation with 25 pM

TGFb1, while transient signaling classes persisted at 5 pM TGFb1
even in the absence of feedback (Fig EV5C). Importantly, these

model predictions were robust despite uncertainties in the estimated

kinetic parameter values (Fig EV5D, Table EV1 and Appendix IV.D).

Thus, feedback regulation may underlie the decomposition into

qualitatively distinct signaling classes at high TGFb concentrations.

To further confirm the role of feedback in decomposing SMAD

responses into signaling classes, we analyzed signaling protein

distributions for each of the six signaling classes using independent

model fits with a comparable goodness of fit (Appendix Fig S5A).

As these distributions were complex without any parameter provid-

ing a clear discrimination between signaling classes, we employed

methods from information theory and determined the entropy of

model parameters in our subpopulation models (Fig 5A;

Appendix IV.D). If the fitted protein concentration values are similar

in all subpopulation models, they contain little information to distin-

guish between response classes and its entropy will be close to

maximum (2.6 bits). The more heterogeneous parameter values are
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among subpopulations, the lower the measured entropy is and the

more they may contribute to the divergent signaling dynamics of the

classes (Fig 6D). While many signaling protein concentrations show

relatively similar values in all subpopulation models (entropy ~2.6

bits), the level of feedback protein indeed carried the most informa-

tion to distinguish between signaling classes.
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Figure 5. Modeling heterogeneous signaling dynamics in single cells.

A The model of TGFb signaling was fitted to six signaling classes observed upon stimulation with 100 pM TGFb1. Median nuc/cyt SMAD2 ratios (circles) and model
fits (solid lines) are shown.

B Features of SMAD2 translocation dynamics. We considered the amplitude (E) and timing (T) of the first peak of nuclear translocation as well as the amplitude at
300 min (L) as a measure for the signaling activity upon adaptation of the pathway.

C, D Model performance at varying noise levels. Heterogeneous signaling in response to a 100 pM TGFb1 stimulus was simulated by signaling class-based modeling (C)
or a direct ensemble modeling (D) (see main text). Noise in protein expression is modeled as a combination of correlated and uncorrelated noise (see
Appendix IV.B). The differences among single-cell signaling features between model and data are calculated as sum of squared errors and normalized to the
maximal deviation observed (color bar). For each combination of correlated and uncorrelated noise, 10,000 cells were simulated.

E Measured and predicted distributions of signaling features for two TGFb stimuli (2.5 and 100 pM). A population of artificial cells was assembled according to
signaling class distributions observed upon stimulation with 100 pM TGFb1 using optimal noise contributions (see panel C). Signaling features were extracted from
simulations at different TGFb concentrations.
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To experimentally test the predicted role of feedback in signaling

heterogeneity, we deleted SMAD7 in SMAD2 reporter cells using

Cas9-mediated gene knock-out (Fig EV5E and F). SMAD7 is consid-

ered to be one of the main feedback regulators of TGFb-induced
signaling, and acts at the level of TGFb receptors as implemented in

our model (Moustakas & Heldin, 2009). We measured SMAD2

dynamics in response to various doses of TGFb1 in the parental and

knock-out cell line and mapped the resulting time series to the initial

observed signaling classes (Figs 6E and EV5G). As predicted by the

model, we observed a shift in signaling classes toward those with

higher signaling strength. We next aimed to compare the measured

single-cell responses to model simulations. As we assumed that

some feedback activity is retained in SMAD7 knock-out cells due to

the presence of redundant transcriptional feedback regulators in

TGFb signaling (Wegner et al, 2012), we compared signaling class

distributions from experimental data and model simulations with

varying feedback strength and observed the best match at 30% feed-

back strength (Fig 6F and G and Appendix IV.D). In both model and

experiment, feedback depletion led to a disappearance of the non-

responding and transient classes #1–3 at high doses of TGFb1 (25

and 100 pM). In contrast, cells remained in transient signaling

classes at or below 5 pM TGFb1, confirming that ligand depletion

dominates signal termination at low input levels. Interestingly, loss

of SMAD7 did not alter the population-median signal duration

(Fig EV5G), further suggesting that it affected this feature only in a

subpopulation of cells.

