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Abstract

Cilia dysfunction has long been associated with cyst formation and ciliopathies1. More recently, 

misoriented cell division has been observed in cystic kidneys2, but the molecular mechanism 

leading to this abnormality remains unclear. Proteins of the intraflagellar transport (IFT) 

machinery are linked to cystogenesis and required for cilia formation in non-cycling cells3, 4. 

Several IFT proteins also localize to spindle poles in mitosis5–8 suggesting uncharacterized 

functions for these proteins in dividing cells. Here, we show that IFT88 depletion induces mitotic 

defects in human cultured cells, in kidney cells from the IFT88 mouse mutant Tg737orpk and in 

zebrafish embryos. In mitosis, IFT88 is part of a dynein1-driven complex that transports 

peripheral microtubule (MT) clusters containing MT-nucleating proteins to spindle poles to ensure 

proper formation of astral MT arrays and thus, proper spindle orientation. This work identifies a 

mitotic molecular mechanism for a cilia protein in the orientation of cell division and thus, has 

important implications for the etiology of ciliopathies.

In non-cycling cells, centrosomes (basal bodies) contribute to the assembly of primary cilia9 

through intraflagellar transport, an intracellular motility system in which protein complexes 

are transported bidirectionally along the cilium10–12. During mitosis, centrosomes (spindle 

poles) participate in the organization and orientation of the spindle13–15. In this context, 

astral MTs interact with spindle MTs to facilitate chromosome segregation13 and with the 

cell cortex to orient the spindle14, 15. One of the best-studied IFT proteins, IFT88, which 

was first characterized for its role in cilia formation and polycystic kidney disease3, 16–19, 

also localizes to spindle poles during mitosis6.
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To test for mitotic functions of IFT88, the protein was depleted in several experimental 

systems. In HeLa cells, defects in mitosis were first suggested by an increased mitotic index 

and delayed mitotic progression (Supplementary Information Fig. S1a–e). Closer inspection 

revealed spindle pole disruption, chromosome misalignment and spindle misorientation (Fig. 

1a, b). The spindle angle relative to the cell-substrate adhesion plane (Fig. 1c, d)15 of most 

IFT88-depleted cells (~80%) was greater than 10° whereas control spindles were usually 

parallel to the substratum (Fig. 1d), demonstrating a critical role for IFT88 in spindle 

orientation. Time-lapse imaging showed that spindle misorientation resulted in misoriented 

cell divisions, where one daughter cell divided outside the plane of the substratum, thus 

delaying adherence to the substrate (Fig. 1e, f). Despite misorientation, spindles were largely 

bipolar (Fig. 1a) and cells ultimately progressed through division (Fig. 1f; Supplementary 

Information Fig. S1d). Based on the role of IFT88 in cystic kidney formation3, IFT88 

disruption was examined in kidney cell lines by siRNA (porcine LLC-PK1, Supplementary 

Information, Fig. S2a–c) and by mutation (murine Tg737orpk, Fig. 1g; Supplementary 

Information, Fig. S2d) and showed similar mitotic defects. In zebrafish embryos, IFT88 

depletion by morpholino oligonucleotides known to induce ciliopathies18 also resulted in 

mitotic defects including misoriented spindles (Fig. 1h; Supplementary Information, Fig. 

S2e). These results demonstrate a conserved mitotic role for IFT88 in spindle and cell 

division orientation.

We next examined the structural underpinnings of spindle misorientation induced by IFT88 

depletion. The most notable defect was a significant loss and shortening of astral MTs, 

which did not contact the cell cortex, a requirement for force generation during spindle 

orientation (Fig. 2a, b). This phenotype was consistently observed in different experimental 

systems (Fig. 2a, b; Fig. 1g), demonstrating a conserved role for IFT88 in the formation of 

astral MT arrays.

