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Yeast model identifies ENTPD6 
as a potential non-obstructive 
azoospermia pathogenic gene
Qian Wang1,4,*, Chao Liu1,4,*, Chaoming Tang1,4, Huiping Guo1, Yujiao Liu1,5, Lina Wang1,4, 
Haichao Zhao1,4, Yongliang Shang1,4, Yang Wen2, Yuan Lin2, Tao Zhou2, Zuomin Zhou2,3, 
Wen Dong5, Zhibin Hu2, Xuejiang Guo2,3, Jiahao Sha2,3 & Wei Li1,4

Approximately ten percent of male infertility is caused by non-obstructive azoospermia (NOA), but 
the etiologies of many NOA remain elusive. Recently, a genome-wide association study (GWAS) 
of NOA in Han Chinese men was conducted, and only a few genetic variants associated with NOA 
were found, which might have resulted from genetic heterogeneity. However, those variants that 
lack genome-wide significance might still be essential for fertility. Functional analysis of genes 
surrounding these variants in Drosophila identified some spermatogenesis-essential genes. As a 
complementary method of Drosophila screening, SK1 background Saccharomvces cerevisiae was used 
as a model to screen meiosis-related genes from the NOA GWAS data in this study. After functional 
screening, GDA1 (orthologous to human ENTPD6) was found to be a novel meiosis-related gene. 
The deletion of GDA1 resulted in the failure of yeast sporulation. Further investigations showed that 
Gda1p was important for pre-meiotic S phase entry. Interestingly, the meiotic role of Gda1p was 
dependent on its guanosine diphosphatase activity, but not it’s cytoplasmic, transmembrane or stem 
domains. These yeast data suggest that ENTPD6 may be a novel meiosis-associated NOA-related 
gene, and the yeast model provides a good approach to analyze GWAS results of NOA.

Infertility, which is a severe threat for the continuation of humans, affects one-sixth of couples world-
wide1,2. Approximately half of the infertility cases are attributed to the male2,3. In male infertility, 10–15% 
of cases are classified as azoospermia, and 60% of these cases are non-obstructive azoospermia (NOA), 
which generally affects 1% of the male population4–6. Recently, some genetic factors, such as single nucle-
otide polymorphisms (SNPs) and other common structural variants, have been reported to be associated 
with NOA7–9; However, the etiology of most of the NOA remains largely unknown.

The genome-wide association study (GWAS) represents a powerful tool for investigating the genetic 
architecture of complex human diseases and provides a good approach to study the associations between 
SNPs and traits such as human diseases10,11. Although GWASs have successfully identified loci that influ-
ence a wide variety of human diseases, many of these results are either inconsistent or have failed to 
be independently validated12,13, possibly due to high genetic heterogeneity. These loci may still indicate 
genes important for the disease. Systematically functional analyses are expected to help identify genes 
that are involved in human diseases. Limited by material and financial resources, it is difficult to per-
form large-scale functional genomic analysis of the pathogenic genes identified by GWASs in mammals. 
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Therefore, an efficient and convenient method is needed to functionally verify the associations of GWAS 
results with specific diseases in the post-GWAS era.

As a simple single-cell eukaryote, Saccharomvces cerevisiae is widely used as a model organism in bio-
logical research and has offered valuable knowledge of the genetics and basic cellular processes that are 
evolutionarily conserved with higher eukaryotes, such as the cell cycle, DNA replication, recombination, 
metabolism, aging and meiosis14–17. Many of these results have been directly extended to mammalian 
systems, thus providing an important tool in understanding complex human diseases18–20. Because of its 
powerful capacity for genetic manipulation and relative low cost in culturing, yeast has been developed 
as a very important system for annotating gene function, functional genomics and drug discovery, and 
it is suitable for uncovering the basic functions of the genes implicated in some human diseases20–23.