A noticeable difference between model and experiment was that

the model predicted a lower fraction of non-responding cells in

SMAD7 knock-out cells at TGFb concentrations below 5 pM when

compared to experimental measurements. To explain this discrep-

ancy, we further analyzed parameter variations between signaling

classes using independent model fits. We observed that the non-

responding signaling class #1 differs from the remaining signaling

classes, as it is characterized by a high ratio of feedback protein to

receptor levels (Appendix Figs S5B and S6). We hypothesized that

knock-out cells compensate the loss of SMAD7 by downregulating

TGFb receptor levels, thereby increasing the feedback-to-receptor

ratio and the fraction of non-responding cells. Western Blot analyses

support this hypothesis as we observed reduced TGFbRII levels in

SMAD7 knock-out cells (Appendix Fig S7). Taken together, we

conclude that negative feedback leads to decomposition into
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A Predicted distributions of signaling classes depending on TGFb dose.
Simulations were performed as described for Fig 5E. The simulated time
courses were mapped onto the original clusters dynamics (Fig 2C) as
described in Appendix II.H.

B Transition between signaling classes depending on stimulus strength. Same
data as in (A). Black lines and their thickness indicate the direction and
extent of transitions between signaling classes. Filled circle size indicates
the proportion of artificial cells in the corresponding signaling class.

C Transition between signaling classes depending on feedback strength. The
response of a reassembled population of artificial cells to 100 pM TGFb1
was simulated with reduced feedback expression as indicated (see
Appendix IV.D) and mapped to previously observed signaling classes. Black
lines and their thickness indicate the direction and extent of transitions
between signaling classes. Transitions with a probability below 1% were
excluded for better visualization.

D Variation of model parameters across signaling classes. For 30 independent
model fits to the experimentally observed signaling classes upon
stimulation with 100 pM TGFb1 (see Appendix), the variation of the
indicated parameters between signaling classes was calculated as entropy.
Lower entropies indicate more variation between signaling classes; uniform
parameter distribution would lead to the maximal entropy of 2.6 bits.
White lines indicate median; boxes include data between the 25th and 75th

percentiles; whiskers extend to maximum values within 1.5× the
interquartile range.

E Distribution of signaling classes in parental and SMAD7 knock-out cells.
Cells were stimulated with indicated concentrations of TGFb and measured
SMAD2 translocation dynamics mapped to the previously observed
signaling classes (Fig 2C).

F Calibration of feedback level. Signaling class distributions at varying levels
of feedback expression (C) were compared to experimentally observed
distribution upon SMAD7 knock-out (E). Minimal divergence between
model and data was observed at 30% feedback expression.

G Predicted distributions of signaling classes depending on TGFb dose at 30%
feedback expression. Simulations were mapped to the previously observed
signaling classes (Fig 2C)
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qualitatively distinct signaling classes upon strong stimulation,

while its loss can be partially compensated at lower input levels.

In summary, our combined experimental and computational

study shows that the response to a given dose of TGFb1 is deter-

mined cell specifically by the levels of certain signaling proteins.

This leads to decomposition of cell populations into classes of

SMAD2 dynamics, which determine the phenotypic response to a

stimulus. Changing the level of negative feedback regulators such as

SMAD7 allows shifting the response of a given cell and therefore

enables fine-tuned control of the cellular response to TGFb1 in

populations of cells.

Discussion

Efficient information processing by the TGFb signaling pathway is

crucial during development, tissue homeostasis, and regeneration,

as compromised signaling contributes to severe human diseases

such as cancer. To predict cellular responses to this versatile cyto-

kine and modulate them by targeted therapies, we need a quantita-

tive understanding of how cells encode and decode information

about the strength and duration of the extracellular input. Using a

combination of time-resolved measurements at the single-cell level

and quantitative mathematical modeling, we reveal that cell-specific

long-term dynamics of SMAD nuclear translocation determine the

phenotypic response of epithelial cells to TGFb.
Our experimental approach allowed us to measure the nuclear

to cytoplasmic translocation of SMAD2 and SMAD4 with unprece-

dented time resolution and precision at the single-cell level for up

to 60 h. We observed transient SMAD accumulation in the

nucleus during the first four hours that, depending on the input

strength, was followed by a second signaling phase with tempo-

rally less defined periods of nuclear translocation. The average

response of our single-cell measurements corresponded well with

biochemical measurements in previous studies (Inman et al, 2002;