In centrosome containing cells, astral MT arrays arise from both centrosome-based 

nucleation and transport of MT clusters to the poles from the periphery20, 21. To define the 

role of IFT88 in the assembly of astral MT arrays, we tested the contribution of the protein 

in both processes. A role for IFT88 in MT nucleation was first suggested by loss of MT 

nucleating components, γtubulin and EB113, 22–25, from spindle poles following IFT88 

depletion (Fig. 2c, d; Supplementary information Fig. S3a, b); EB1 depletion did not affect 

IFT88 pole localization (Supplementary information Fig. S3c). The similarities in mitotic 

phenotypes induced by depletion of IFT88, EB1 or γtubulin (spindle pole defects, reduced 

astral MTs and misoriented spindle; Fig. 1)15, 23–25, and the mitotic interaction of IFT88 

with EB1 and γtubulin (Fig. 2e), supported the idea that these proteins may co-function in 

mitosis. More specifically, the impaired recruitment of γtubulin to spindle poles in IFT88 

depleted cells following MT regrowth (Fig. 2f) suggested a role for IFT88 in the recruitment 

of MT nucleating components to spindle poles. Consistent with the polar loss of MT 

nucleating proteins, IFT88 depletion decreased MT nucleation, but the effect was modest 

when compared to the dramatic disruption of astral MTs (Fig. 2g, h; Supplementary 

Information Fig. S3d). This observation and the known role of IFT proteins in the transport 

of components in cilia10, 11, suggested that IFT88 might function in MT transport to poles 

during mitosis rather than directly participating in MT nucleation at poles.
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To test this, we examined the role of IFT88 in the transport of peripheral MT clusters toward 

spindle poles during the prophase to metaphase transition using GFP-αtubulin-expressing 

LLC-PK1 cells previously optimized for this purpose21. In prometaphase, IFT88 localized to 

foci at the minus end of peripheral MT clusters where the dynein motor was previously 

localized21 (Fig. 3a, Supplementary Information Fig. S4a). In IFT88-depleted cells 

peripheral MTs clusters accumulated in the cytoplasm (Fig. 3b), suggesting that they were 

unable to integrate into spindle poles during the prometaphase to metaphase transition. The 

ectopic MT clusters contained the MT nucleating proteins γtubulin and EB1, and the MT 

associated motor dynein1 (Fig. 3c, d). To directly test if IFT88 was required for the 

movement of MT clusters, we examined the recruitment of peripheral MTs to poles by time-

lapse imaging (Fig. 3e; Supplementary information movie S1–4 online). In control cells, 

peripheral MTs moved poleward in prometaphase and contributed to the formation of robust 

spindle poles, as seen previously (Fig. 3e top panel; Supplementary information movie 

S1)20, 21. By metaphase, most clusters were cleared from the periphery and incorporated 

into spindle poles (Supplementary information movie S2). In IFT88 depleted cells, 

peripheral MT clusters did not move toward spindle poles in prometaphase (Fig. 3e lower 
panel; Supplementary information movie S3) and by metaphase, they were still not cleared 

from the periphery (Supplementary Information movie S4), suggesting a defect in transport. 

An independent strategy that directly tests the movement of MT clusters from periphery to 

poles during spindle reassembly26 also revealed a defect in relocalization of MT clusters to 

poles following IFT88 depletion (Fig. 3f). These results uncover a new role for IFT88 in the 

movement and subsequent integration of MT clusters containing MT nucleating proteins 

into spindle poles. They further suggest that IFT88 may be part of a transport complex in 

mitosis.

MT cluster transport toward spindle poles requires the minus-end directed motor dynein121. 

In cilia, the movement of IFT88-containing particules is also motor-dependent11. We thus 

asked if IFT88 was part of a MT-based, motor-driven transport system in mitosis as it is in 

ciliated cells. Consistent with this model, IFT88 co-pelleted with taxol-stabilized MTs from 

mitotic cell lysates (Fig. 4a). Moreover, the spindle pole localization of IFT88 was 

dependent on MTs as shown by the dramatic reduction of IFT88 at spindle poles following 

MT depolymerization, and its restoration after nocodazole washout (Fig. 4b). During spindle 

reassembly, a remarkable redistribution of IFT88 was observed. Within five minutes, IFT88 

redistributed from a diffuse cytoplasmic location to numerous cytoplasmic foci (Fig. 4b). 