To detect the SNPs associated with NOA, we performed a large-scale genome-wide association 
study in Han Chinese men, and 103 SNPs were found to be associated with NOA, with p < 10−5 24–26 
in the GWAS scan, but failed in replications. Functional screening of the genes in Drosophila orthol-
ogous to those around these SNPs by in vivo RNA interference (RNAi) identified approximately 32% 
of the analyzed Drosophila genes to be essential for male fertility26. However, because of the lack of 
chromosome recombination in Drosophila spermatogenesis27, our previous work might have missed 
some meiosis-related NOA-associated genes. As a classical model for meiotic studies17, functional 
genomic screening in Saccharomvces cerevisiae provides an efficient and convenient method to identify 
meiosis-associated genes that might be evolutionarily conserved from yeast to humans. We identified 
9 yeast homologs as potential human NOA pathogenic genes by bioinformatics analysis, one of which, 
MSH5, has been reported to be important for meiosis28,29. After deleting those non-essential genes in 
SK1 background yeast strains, we found that one gene was required for yeast sporulation. Similar to 
human NOA, the deletion of GDA1 inhibited gametogenesis. In the GDA1 deletion strain, premeiotic 
DNA replication was blocked and Sic1p was stabilized, which suggested that Gda1p is primarily required 
for G1 to pre-meiotic S phase transition. The function of Gda1p in entering the pre-meiotic S phase is 
dependent on its guanosine diphosphatase activity, but not its glycosylation modification, cytoplasmic, 
transmembrane or stem domains. Therefore, ENTPD6, the human ortholog of GDA1, may be a NOA 
pathogenic gene.

Results
Identification of potential non-obstructive azoospermia pathogenic genes by functional 
screening in yeast. A recent study showed that approximately 32% of GWAS SNPs are located in 
deoxyribonuclease I hypersensitive sites (DHSs), which are markers of regulatory DNA that can reg-
ulate genes within 100 kb30. Thus, we considered genes flanking the tSNPs (Tag Single Nucleotide 
Polymorphisms) within 100 kb in this study. Our recent work in Drosophila has demonstrated that this 
approach is effective in identifying genes that are essential for male fertility based on SNPs without 
genome-wide significant associations with human NOA26. However, Drosophila spermatogenesis does 
not involve chromosome recombination27, which is an important event for human spermatocyte mei-
osis. Because yeast is the most powerful model to study meiosis, we used yeast in the present study to 
screen meiosis-related genes from the NOA GWAS data and used the strategy described in Fig. 1a. In 
summary, 9 candidate orthologous yeast genes were obtained, corresponding to 11 human genes and 7 
susceptible tSNPs (Table S1). Among these, MPP10, RFC5, RPC19 and SLD5 were found to be essential to 
yeast survival, thus prohibiting our further screening by their deletion. MSH5 was found to be involved 
in meiosis in yeast28,29. Finally, 4 genes, CKB2, GDA1, GPH1, and PMC1, were selected and underwent 
functional analysis in the SK1 background yeast strain, which sporulates faster and more synchronously 
than other strains and is commonly used for the study of sporulation or meiosis31. After deleting these 
genes by homologous recombination32, wild type (WT) and candidate gene deletion stains were deprived 
of nitrogen and incubated in sporulation medium for 24 hrs, and the sporulation efficiency was detected 
by staining with 4’,6-diamidino-2-phenylindole (DAPI). We found that the sporulation efficiency of the 
gda1Δ strain showed a significant decrease compared with that of the WT strain (Fig. 1b–d), which is 
similar to some NOAs of humans. ENTPD6 is the orthologous human gene of GDA1, and it is a member 
of the ENTPD family and localizes in the Golgi apparatus33. Thus, the functional genomic screening of 
NOA GWAS data in yeast resulted in the identification of ENTPD6 as a potential pathogenic gene of 
NOA.

GDA1 is required for pre-meiotic S phase entry. Because the deletion of GDA1 inhibited spor-
ulation, we next determined which phases of sporulation were affected in the GDA1 deleted strain. 
Meiosis in yeast is initiated by the expression of Ime1p, which serves as the master regulatory switch 
for meiosis34,35. First, we detected the expression of Ime1p in the GDA1 deletion strain by generating a 
3× Myc tag on the C-terminus of IME1. During the sporulation processes, we found that the expression 
of Ime1p in the GDA1 deletion strain was only delayed by approximately 1 hr compared with the WT 
strain (Fig. 2a). Real-time PCR analysis of IME1 mRNA in WT and the GDA1 deletion strain showed 
similar results to the protein level (Fig. 2b). These results suggest that GDA1 is not the major regulator 
of meiosis initiation, even though it is involved in this process to some extent. We next detected the 
pre-meiotic DNA synthesis by flow cytometry analysis to test whether the GDA1-null mutant influenced 
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pre-meiotic DNA replication. We found that the pre-meiotic DNA replication was repressed in the GDA1 
deletion strain (Fig. 2c).