Clarke et al, 2009; Zi et al, 2011; Vizan et al, 2013). However,

our results conflict with a previous study in single cells that

reported transient SMAD4 but sustained SMAD2 nuclear accumu-

lation upon TGFb stimuli using fluorescent protein-based reporter

in mouse myoblast C2C12 cells (Warmflash et al, 2012). In addi-

tion to cell-type differences, a noticeable distinction in the experi-

mental setup that may explain the contrasting results is the higher

level of overexpression of tagged SMAD2 in the previous study

(> 2× vs. 0.5× compared to endogenous levels). Moreover, we

carefully validated results from live-cell reporters using Western

blot and immunofluorescence analysis of endogenous SMAD

proteins to exclude perturbations of the signaling network by

transgene expression.

Several molecular mechanisms contributed to regulating SMAD

dynamics. For the mammary epithelial cell line and culture condi-

tions used in this study, overall duration of pathway activation at

low TGFb concentrations was mainly controlled by ligand degrada-

tion due to endocytosis. At higher input levels, initial nuclear accu-

mulation was limited by a combination of ligand degradation,

receptor internalization and the activity of transcriptional feedbacks.

However, the role of feedbacks at the population-average level was

limited as we observed attenuation of nuclear SMAD accumulation

even in the presence of the transcriptional inhibitor DRB, consistent

with previous studies using translation inhibitors (Pierreux et al,

2000; Inman et al, 2002). Moreover, persistent signal attenuation in

SMAD7 knock-out cells demonstrated redundancies between tran-

scriptional feedbacks that need to be investigated further. During

later signaling phases, periods of SMAD nuclear accumulation were

asynchronous and of variable length. While our current understand

of the pathway topology does not provide an intuitive understand-

ing of such spontaneous pathway activation, an intriguing hypothe-

sis would be that vesicle-mediated recycling of receptors to the cell

surface leads to stochastic increases in the cellular sensitivity to the

ligand, as similar processes have been observed in the context of

EGF signaling (Villaseñor et al, 2015). In further studies, combined

live-cell reporters for SMAD translocation and receptor localization

may provide deeper insights regarding the molecular mechanisms of

sustained pathway activation.

To analyze SMAD translocation dynamics in thousands of geneti-

cally identical reporter cells, we established constrained dynamic

time warping as a tool for non-linear alignment of time series data.

Dynamic time warping both emphasizes similarities in dynamic

patterns of the time courses, and allows quantifying differences in

signal amplitude, thereby improving the grouping of noisy

single-cell trajectories. By allowing for stretching and squeezing of

time courses, DTW is less sensitive to asynchronies than simpler

similarity measures such as the Euclidian distance. However,

constraining the extent of temporal alignments in DTW is critical to

ensure that results remain biologically significant. Using DTW-based

time course clustering, we observed pronounced cell-to-cell variabil-

ity at all stimulus levels. Heterogeneous cell responses led to a

decomposition of TGFb signaling into signaling classes with the

fraction of cells in each class depending on the stimulus strength.

Interestingly, a recent study proposed that the response of MCF10A

cells to extracellular ATP can be similarly group in three classes

corresponding to distinct cellular states (Yao et al, 2016). Although

signaling classes represent mathematically identifiable clusters of

time courses and provide a more homogenous grouping compared

to other determinants such as ligand concentration, it is important to

note that SMAD dynamics in each class vary gradually and represent

a continuum of response profiles. The definition of six classes there-

fore remains a heuristic choice to classify the observed heterogene-

ity. In future studies, it may be interesting to use other approaches

established in the context of single-cell sequencing such as diffusion

maps to better recover low-dimensional structures underlying our

high-dimensional observations (Haghverdi et al, 2016).