The IFT88 foci contained αtubulin and singular or bundled MTs as well as the newly 

characterized IFT88 mitotic interacting partners, γtubulin and EB1 (Fig. 4c, d). With time, 

the number of IFT88 foci decreased concomitant with an increase in the spindle pole 

fraction (Fig. 4e), suggesting translocation of the cytoplasmic foci to poles. Direct 

translocation of IFT88 to spindle poles was tested using GFP-IFT88-expressing LLC-PK1 

cells (Fig. 4f). GFP-IFT88 localized to spindle poles and to cytoplasmic foci, confirming 

results with the endogenous protein. GFP-IFT88 foci exhibited vectorial movement toward 

poles (Supplementary Information, Movie S5; Fig. 4f); anterograde movements were also 

observed (Fig. 4fII). The speed of IFT88 retrograde movement (>1mm/sec) was consistent 

with dynein-mediated motility, suggesting that polar transport of IFT88 was mediated by 

dynein (Fig. 4fII), possibly in the form of a dynein-IFT88 complex. The common functions 
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of IFT88 and dynein1 in astral MT organization, mitotic spindle orientation (Fig. 1, Fig. 2a, 

b)14, 27–29 and transport of MT clusters (Fig. 3)21 supported this model.

To directly test for the presence of a mitotic IFT88 transport complex, we performed a series 

of biochemical experiments. The approximate size of mitotic IFT88 complexes was 

determined by gel filtration (Fig. 5a). IFT88 was detected in fractions 16 to 20 (~2–5 MDa) 

where it partially co-eluted with dynein1; a separate peak of IFT88 appeared in fraction 26 

(~600kDa). Dynein co-eluted with dynactin components (fractions 16 to 22), suggesting that 

the integrity of the dynein/dynactin complex was retained during gel filtration (Fig. 5a). The 

partial co-elution of IFT88 and dynein suggested that a subfraction of IFT88 may interact 

with a subfraction of dynein in a large 2–5 MDa complex (Fig. 5a). In fact, IFT88 and 

dynein co-immunoprecipitated from mitotic lysates (Supplementary Information Fig. S4b, 

c). Immunoprecipitation experiments performed on gel filtration fractions containing dynein 

confirmed that the interaction was maintained after gel filtration (Fig. 5a, right), providing 

further evidence for an IFT88-dynein1 complex in mitosis. Additional IFT proteins co-

eluted with IFT88 in the 2–5 MDa range and an interaction between IFT88 and IFT52 

(another IFT B-complex component) was identified in mitotic cells (Fig. 5a; Supplementary 

Information, Fig. S4d, e). These data suggest that IFT88 and maybe other IFT proteins are 

part of a large dynein1-containing protein complex during mitosis.

To test for a role of dynein1 in the spindle pole localization of IFT88, dynein1 heavy chain 

was depleted by siRNA. An increase in mitotic index29 and interphase defects30 were 

observed (Supplementary Information, Fig. S5), validating the efficacy of the siRNA. In 

addition, dynein1 depletion induced a unique redistribution of IFT88 from its focused 

spindle pole position to a more diffuse region surrounding the poles (Fig. 5b–d), but did not 

dramatically affect the centrosome localization of IFT88 in interphase as previously 

reported6 (Supplementary Information, Fig. S6a). The IFT88 localization pattern was unlike 

other spindle pole proteins, which were lost from poles but not redistributed (Supplementary 

Information, Fig. S6b). This observation and the fact that IFT88 misolocalization occurred 

before major spindle disruption (Supplementary Information, Fig. S6c, d), indicated that 

IFT88 mislocalization was not due to global perturbations of the spindle. The mitotic 

redistribution of IFT88 following dynein1 depletion was reminiscent of IFT88 accumulation 

at cilia tips following depletion of the cilia-associated dynein2 motor12, an apparent 

consequence of net MT plus-end motor activity in the absence of minus-end activity (Fig. 