The early phase of sporulation begins when cells make the decision to differentiate into spores, 
they then exit the mitotic cycle in G1 and enter the pre-meiotic S phase17. To determine whether the 

Figure 1. Identification of potential non-obstructive azoospermia pathogenic genes by functional 
genomic screening in yeast. (a) Flow chart of the screening strategy. The selection criteria for candidate 
genes in Saccharomvces cerevisiae included a tSNP with an association P-value <  10−5 and a P-value ≥  5*10−8 
after multiple validations, and human genes flanking the tSNPs within 100 kb, homology type (one to 
many or one to one) and orthology identity > 20% were considered. After eliminating the well-studied 
genes in meiosis and lethal genes, the candidate genes were screened for their sporulation efficiency after 
deletion. (b) The sporulation efficiency of the yeast in which candidate genes were deleted. Wild type and 
candidate gene deletion stains were incubated in sporulation medium for 24 hrs. Sporulation efficiency was 
the percentage of cells induced to sporulate that became dyads and tetrads by staining with DAPI. (c) The 
gda1Δ strain showed a decrease in sporulation efficiency compared with the WT strain. A sporulation time 
course indicated the percentage of cells/asci with dyads and tetrads in the gda1Δ and WT strains. Diploid 
yeast cells were deprived of nutrients, induced to enter sporulation synchronously, and stained with DAPI at 
different times post-induction. (d) WT and gda1Δ spores were stained with DAPI to show the decrease of 
sporulation efficiency.
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Figure 2. GDA1 is required for pre-meiotic S phase entry. The expression of Ime1p was only slightly 
delayed in the gda1Δ strain during sporulation. WT or gda1Δ strains expressing the IME1-3× myc allele 
were incubated in sporulation medium and samples were collected at different times. The expression of 
Ime1p-3× myc over time was analyzed by immunoblotting with anti-Myc antibody. Pgk1p served as a 
loading control. Full-length blots/gels are presented in Supplementary Figure 5. (b) Real-time PCR analysis 
of the IME1 expression level in WT and GDA1 deletion strains. (c) The pre-meiotic DNA replication was 
inhibited in the gda1Δ strain during sporulation. WT or gda1Δ  strains were incubated in sporulation 
medium and samples were collected at different times after induction. DNA content was analyzed by flow 
cytometry to detect pre-meiotic DNA replication (2C to 4C transition). (d) The stabilization of Sic1p in 
the gda1Δ strain during sporulation. WT or gda1Δ  strains were incubated in sporulation medium and 
samples were collected at different times after induction. The expression of Sic1p over time was analyzed by 
immunoblotting with specific anti-Sic1 antibody. Pgk1p served as a loading control. Full-length blots/gels are 
presented in Supplementary Figure 5.
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GDA1-null mutant influenced the transition from G1 to the pre-meiotic S phase, we detected the expres-
sion of Sic1p, which acts as a central G1 to pre-meiotic S phase transition regulator by inhibiting the 
Clb5,-6/Cdk1 activity36,37, presents early in meiosis and subsequently disappears when cells enter the 
pre-meiotic S phase38,39. Consistent with other reports38,39, Sic1p was detected at 1–2 hrs after the induc-
tion of sporulation and then disappeared in the following stages in the WT yeast strain (Fig. 2d, lanes 
2–10). However, in the GDA1 deletion strain, Sic1p was detected throughout the process of the induction 
of sporulation (Fig. 2d, lanes 12–20), which indicated that the GDA1-null mutant influenced the G1 to 
pre-meiotic S phase transition. Therefore, we concluded that the GDA1-null mutant mainly arrests before 
the pre-meiotic S phase and GDA1 is required for pre-meiotic S phase entry.

The pre-meiotic S phase entry defect could be rescued by the expression of GDA1 in the GDA1 
deletion strain. To further confirm the effect of GDA1 in entering the pre-meiotic S phase, a GDA1 
expression vector under the control of its own promoter was generated and transformed into a GDA1 
deletion strain. After being incubated in sporulation medium for 24 hrs, we detected the sporulation 
efficiency of WT vector (containing the empty vector), gda1Δ vector (containing the empty vector) and 
gda1Δ GDA1 (containing the GDA1 expression vector under the control of its own promoter) strains, 
and we found that GDA1 expression in the gda1Δ strain could partially rescue its sporulation defect up 
to more than 60% compared with the gda1Δ vector strain, whose sporulation efficiency remained less 
than 10% (Fig.  3a). By contrast, the gda1Δ GDA1 strain could produce spores (Fig.  3b) and complete 
pre-meiotic DNA replication (Fig. 3c); however, the gda1Δ vector strain failed to do so. We then detected 
the Sic1p expression pattern during sporulation processes in these three strains and found that the Sic1p 
expression in the gda1Δ GDA1 strain was similar to that of the WT vector strain (Fig. 3d). These results 
suggested that the defect of sporulation could be rescued by the expression of GDA1 in its deletion strain, 
and GDA1 indeed played very important roles in entering the pre-meiotic S phase.