Many processes have been reported to influence cellular hetero-

geneity (Loewer & Lahav, 2011; Snijder & Pelkmans, 2011). We

found that cell cycle state and cell density provide only minor

contributions to variability in the SMAD response of individual cells.

For cell density, this is in accordance with a recent publication

demonstrating that activation of the cell density sensing YAP/TAZ

pathway does not attenuate SMAD signaling (Nallet-Staub et al,

2015). Only in polarized cells, apical access is restricted for TGFb
receptors, which may lead to reduced ligand exposure depending on

the delivery mode of the stimulus.

To test whether protein level variations may cause signaling

heterogeneity and decomposition into signaling classes, we devel-

oped a tiered modeling approach based on deterministic subpopula-

tion models fitted to experimentally observed time courses. Our

approach is similar to previous work in which heterogeneous
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ensembles of single cells were simulated by sampling the signaling

protein concentrations around the population median (Spencer

et al, 2009; Paulsen et al, 2011; Gaudet et al, 2012). However, the

detailed description of defined subpopulations ensured a robust and

more precise description of heterogeneity, while minimizing compu-

tational cost compared to individually fitting parameters for each

cell (Kallenberger et al, 2014; Yao et al, 2016). It would therefore be

easy to translate the concept to other cellular systems where time-

resolved data at the single-cell level is available, such as NF-kB or

p53 signaling (Nelson et al, 2004; Geva-Zatorsky et al, 2006; Tay

et al, 2010). However, the current approach relies on temporally

stable differences in protein production rates. While this assumption

holds true on limited timescales, it will break down when consider-

ing response times longer than cell cycle length. Time-varying

production rates may solve this issue but will complicate fitting

procedures. Moreover, truly stochastic processes such as the

proposed stochastic changes in TGFb sensitivity during later signal-

ing phases will not be accessible by this approach and require fully

stochastic models to provide further insights.

While our modeling approach highlights the importance of

protein level variations, the source of these variations remains

elusive. Through many studies in the past years, it became evident

that protein level variations represent a combination of fluctuations

caused by the stochastic nature of biochemical reactions (Bar-Even

et al, 2006; Pedraza & Paulsson, 2008; Lestas et al, 2010), cell-

specific activity of regulatory processes (Colman-Lerner et al, 2005)

and influences from population microenvironment (Snijder et al,

2009; Snijder & Pelkmans, 2011). These processes affect mammalian

signaling systems to varying degrees (Feinerman et al, 2008; Snijder

et al, 2009; Spencer et al, 2009; Kallenberger et al, 2014; Frechin

et al, 2015; Adamson et al, 2016). Depending on the lifetime of the

associated biomolecules, fluctuations from stochastic processes are

supposed to vary on shorter time scales compared to regulated

sources of cellular heterogeneity. Our sister cell analysis indicates a

fast decaying component (within 6 h) as well as stable differences

between cells that last beyond the observation period. As the group-

ing of cells in signaling classes is relatively stable over time, we

assume that the long-lasting component dominates cellular hetero-

geneity. This may reflect differences in signaling history of individ-

ual cells, leading to varying states of the TGFb network due to the

activity of interacting signal pathways (Guo & Wang, 2009).

Depending on the strength of the input, these varying states of the

pathway will translate into transient or sustained activation of

SMAD signaling and therefore a transition of cells between signaling

classes. We find that the levels of few signaling proteins are govern-

ing these transitions and provide evidence that feedback expression

is a main determinant of signaling classes. At this point, we can only

speculate how differences in feedback and specifically SMAD7

expression could arise in genetically identical cells. In addition to

stochastic gene expression, cell-specific activation of signaling path-

ways controlling SMAD7 expression could contribute to the

observed cell-to-cell variability. Such pathways may include IFN-c/
Stat1 (Ulloa et al, 1999), PKC (Tsunobuchi et al, 2004), hepatocyte

growth factor (Shukla et al, 2009) or mir21 (Li et al, 2013). Further

experiments are needed to clarify sources of heterogeneous feed-

back expression.