5d). A similar redistribution of IFT88 was observed following depletion of p50 dynactin, 

which disrupts dynein function29 (Supplementary Information, Fig. S6e–g). In contrast, 

depletion of the dynein2 motor which is required for retrograde transport in cilia11, 12, did 

not affect mitotic index, spindle organization or the spindle pole localization of IFT88 

despite its robust interphase and ciliary phenotypes31 (Supplementary Information Fig. S5, 

S7). These data demonstrate a role for cytoplasmic dynein1 in the MT-dependent spindle 

pole localization of IFT88 and suggest that IFT88 functions as part of a previously 

uncharacterized dynein1-driven complex in mitotic cells.

To directly test the role of dynein1 in IFT88 transport to spindle poles, we examined the 

translocation of IFT88 foci from cytoplasm to poles during spindle reassembly (Fig. 5e, f). 

In dynein-depleted cells, IFT88 foci were delayed in their relocalization, as demonstrated by 
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an increase in the number of IFT88 foci remaining in the cytoplasm after MT regrowth and a 

decrease in IFT88 at spindle poles (Fig. 5e). More specifically, thirty minutes after 

nocodazole washout, most (85%) control cells lacked cytoplasmic foci and showed IFT88 at 

poles, whereas half of the dynein1 depleted cells still showed cytoplasmic IFT88 foci and 

weak pole staining (Fig. 5f). This demonstrates that dynein1 is required for the transport of 

IFT88 to spindle poles.

This work identifies a role for an IFT protein in the formation of mitotic astral MT arrays 

and thus establishes a new molecular mechanism for a cilia protein in spindle orientation. 

These results, together with the previously-established role of dynein1 in transporting 

peripheral MTs21 and centrosome components32 to spindle poles, suggests that an IFT88-

dynein1 complex transports peripheral MT clusters and associated MT nucleating 

components to spindle poles (model, Fig. 5g). These MT clusters can be viewed as “pre-

fabricated” parts of the spindle pole, an observation reminiscent of “pre-assembled” cilia 

components transported by motors along the cilia11. Integration of MT clusters into spindle 

poles instantly contributes to the astral MT population while the MT nucleating components 

present in these structures (γtubulin, EB1) could contribute to MT nucleation at poles. 

Collectively, these events facilitate formation of astral MT arrays and subsequently spindle 

orientation. The IFT88-mediated spindle pole assembly pathway provides new insight into 

the underpinnings of fundamental processes including cystogenesis and asymmetric cell 

division33.

Because cilia disassemble before mitotic entry34, the role of IFT88 in the formation of 

mitotic astral MT arrays represents a novel cilia-independent function for this protein, in 

addition to its role in cilia formation3, cell cycle progression6 and membrane trafficking35. 

The spindle pole localization of several other IFT proteins5–8 and the mitotic interaction 

between IFT52 and IFT88 (Supplementary Information, Fig. S4d, e) suggest that other IFT 

proteins, and maybe other classes of cilia proteins, may function in dividing cells. Moreover, 

the anterograde movement of IFT88 foci, suggest a role for MT plus-end directed motors in 

IFT88 mitotic transport (Fig. 4f; Fig. 5d).

IFT88 depletion primarily affects a subset of MTs in mitosis (astrals) consistent with the 

selective disruption of spindle function. The observed delay in mitosis, rather than a 

complete mitotic block, indicates that there are no major, potentially fatal defects in spindle 

function. IFT88 may thus operate selectively in cells, tissues and organisms that require 

astral MTs for proper spindle orientation, such as the oriented cell divisions in an epithelial 

layer or the asymmetric division of stem cells33. This may explain why IFT88 disruption is 

not associated with more severe phenotypes in mouse, Drosophila or C. elegans embryos, 

such as lethality in the earliest embryonic stages16, 17, 19.

Cystogenesis has been associated with cilia disruption and misoriented cell division2. 