We then detected the expression of Gda1p during the process of sporulation by generating a TAP 
tag on its C-terminus, and we found that Gda1p accumulated in the early phase of sporulation and 
subsequently decreased in the middle phases at approximately 4–6 hrs (Fig. 3d), which is consistent with 
its function in the meiotic early phase. Gda1p could also be detected in the late phase of sporulation 
(Fig. 3e), which may be related to its role in spore wall biogenesis40.

The cytoplasmic, transmembrane and stem domains of Gda1p are not necessary for its role 
in meiosis. Gda1p is a guanosine diphosphatase that is located in the Golgi, and it is involved in the 
transport of GDP-mannose into the Golgi lumen by converting guanosine diphosphate (GDP) to guano-
sine monophosphate (GMP) after mannose is transferred to its substrate. The GDA1 deletion strain has 
severe defects in the N- and O-mannosylation of proteins and glycosphingolipids41,42. Gda1p has a short 
cytoplasmic domain in its N-terminus. The next domain is a single transmembrane domain, followed 
by a stem region and a large catalytic luminal domain (Fig. 4a). To further study the functional role of 
Gda1p in sporulation, we generated three truncations: Δ N1-9 (Gda1 Δ 1–9aa, in which the cytoplasmic 
domain is deleted), Δ N10–24 (Gda1 Δ 10–24aa, in which the transmembrane domain is deleted) and 
Δ N25–58 (Gda1 Δ 25–58aa, in which the stem region is deleted) (Fig. 4a). These were transformed into 
the gda1Δ strain. We found that none of the mutants affected the sporulation efficiency compared with 
the WT GDA1 (Fig. 4b,c). These results suggested that the function of Gda1p in meiosis is not dependent 
on these three domains. Additionally, in agreement with our results, it has been reported that the cyto-
plasmic and transmembrane domains are not necessary for the Golgi localization of Gda1p43.

Glycosylation of Gda1p is not necessary for sporulation. The nucleoside triphosphate diphop-
shohydrolases (NTPDases) often contain glycosylation sites, and the glycosylation of NTPDase is impor-
tant for correct protein folding, membrane targeting and activity44. As an NTPDase, Gda1p contains 
three glycosylation sites, which are N41, N280 and N33545. To detect whether the glycosylation of Gda1p 
is involved in its function in sporulation, we abolished its glycosylation by mutating these glycosylation 
sites to aspartic acids (N41D, N280D and N335D), either separately or together (N41D/N280D/N335D) 
(Fig. 5a), and transformed these four mutants into the gda1Δ strain. By detecting the sporulation effi-
ciency, we found that these mutants did not affect yeast sporulation compared with the control groups 
(Fig. 5b,c), which indicated that the glycosylation modification of Gda1p is not necessary for its role in 
meiosis.