Feedback is an essential part of most signaling pathways

(Legewie et al, 2008) and is known to support different features of

information transmission depending on network topology and

kinetic parameters (Leibler & Barkai, 1997; Yi et al, 2000; Rosenfeld

et al, 2002; Yu et al, 2008; Voliotis et al, 2014). Our analysis indi-

cates that in the TGFb network, feedback mainly acts at high input

levels to limit sustained pathway activation, thus promoting adapta-

tion as reported for other signaling systems (Yi et al, 2000; Ma et al,

2009). This could be due to non-linear induction of SMAD7 or a

stronger contribution of other parameters such as receptor levels at

lower ligand concentrations. In contrast to previous studies (Leibler

& Barkai, 1997; Yi et al, 2000; Paulsen et al, 2011), we do not find

that negative feedback reduces signaling variability as measured by

SMAD2 translocation, but provide evidence that it promotes hetero-

geneity by establishing signaling classes with transient dynamics at

high TGFb concentrations. Additionally, feedback modulates the

amplitude of the response as indicated by transitions within tran-

sient and sustained signaling classes, for example, from class 2 to 3

at 5 pM TGFb or from class 4 to 6 at higher stimulus levels. As our

experimental study was limited to SMAD7, it would now be interest-

ing to investigate the contribution of the remaining negative feed-

backs. Do they indeed provide redundancy or do they regulate

specific features of information transmission?

Our single-cell analysis shows that cell-specific long-term dynam-

ics of SMAD translocation determine the phenotypic response to

TGFb activation. Interestingly, it seems that migration and prolifera-

tion may be controlled by different features of SMAD signaling:

migration tended to be affected already by a transient SMAD translo-

cation (class 2–3), whereas anti-proliferative effects seemed to

require sustained SMAD signaling (class 4, 5, and mainly 6). These

findings are consistent with previous studies in cancer cell lines in

which transient SMAD activation was sufficient to alter cellular

motility and induce EMT–like processes, while sustained signaling

was required to influence proliferation (Nicolás & Hill, 2003;

Giampieri et al, 2009). Hence, our analysis shows that dynamic

information encoding observed at the level of cell lines may be

conserved at the level of heterogeneous single-cell signaling and

reflect the regulatory potential of the pathway: By fine-tuning the

level of signaling proteins through interacting signaling pathways,

the sensitivity of individual cells to TGFb inputs can be adjusted

within a tissue. This would allow stratifying the cellular response

depending on the state of the cell. During therapy, this property of

the TGFb pathway could be exploited by specifically modulating the

levels or enzymatic activities of selected proteins to switch the

response from EMT-like processes to proliferation control. As TGFb
activity is often tightly linked to tumor progression, such a targeted

approach may help to improve therapies against advanced cancers.

Materials and Methods

Cell line and constructs

Human breast epithelial MCF10A cells were cultured in DMEM/F-12

medium supplemented with 5% horse serum, 20 ng/ml epidermal

growth factor (EGF), 0.5 lg/ml hydrocortisone, 100 ng/ml cholera

toxin, and 10 lg/ml insulin, penicillin, and streptomycin (Debnath

et al, 2003). When required, the medium was supplemented with

selective antibiotics to maintain transgene expression (400 lg/ml

G418, 50 lg/ml hygromycin or 0.5 lg/ml puromycin). We
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generated lentiviral reporter constructs for SMAD2 and 4 using the

MultiSite Gateway recombination system (Thermo Fisher Scientific)

by fusing the protein coding sequence to the yellow fluorescent

protein Venus (YFP) under the control of a constitutive human

Ubiquitin C promoter (UbCp). We infected MCF10A cells with corre-

sponding lentiviral particles together with viruses expressing

histone 2B fused to cyan fluorescent protein (H2B-CFP) under the

control of UbCp as a nuclear marker. Subsequently, stable clonal

cell lines were established and validated. To knock-out SMAD7, we

first infected SMAD2 reporter cells with lentiviruses expressing Cas9

under control of a doxycycline-inducible promoter (Wang et al,

2014b). A stable, clonal cell line was further infected with viruses

expressing an sgRNA targeting exon 2 of SMAD7 (TCCTTACTCCA

GATACCCGA) (Shalem et al, 2014) and cultured for 2 weeks in the

presence of doxycycline. Finally, we screened clonal cell lines for

alterations of the SMAD7 locus by genomic PCR (Thermo Fisher

Scientific) and sequencing and selected a line with non-sense muta-

tions in both alleles (Fig EV5E).