Despite the appeal for a role of cilia in regulating the planar cell polarity36, the molecular 

mechanism leading to misoriented cell division remains unclear. This work provides a likely 

mechanism for IFT88 function in oriented cell divisions. Additional work is required to test 

whether the pathway outlined here for IFT88 can be applied to other cilia proteins involved 

in cystogenesis.
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Methods

Cell culture, siRNAs, transfection

HeLa cells, hTert RPE-1 (Clontech, Mountain View, CA) cells, GFP-αtubulin LLC-PK1 

stable cell line20, 21 (Gift from P. Wadsworth), wt or Tg737 −/− mouse kidney cells37 and 

Flag-IFT52 IMCD38 or GFP-IFT88 LLC-PK stable cell line (Gifts from G. Pazour) were 

grown as described by American Type Culture Collection (Manassas, VA). Targeted 

proteins were depleted with small-interfering RNAs (siRNAs) designed and ordered via 

Dharmacon (Lafayette, CO) and delivered to HeLa or LLC-PK1 cells using Oligofectamine 

or RPE cells using Lipofectamine 2000 (Invitrogen, Carlsbad, CA) according to 

manufacturers’ instructions. Three siRNA sequences were used to target human and porcine 

IFT88: IFT88: CGACUAAGUGCCAGACUCAUU, IFT88#2: 

CCGAAGCACUUAACACUUA previously published 6 and IFT88sc (Sus Scrofa): 

CCUUGGAGAUCGAGAGAAUU. The efficacy of IFT88 knock down was assessed by 

immunoblotting and immunofluorescence 48h post-transfection. Functional loss of IFT88 

was verified using a cilia formation assay in RPE cells39. Rescue experiment was performed 

by depleting endogenous IFT88 (IFT88sc siRNA) in porcine LLC-PK1 cell line expressing 

a mouse GFP-IFT88 cDNA. EB1 siRNA (GCCCUGGUGUGGUGCGAAA), p50 siRNA 

(GACGACAGUGAAGGAGUCAUU) and siRNA specific for Dynein1 or Dynein2 

(Dharmacon Smart Pool; sequences available upon request) were also used. Control siRNA 

were described previously (GFP, Lamin)39. The efficacy of Dynein 1 and 2 knock down was 

assessed by RT-PCR (DYNC1H1 FW: GGAAGTCAACGTCACCACCT; DYNC1H1 RV: 

CCAACCTCAGACCAACCACT; DYNC2 FW: GTCAGCTGGAGGAAGACTGG; 

DYNC2 RV: GCACCAACAATTTTGTCACG; GAPDH FW: 

CGACCACTTTGTCAAGCTCA; GAPDH RV: AGGGGAGATTCAGTGTGGTG) using 

OneStep RT-PCR kit (QIAGEN, Valencia, CA) for both dynein1 and dynein2 and by 

Western blot for Dynein1. Functional assays for loss of Dynein 1 and 2 were done 48h and 

72h post-transfection and included golgi fragmentation (dynein1 and 2) and mitotis-related 

(dynein1) or cilia assays (dynein2) previously described39.

Zebrafish lines, MO injection and phenotyping

Wild-type zebrafish were raised according to standard protocols40. 1-Phenyl-2-thiourea 

(PTU, Sigma, St Louis, MO) was used to suppress pigmentation when necessary according 

to standard protocols40. Embryos were staged according to hours post-fertilization (hpf). 

IFT88 morpholino antisense oligonucleotides (IFT88 MO: 

CTGGGACAAGATGCACATTCTCCAT) previously described 18 and standard control 

MO were used. The efficacy of IFT88 MO injection was assessed by changes in gross 

anatomical features (e.g. curly trunk and pronephric duct defects, cyst formation) 

characteristic of IFT88 zebrafish mutants4, 18. Gross anatomical defects and cyst formation 

were observed in 32hpf and 52hpf embryos, with a MZFLIII dissection microscope (Zeiss, 