The function of Gda1p in entering the pre-meiotic S phase is dependent on its guanosine 
diphosphatase activity. The NTPDase enzyme activity depends on several strictly conserved motifs, 
called apyrase conserved regions (ACRs), and some key residues were found to be essential to the activity 
of these NTPDases44,46. There are five ACRs in Gda1p, called ACR1–5, and these ACRs are distributed in 
the lumenal domain of Gda1p44. To identify whether the guanosine diphosphatase activity of Gda1p is 
necessary for its function in sporulation, we selected and mutated R176, E216 and D245/G247 to abolish 
its enzyme activity, which were named as R176A, E216D and D245A/G247A (Fig. 6a). The expression 
of these mutants was superior to that of the WT proteins (Fig. S1a), which might have been due to 
the complementary demand of the activity of this enzyme. After transforming these mutants into the 
gda1Δ strain, we detected the sporulation efficiency and pre-meiotic DNA synthesis. We found that 
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Figure 3. The pre-meiotic S phase entry defect could be rescued by GDA1 in the gda1Δ strain. (a) The 
expression of GDA1 could rescue the sporulation process in the gda1Δ strain. The WT strain harbored the 
empty vector, and the gda1Δ strains harbored either the empty vector or GDA1 under the control of its own 
promoter. The strains were incubated in sporulation medium for 24 hrs. Sporulation efficiency was assessed 
by staining with DAPI. (b) Microscopic observation of the WT strain harboring the empty vector and the 
gda1Δ strains harboring either the empty vector or GDA1 under the control of its own promoter after 
sporulation induction for 24 hrs. (c) The expression of GDA1 could rescue the pre-meiotic DNA replication 
defect of the gda1Δ strain. The WT strain harbored the empty vector, and the gda1Δ strains harbored either 
the empty vector or GDA1 under the control of its own promoter. The strains were incubated in sporulation 
medium, and samples were collected at different times after induction. DNA content was analyzed by flow 
cytometry to detect pre-meiotic DNA replication (2C to 4C transition). (d) The expression of of GDA1 
could rescue the stabilization of Sic1p in the gda1Δ strain during sporulation. The WT strain harbored 
empty vector, and the gda1Δ strains harbored either empty vector or GDA1 under the control of its own 
promoter. The strains were incubated in sporulation medium, and samples were collected at different times 
after induction. The expression of Sic1p over time was analyzed by immunoblotting with specific anti-Sic1 
antibody. Pgk1p served as a loading control. Full-length blots/gels are presented in Supplementary Figure 
5. (e) The expression of Gda1p during sporulation. The WT strain expressing the GDA1-TAP allele was 
incubated in sporulation medium, and samples were collected at different times after sporulation induction. 
The expression of Gda1-TAP over time was analyzed by immunoblotting with anti-TAP antibody. Pgk1p 
served as a loading control. Full-length blots/gels are presented in Supplementary Figure 5.
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these three mutant strains failed to exhibit pre-meiotic DNA replication and sporulation, similar to the 
gda1Δ strain (Fig. 6b,c, Fig. S1b). We then detected Sic1p expression in these strains, and similar to the 
gda1Δ strain, we found that the Sic1p was stabilized throughout the sporulation process in the enzyme 
activity-abolished strains (gda1ΔR176A, gda1ΔE216D and gda1ΔD245A/G247A) (Fig. 6d). Therefore, 
we concluded that the function of Gda1p in entering the pre-meiotic S phase is dependent on its guano-
sine diphosphatase activity.

Discussion
To date, hundreds of tag single nucleotide polymorphisms (tSNPs) have been found to be associated with 
human diseases by genome-wide association studies10, and GWAS provides a good approach to study the 
associations between tSNPs and traits such as major diseases10,11. However, the results of many GWASs 
are either inconsistent or have failed to be independently replicated due to the high genetic heterogeneity 
of the population. Nevertheless, the identified tSNPs may still indicate important genes for the diseases, 
but most of them still lack systematically functional studies12,13. The yeast model has been widely used 

Figure 4. N-terminal domains of Gda1p are not necessary for its role in meiosis. (a) Schematic 
representation of the domains of Gda1p and some mutants, including Δ N1–9 (Δ 1–9aa), Δ N10–24 (Δ 10–
24aa), and Δ N25–58 (Δ 25–58aa). CD indicates the cytoplasmic domain; TMD indicates the transmembrane 
domain; SR indicates the stem region; ACR1–5 indicates the conserved amino acids related to guanosine 
diphosphatase activity; stars indicate the glycosylation sites. (b) The function of GDA1 in meiosis was 
independent of its localization-terminal domains. The WT strain harboring the empty vector and the gda1Δ 
strains harboring either the empty vector or GDA1, Δ N1–9, Δ N10–24, Δ N25–58 under the control of its 
own promoter were incubated in sporulation medium for 24 hrs. Sporulation efficiency was determined 
by staining with DAPI. (c) Microscopic observation of the WT strain harboring the empty vector and the 
gda1Δ strains harboring either the empty vector or GDA1 and its variants under the control of its own 
promoter after sporulation induction for 24 hrs.
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in large-scale functional genomic screenings to reveal the functions of some genes implicated in many 
human diseases15,18,20–22. Therefore, for NOA, functional genomic screening in yeast may be an efficient 
and convenient approach to identify genes that are essential for gametogenesis using NOA GWAS results, 
especially for meiosis, defects in which are important causes of NOA.

Using a strategy to identify meiosis-essential genes in yeast based on SNPs associated with human 
NOA without genome-wide significance (Fig. 1a), we identified 9 homologs of human genes that were 
indicated by NOA SNPs in yeast. After eliminating the lethal genes, we found that 1 (25%) of the 4 were 
required for sporulation, which indicated the usefulness of NOA GWAS data to find meiosis-essential 
genes. It has been found that ~340 genes (~6% of the yeast genome) are required for sporulation47, so 
our hit rate was higher than that obtained in simple large-scale functional genomic analysis.