Antibodies and reagents

We used antibodies against total SMAD2 (D43B4, #5339) and

pSMAD2 (Ser465/467, 138D4, #3108) from Cell Signaling, SMAD4

(B-8, #sc-7966) and TGFbRII (E-6, #sc-17792) from Santa Cruz, and

GAPDH (#G9545) from Sigma-Aldrich. Recombinant human TGFb 1

was obtained from R&D Systems (#240-B-002) and stored at �80°C

in 4 mM HCl, 1 mg/ml bovine serum albumin at 390 nM. DRB (5,6-

dichlorobenzimidazole 1-b-D-ribofuranoside) was purchased from

Cayman (used at 100 lM), TGFbRI kinase inhibitor VI SB431542

from Calbiochem (used at 10 lM) and CDK1 inhibitor RO 3306

(used at 3 lM) from Axon.

Time-lapse microscopy

For live-cell time-lapse microscopy, 2 × 105 cells were plated in

35-mm poly-D-lysine-coated glass bottom plates (MatTek or ibidi)

2 days before experiments. Before starting the experiment, cells

were washed twice with 1 × PBS and media was changed to RPMI

lacking phenol red and riboflavin supplemented with all growth

factors, 5% horse serum and antibiotics. The microscope was

surrounded by a custom enclosure to maintain constant temperature

(37°C), CO2 concentration (5%), and humidity. Cells were imaged

on a Nikon Ti inverted fluorescence microscope with a Hamamatsu

Orca R2 or Nikon DS-Qi2 camera and a 20× plan apo objective (NA

0.75) using appropriate filter sets (Venus: 500/20 nm excitation

(EX), 515 nm dichroic beam splitter (BS), 535/30 nm emission

(EM); CFP: 436/20 nm EM, 455 nm BS, 480/40 nm EX). Images

were acquired every 5 min for the duration of the experiment using

Nikon Elements software. TGFb 1 was prepared in 500 ll media

and added, if not noticed otherwise, after one round of images to

achieve the final concentration in 2.5 ml media.

Image analysis and cell tracking

Cells were tracked throughout the duration of the experiment using

custom-written MATLAB (MathWorks) scripts based on code devel-

oped by the Alon laboratory (Cohen et al, 2008) and the CellProfiler

project (Carpenter et al, 2006). In brief, we applied flat field

correction and background subtraction to raw images before

segmenting individual nuclei from nuclear marker images using

thresholding and seeded watershed algorithms. Segmented cells

were then assigned to corresponding cells in following images using

a greedy match algorithm. Only cells tracked from the first to last

time point were considered. For most analyses, we tracked cells in

forward direction from the first to the last time point. Upon division,

we followed the daughter cell closest to the last position of the

mother and merged tracks from mothers and offspring. For sister cell

analyses, cells were tracked backward from the last to the first time

point, tracks from offspring, and mothers were again merged. As a

consequence, tracks of sister cells are identical before cell division.

We quantified nuclear fluorescence intensity and measured the fluo-

rescence intensity in the cytoplasm using a 4-pixel wide annulus

around the nucleus. Finally, we estimated the nuc/cyt ratio for each

cell over time and analyzed the resulting single-cell trajectories

computationally (Appendix II.A). As nuclear envelope breakdown

during mitosis prevented meaningful measurements of SMAD

translocation, we interpolated corresponding values. See Appendix

for further details on image analysis, cell tracking, and data process-

ing.

TGFb measurement

We used Mink lung epithelial cells (MLECs) stably transfected with

a reporter containing a truncated PAI-1 promoter (3TP promoter

with three consecutive TPA response elements) fused to the firefly

luciferase gene and cultured them in 96-well plates using DMEM

(Abe et al, 1994). Supernatants from live-cell microscopy experi-

ments were removed at defined time points and added in triplicates

to MLEC reporter cells. After incubation overnight, cells were lysed

and thawed. Luciferase activity was measured by 10-s per well read-

ings on a 96-well format luminometer (see Appendix II.I for details).