Thornwood, NY). One cell stage embryos were injected with 10ng of control or IFT88 MO 

as previously described18. 52hpf embryos were used for whole mount staining or flow 

cytometry (see below).
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Antibodies

The following antibodies were used: IFT88 from G. Pazour or Proteintech, Chicago, IL for 

biochemistry (western blot 1/500, Immunoprecipitation, 5μg) or from C. Desdouets 

(immunofluorescence 1/250); IFT20 (G. Pazour, western blot 1/500); IFT52 (western blot 

1/500, Proteintech, Chicago, IL); polyglutamylated tubulin antibody (GT335, P. Denoulet 

and C. Janke, immunofluorescence 1/500); αtubulin (DM1α, immunofluorescence 1/250), 

FITC conjugated αtubulin (1/300), γtubulin (western blot 1/500, immunofluorescence 

1/250), EB1(immunofluorescence 1/250, immunoprecipitation 5μg), BrdU (1/250), Flag 

(western blot 1/500, IP 5μg) and acetylated tubulin (1/250) from Sigma (St Louis, MO); 

Ser10 Phos-H3 (1/500, Upstate Biotechnology, Lake Placid, NY); EB1 (western blot 1/300, 

immunofluorescence 1/250), p150 glued (western blot 1/1000), p50/dynactin (western 

1/500) from BD Biosciences (Franklin Lakes, NJ), Dynein IC 74.1 (immunofluorescence 

1/250, western blot 1/500, IP 5μg, Santa Cruz Biotechnology, Santa Cruz, CA), Golgin 97 

(immunofluorescence 1/250, Molecular Probes, Carlsbad, CA), CREST 

(immunofluorescence 1/250, anti- human centromere/kinetochore; Antibodies Inc. Davis, 

CA). 5051 (immunofluorescence 1/500) has been described previously39.

Lysates, cell synchronization, immunoprecipitation and gel filtration

Cell lysates were obtained from HeLa cells 48h or 72h post siRNA transfection. Lysis 

buffer: 50mM Hepes (pH 7.5), 150mM NaCl, 1.5mM MgCl2, 1 mM EGTA, 1% IGEPAL 

CA-630, and protease inhibitors (Complete Mini, Roche Diagnostics, Mannheim, Germany). 

Protein concentration for lysate was determined using Bio-Rad protein dye reagent (Bio-Rad 

Laboratories, Hercules, CA), loads were adjusted, proteins were resolved by SDS-PAGE, 

and analyzed by Western Blot. Cell synchronization for biochemistry was achieved using 

double thymidine block in HeLa cells (2mM, 20h) and release (10h) to achieve mitotic 

enrichment followed by mitotic shake off. IMCD cells were synchronized in mitosis using 

R0-3306 inhibitor (Reversibly arrests cells at the G2-M border, Enzo Life Sciences AG, 

Switzerland) overnight then released for one hour. For immunoprecipitation, antibodies 

were added to cell extracts and incubated at 4°C overnight then incubated for 45 min with 

protein G-PLUS agarose (Santa Cruz Biotechnology, Inc.). Immunoprecipitated proteins 

were separated by SDS-PAGE and analyzed by western blotting. For gel filtration, mitotic 

cell lysates (Lysis buffer: 20mM Hepes pH 7.6, 5mM MgSO4, 0.5mM EDTA, and 50mM 

KCl, 1% NP-40; Volume:0.250 ml; Protein concentration: 12μg/μl) were loaded onto a fast 

protein liquid chromatography Superose 6 gel-filtration column (GE Healthcare, Piscataway, 

NJ; 0.2 ml/min, equilibrated in extraction buffer), and 0.5 ml fractions were collected.