In this study, we found that the deletion of GDA1 resulted in the abolishment of the sporulation 
process in the SK1 background yeast strain. The GDA1-null mutant failed to produce gametes, which 
is similar to the phenotype of human NOA. Gda1p is a guanosine diphosphatase that is involved in 
the transport of GDP-mannose into the Golgi lumen by converting GDP to GMP after mannose is 

Figure 5. Glycosylation modification of Gda1p is not necessary for yeast sporulation. (a) Schematic 
representation of the mutant glycosylation sites, which included GDA1 (Gda1p 1–518aa), N41D (Gda1p 
N41D), N280D (Gda1p N280D), N335D (Gda1p N335D), and N41D/N280D/N335D (Gda1p. N41D/
N280D/N335D). (b) Glycosylation site mutations of GDA1 were not necessary for yeast sporulation. The 
WT strain harboring empty vector and the gda1Δ strains harboring the empty vector or GDA1, N41D, 
N280D, N335D, N41D/N280D/N335D under the control of its own promoter were incubated in sporulation 
medium for 24 hrs. Sporulation efficiency was determined by staining with DAPI. (c) Microscopic 
observation of the WT strain harboring empty vector and the gda1Δ strains harboring either the empty 
vector, WT GDA1 or glycosylation site mutants under the control of their own promoter after sporulation 
induction for 24 hrs.
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Figure 6. The function of Gda1p in entering the pre-meiotic S phase is dependent on its guanosine 
diphosphatase activity. (a) Schematic representation of the key guanosine diphosphatase activity mutants, 
which include GDA1 (Gda1p 1–518aa), R176A (Gda1p R176A), E216D (Gda1p E216D), and D245A/
G247A (Gda1p D245A/G247A). (b) The disruption of Gda1p guanosine diphosphatase activity induced a 
decrease in sporulation efficiency compared with the WT strain. The WT strain harboring the empty vector 
and the gda1Δ strains harboring either the empty vector or GDA1, R176A, E216D, D245A/G247A under 
the control of its own promoter were incubated in sporulation medium for 24 hrs. Sporulation efficiency 
was determined by staining with DAPI. (c) Microscopic observation of the WT strain harboring empty 
vector and the gda1Δ strains harboring either the empty vector, WT GDA1 or key guanosine diphosphatase 
activity mutants under the control of their own promoter after sporulation induction for 24 hrs. (d) The 
disruption of GDA1 guanosine diphosphatase activity stabilized Sic1p during sporulation. The WT strain 
harboring empty vector and the gda1Δ strains harboring either empty vector or GDA1, R176A, E216D, 
D245A/G247A mutants under the control of their own promoter were incubated in sporulation medium and 
samples were collected at different times after induction. The expression of Sic1p over time was analyzed by 
immunoblotting with specific anti-Sic1 antibodies. Pgk1p served as a loading control. Full-length blots/gels 
are presented in Supplementary Figure 5.
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transferred to its substrate41,42. To test whether the products of Gda1p were essential for sporulation, 
we directly added the product analog of Gda1p, Guanosine 5’-monophosphate disodium salt hydrate 
(GMP-Na2) or Uridine 5’-monophosphosphate disodium salt (UMP-Na2), into the YPA medium and 
sporulation medium. After sporulation, we found that the addition of GMP-Na2 and UMP-Na2 could 
not rescue the sporulation defect of the GDA1 deletion strain (Fig. S2). KRE2 and its paralog KTR6 have 
been reported to be Golgi α 1, 2- mannosyltransferases, and they can add the second and third mannose 
on O-linked glycans and release Gda1p’s substrate GDP from GDP- mannose in the Golgi48–50. Therefore, 
considering the concentration of GDP in the Golgi, KRE2 and its paralog KTR6 should be upstream of 
GDA1. Unexpectedly, both the KRE2-null mutant and the KRE2/KTR6 double deletion mutant spor-
ulated as efficiently as the control strain (Fig. S3). All of these results suggested that the nucleoside 
metabolism-related function of Gda1p may not be essential for sporulation.