Western blot analysis

Cells were plated 2 days before experiments. After stimulation, we

harvested cells at indicated time points and isolated proteins by lysis

in the presence of protease and phosphatase inhibitors. Total protein

concentrations were measured by BCA assay (Thermo Fisher Scien-

tific). Equal amounts of protein were separated by electrophoreses

on 10% SDS–polyacrylamide gels and transferred to PVDF

membranes (GE Healthcare) by electroblotting (Bio-Rad). We

blocked membranes with 5% non-fat dried milk or 5% bovine

serum albumin, incubated them overnight with primary antibody,

washed them, incubated them with secondary antibody coupled to

peroxidase (#31460, Thermo Fisher Scientific), washed again, and

detected protein levels using chemoluminescence (ECL Prime, GE

Healthcare). Blots were quantified using ImageJ (Schneider et al,

2012).

Reverse transcription qPCR

Cells were plated 2 days before experiments. Total RNA was

extracted using High Pure RNA Isolation kit (Roche), and concentra-

tion was determined by using a photospectrometer (NanoDrop

2000, Thermo Fisher Scientific). 1 lg of RNA sample was converted

to complementary DNA using M-MuLV reverse transcriptase (NEB)
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or Proto Script II reverse transcriptase (NEB) and oligo-dT primers.

Quantitative PCR was performed in triplicates using SYBR Green

reagent (Roche) on a StepOnePlus PCR machine (Applied Biosys-

tems). Primer sequences: b-actin forward, GGC ACC CAG CAC AAT

GAA GAT CAA; b-actin reverse, TAG AAG CAT TTG CGG TGG ACG

ATG; SnoN forward, GGCTGAATATGCAGGACAG SnoN reverse,

TGA GTT CAT CTT GGA GTT CTT G; SMAD7 forward, ACC CGA

TGG ATT TTC TCA AAC C SMAD7 reverse, GCC AGA TAA TTC

GTT CCC CCT; PAI1 forward, GGC TGA CTT CAC GAG TCT TTC A;

PAI1 reverse ATG CGG GCT GAG ACT ATG ACA.

Immunofluorescence

Cells were plated 2 days before experiments on coverslips coated

with poly-L-lysine (Sigma-Aldrich) and fixed at indicated time

points with 2% paraformaldehyde. Cells were permeabilized with

0.1% Triton X-100 in PBS, blocked with 10% goat serum in PBS,

incubated with primary antibody in 1% BSA in PBS, washed with

0.1% Triton X-100 in PBS, and incubated with secondary antibody

conjugated with Alexa Fluor 488 (#A-11034) or Alexa Fluor 647

(#A-21245, Thermo Fisher Scientific) in 1% BSA in PBS. After wash-

ing, cells were stained with 2 lg/ml Hoechst in 0.1% Triton X-100/

PBS and embedded in Prolong Antifade (Thermo Fisher Scientific).

Images were acquired with a 20× plan apo objective (NA 0.75) using

appropriate filter sets. Automated segmentation was performed in

MATLAB (MathWorks) with algorithms from CellProfiler (Carpenter

et al, 2006).

Computational modeling

Model simulations and fitting were performed using the MATLAB tool-

box Data2Dynamics (Raue et al, 2015). The implementation of the

model and the computational methods are described in Appendix III

and IV.

Data availability

Reporter cell lines are available upon request. The primary datasets

and mathematical models generated in this study are available in

the following databases:

• Unprocessed single-cell data: Dryad Digital Repository (https://d

oi.org/10.5061/dryad.hc5dp).

• Mathematical models: BioModels Database (www.ebi.ac.uk/

biomodels-main, MODEL1712050001 – MODEL17120500012).

• SED-ML scripts and simulations reproducing Figs 4C–H and 5A:

JWS Online Simulation Database (https://jjj.bio.vu.nl/models/e

xperiments/?id=strasen2018).

Expanded View for this article is available online.
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