Flow cytometry

For flow cytometry, 52hpf zebrafish embryos were grown in egg water and dechorionated 

by pronase treatment40, rinsed for 15 minutes in calcium free Ringer and passed several 

times through a 200μL pipet tip to remove the yolk. Embryos were transferred into a 35 mm 

culture dish with 2 mL phosphate buffered saline (PBS, pH 8) containing 0.25% trypsin and 

1mM EDTA and incubated for 30 to 60 min at 28.5°C. The digest was stopped by adding 

CaCl2 to a final concentration of 1 mM and fetal calf serum to 10%. Cells were centrifuged 

for 3 min at 3000 rpm, rinsed once with PBS and fixed and processed for flow cytometry. 
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Cells were stained for flow cytometry experiments as previously described39. Phos-H3 

staining (Ser10 Phospho-Histone 3, alexa fluor 488 conjugate), was performed according to 

manufacturers’ instructions (Cell Signaling, Boston, MA).

Microtubule binding assay

Mitotic cells were lysed at 4°C in 100 mM 1,4-piperazinediethanesulfonic acid, pH 6.8, 1 

mM MgCl2, 2 mM EGTA, and 1% Triton X-100 and spun 13,000 × g for 30 min. 

Microtubule affinity experiments were performed as described32 with some modifications. 

Briefly, purified tubulin (10μg), DTT (1mM), GTP (1 mM) and taxol (10 μM) were added to 

cleared lysates, and incubated for 1h at 37°C. 10μM nocodazole was added for negative 

control. Lysates were layered over a 20% sucrose cushion in the above buffer and spun at 

100,000g for 1h at room temperature. MT pellets were collected after removing lysate and 

cushion, and bound proteins were separated by SDS-PAGE and analysed by Western blot.

Microtubule regrowth assay

48h post transfection, MTs were depolymerized in 10–25 μM nocodazole in culture medium 

for 1 hour at 37°C. Cells were then washed and incubated in culture medium without 

nocodazole at 37°C to allow regrowth. Cells were fixed at different time intervals in MeOH 

and processed for immunofluorescence to examine MT regrowth (αtubulin) from spindle 

poles in metaphase cells.

Immunofluorescenc experiments, microscopy and imaging software

48h whole embryos were processed for immunofluorescence by fixation in Dent’s Fix (80% 

methanol/20% DMSO) at 4°C overnight, rehydrated, washed with PBS containing 0.5% 

Tween 20 (PBST), and blocked in 1X PBS-DBT (1% DMSO, 1% BSA, 0.5% Tween20) at 

room temperature for 2 hours. Primary and secondary antibody incubations were performed 

in 1X PBS-DBT at 4°C overnight and 1h at room temperature respectively using 1X PBS-

DBT washes between incubations. After rinsing in 1X PBS, the embryos were mounted and 

examined using a Perkin Elmer Ultraview spinning disk confocal microscope: Zeiss 

Axiovert 200M, 100x Plan-APOCROMAT NA1.4 Oil, or 63x Plan-APOCROMAT NA1.4 

Oil and Hamamatsu ORCA-ER camera. Images were processed on a MetaMorph 

workstation (Molecular Devices, Downington, PA). Z stacks were acquired and used for 

creation of maximum projections or 3D rendering (below).

Immunofluorescence analysis of −20°C methanol-fixed cells was performed as previously 

described39. Images were acquired using the spinning disk confocal microscope described 

above (100x Plan-APOCROMAT NA1.4 Oil). Z stacks were displayed as two-dimensional 

maximum projections (MetaMorph) or processed for 3-D rendering (Imaris, Bitplane, Saint 

Paul, MN). Fluorescence range intensity was adjusted identically for each series of panels. 

Intensity profiles, linescan histograms and fluorescence intensity quantification were 

obtained from sum projections of Z stacks using MetaMorph. For fluorescence intensity 

quantification, computer generated concentric circles of 60 (inner area) or 80 (outer area) 

pixels in diameter were used to measure spindle pole (inner area) and calculate local 

background (difference between the outer and inner area) fluorescence intensity. Imaris 3D 

rendering software was used to visualize spindle orientation and to measure distances 
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required to calculate spindle angle. Spindle angle measurements were performed as 

previously described 15.