It was reported that Gda1p also participates in the N- and O-mannosylation of proteins and glycos-
phingolipids41,42. We found that the guanosine diphosphatase activity of Gda1p was essential to its role in 
the entry into the pre-meiotic S phase by affecting the stability of Sic1p (Fig. 6). Gda1p may affect Sic1p 
stability in the following ways: 1) Gda1p may directly regulate the glycosylation of Sic1p to promote its 
degradation, or 2) Gda1p may influence the glycosylation of some other proteins, which are essential for 
pre-meiotic S phase entry. As far as we know, there is no report on the glycosylation of Sci1p. Thus, we 
further considered the second indirect possibility; it was reported that the G1-cyclin/Cdk1 complexes 
catalyzed the phosphorylation of Sic1p during the mitotic G1/S transition, therefore the phosphoryl-
ated Sic1p could be recognized and further ubiquitinated by the ubiquitin ligase SCFCdc4 to promote 
its degradation51,52. Any molecule related to the above-mentioned process might be targeted by Gda1p 
to influence the stability of Sicp1. Consistent with this hypothesis, it was reported that Skp1p could be 
glycosylated to modulate the E3 activity of SCFCdc4 in Dictyostelium53. Therefore, Gda1p may influence 
the glycosylation of either Skp1p or any other unknown proteins to promote Sic1p destruction during 
pre-meiotic S phase entry.

ENTPD6 is the human ortholog of GDA1; ENTPD6 is a member of the ENTPD family, which shows 
UDPase activity and localizes in the Golgi apparatus33, and is highly expressed in the testis54. It has 
been reported that protein glycosylation plays a very important role during mammalian reproduction55. 
Therefore, ENTPD6 may be a NOA pathogenic gene and might be involved in meiosis. The mechanistic 
study and functional analysis of GDA1 in yeast have provided important clues for further exploring the 
role of ENTPD6 in human spermatogenesis.

In contrast to our results, it was reported that GDA1 deletion results in the increase of the sporulation 
efficiency in the S288C background yeast strain56. To test their results, we created a GDA1 deletion strain 
in the BY4743 background and tested its sporulation efficiency (Fig. S4). We found that the GDA1-null 
mutant showed an increase in sporulation efficiency compared with the WT strain, which was entirely 
different from the SK1 background strain used in this study. This result suggests that there might have 
been a redundancy of the function of Gda1p in the S288C background. This result is very similar to the 
pathology of some human diseases and hints that ENTPD6 mutations may result in NOA in some people 
but not in other populations. The detailed mechanism underlying this phenomenon needs to be further 
investigated in future work.

Materials and Methods
Screening of candidate functional yeast gene orthologs based on SNPs associated with 
human NOA. The tSNPs associated with human NOA (with P values less than 10−5) were extracted 
from previous GWAS of NOA performed in Han Chinese men24. To obtain candidate fertility-related 
genes, we considered human genes located within 100 kb upstream or downstream of the SNPs. We 
then selected the corresponding unique homologous yeast genes (orthologous type: one-to-many or 
one-to-one) of the candidate human genes for potential targets to be verified. We only considered yeast 
genes with at least 20% sequence identity with their human orthologs. The genome backgrounds for 
humans and yeast were GRCh37 and R64-1-1, respectively. SNPs localizations were batch-obtained from 
the UCSC genome browser (http://genome.ucsc.edu/). Gene descriptions, genome localizations, and ort-
hologous relationships of the human and yeast genes were annotated via BioMart (http://www.biomart.
org/).

Antibodies. The Myc and FLAG antibodies were purchased from Abmart (Shanghai, China), the Sic1 
antibody was purchased from Santa Cruz Biotechnology (Santa Cruz, United States), and the TAP anti-
body was purchased from Thermo Scientific (Waltham, MA USA). The Pgk1 polyclonal antibody was 
generated in rabbits using the corresponding recombinant proteins as antigens.

Strains and Plasmids. All plasmids and yeast strains used in this study are described in Tables S2 
and S3.

Growth and sporulation. Cells were grown in YPD medium (1% yeast extract, 2% peptone, 2% 
glucose), or YPA medium (1% yeast extract, 2% peptone, 2% potassium acetate). The sporulation was 
performed as previously described57. Cells were grown overnight in liquid YPD medium and diluted 
in liquid YPA medium to an OD600 of 0.3 and cultured for 10 hr at 30 °C. Cells were harvested and 

http://genome.ucsc.edu/
http://www.biomart.org/
http://www.biomart.org/
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resuspended in sporulation medium (2% potassium acetate) to OD600 of 1.9 and sporulated at 30 °C 
for different lengths of time. In the Gda1p product addition experiments, various concentrations of 
guanosine 5’-monophosphate disodium salt hydrate (CAS:5550-12-9) or Uridine 5’-monophosphosphate 
disodium salt (CAS:3387-36-8) were added into the YPA medium and sporulation medium to test their 
effects on sporulation.

DAPI staining. Sporulation was assayed by the microscopic examination of cultures that had been 
incubated in SPM (sporulation medium) for 24 hrs. Approximately two hundred cells per culture were 
counted and the percentage of cells that had formed Asci was scored. The nuclear DNA was stained by 
4’,6-diamidino-2-phenylindole (DAPI) as previously described58. The nuclei were visualized and counted 
using a Nikon Eclipse Ti microscope.

Yeast whole-cell extract preparation and immunoblotting analysis. The yeast whole-cell extract 
preparation was performed as previously described59. The samples were collected and resuspended in 
30 μ l distilled water, and an equal volume of 0.2 M NaOH was added. Next, cells were collected after 
10 min of incubation at room temperature, and the supernatant was carefully removed. Approximately 
30 μ l of SDS-sample buffer (100 mM Tris-HCL, pH6.8, 200 mM DTT, 4% SDS, 0.2% BPB, and 20% glyc-
erol) was added to the pellet, and the cells were resuspended and boiled for 10 min and centrifuged 
briefly. The extract was loaded onto an SDS-PAGE gel and detected by immunoblotting with primary 
antibodies. The immunoblotting was performed using a fluorescent dye-labeled secondary antibody 
(Invitrogen), and the blots were scanned using an Odyssey infrared imager.

Isolation of RNA from yeast. The RNA isolation was performed as previously described60. The sam-
ples were collected and resuspended in 400 μ l AE buffer (50 mM Na acetate pH 5.3, 10 mM EDTA), and 
40 μ l 10% SDS was added. The suspension was vortexed for 5 min, and 400 μ l fresh phenol was added. 
The mixture was again vortexed for 5 min and incubated at 65 °C for 4 min; the mixture was rapidly 
chilled on ice for 5 min and then centrifuged for 2 min at 12000 rpm. The upper aqueous phase was 
transferred to a fresh tube. Then, phenol and chloroform (1:1) was added and extracted for 5 min at 
room temperature. After being centrifuged for 5 min at 12000 rpm, the upper aqueous phase was again 
transferred to a fresh tube, and 40 μ l 3 M Na acetate and 2.5 volumes ethanol were added to precipitate 
RNA. After washing with 80% ethanol, the pellet was dried for 5 min, resuspended in 20 μ l DEPC-treated 
water and stored at −80 °C.

Real-time PCR for IME1 mRNA. Real-time PCR was carried out with the Roche Light Cycler®  480II 
System. cDNA was synthesized by the PrimeScriptTM RT Reagent Kit (TaKaRa, RR037A), A 10 μ L volume 
of the system with 5 μ L of 2× EvaGreen mix (Applied Biological Materials Inc., MasterMix-S), 0.8 μ L of each 
primer (10 nmol/L), 2 μ L of sample cDNA, and 2.2 μ L of ddH2O was prepared for amplification. Primer 
sets for IME1 (5’-GACACAACCACCGATCAAGAAG-3’ and 5’-GATGAGTGGAACGTAGATGCG-3’) 
and ACT1 (5’-CCTACGTTGGTGATGAAGCT-3’ and 5’-GTCAGTCAAATCTCTACCGG-3’) were 
used. The real-time PCR was initiated at 95 °C for 10 min, followed by 40 cycles of denaturation for 5 sec 
at 95 °C, annealing for 30 sec at 60 °C, and elongation for 60 sec at 72 °C. Fluorescence signals were col-
lected at 72 °C during the elongation step. Each DNA template was performed in triplicate. The results 
were analyzed using the LightCycle480 SW 1.5.1.

FACS analysis of DNA replication. One-milliliter samples from meiotic cultures were pelleted and 
resuspended in 70% ethanol. Samples were stored at −20 °C until FACS analysis. Before FACS analysis, 
cells were washed with 50 mM sodium citrate and resuspended in 0.5 ml of 50 mM sodium citrate con-
taining 0.1 mg/ml RNase A at 30 °C for 2 hrs. Alternatively, 0.5 ml of 50 mM sodium citrate containing 
2 μ M Sytox Green (for final concentration 1 μ M) was added. Samples were briefly sonicated and analyzed 
on a Becton-Dickinson FACScan analyzer.
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