Time-lapse imaging

Time-lapse imaging of cultured HeLa cells was performed using the spinning disk 

microscope described above (25x Plan-NEOFLUAR NA0.5, phase) using scan stage tool 

(MetaMorph). Images were taken every 10 min from 32h to 48h post transfection. For live 

microscopy of GFP-EB1 in metaphase HeLa cells, images were recorded every 5 seconds 

for 2 minutes using the spinning disk confocal microscope described above (63x Plan-

APOCROMAT NA1.4 Oil). MT nucleation rate was measured in GFP-EB1 cells by 

manually counting the number of EB1-GFP comets emerging from the centrosome over 

time. For live microscopy of GFP-IFT88 in metaphase, single plane images were recorded 

once per second using the spinning disk confocal microscope described above (100× Plan-

APOCROMAT NA1.4 Oil). Resulting movie is displayed at 3 frames per second. Tracking 

of IFT88 foci was obtained using the track point application in MetaMorph. Live imaging of 

the GFP-αtubulin LLC-PK1 cell line was performed as previously described21. Resulting 

movies are displayed at 10 frames per second.

Statistical analysis

The number of embryos or cells counted per experiment for statistical analysis is indicated 

in figure legends. For graphs in all figures: error bars, mean of at least 3 experiments +/− SD 

unless otherwise specified; n, number of events/experiment. Images: scale bars, 5μm unless 

otherwise specified. Graphs were created using GraphPad Prism software (San Diego, CA).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. IFT88 depletion leads to mitotic defects in HeLa cells, kidney cells from the Tg737orpk 

mouse mutant and zebrafish
(a) Immunofluorescence images of control (GFP) and IFT88 siRNA-treated mitotic HeLa 

cells. αtubulin (α tub, MTs) and γtubulin (γ tub, spindle poles, arrow) staining show spindle 

pole defects. CREST (kinetochores) or DAPI (DNA) staining show misaligned 

chromosomes. Scale bars, 5μm. (b) Quantification of mitotic defects following IFT88 or 

control (GFP) siRNA treatment in HeLa cells. Defects include disrupted poles (α and 

γtubulin), misaligned chromosomes (DAPI staining) and spindle misorientation (spindle tilt, 

spindle poles in different focal planes). n=70 mitotic cells/experiment. (c–d) Side views of 

three-dimensional reconstructed immunofluoresence images (c) show misoriented mitotic 
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spindles in IFT88 versus control siRNA-treated HeLa cells. Spindle (EB1), centrosomes 

(5051) and DNA (Phos-H3). Histogram (d) shows metaphase spindle angle distribution in 

control and IFT88 siRNA-treated cells. n=30 mitotic spindles. Schematic (d, top) shows 

spindle angle (α) measurement. H, hypotenuse. O, opposite. (e–f) Quantification (e) and 

time-lapse images (f) show uneven timing of daughter cell flattening onto the substrate after 

mitosis (misoriented cell division) in IFT88 siRNA treated HeLa cells compared to control. 

n=50 mitotic cells/experiment. Arrows, time when the first daughter cell begins flattening. 

Time, min. Scale bar, 10um. (g) Immunofluorescence images showing a disrupted spindle 

pole (αtubulin, arrow) in kidney cells derived from the IFT88 mouse mutant Tg737orpk 

(Tg737−/−) compared to wt (Tg737+/+). Scale bars, 2μm. Graph (right): quantification of 

mitotic defects in wt and Tg737orpk mutant cells. (h) Immunofluorescence images of mitotic 

spindles from the pronephric ducts of whole mount zebrafish embryos. Control embryo, cell 

with aligned chromosomes and mitotic spindle oriented in the longitudinal plane of the duct. 

IFT88 depleted embryo, cell with nonaligned chromosomes and misoriented spindle. Lines, 

pronephric duct border. Dotted lines, spindle orientation. MO, morpholino. Right, 

enlargements of boxed spindles. Scale bar, 5 μm.
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Figure 2. IFT88 depletion disrupts astral MTs and the spindle pole localization of proteins 
involved in MT nucleation in HeLa cells
(a) Immunofluoresence images of mitotic spindles showing disrupted astral MTs (αtubulin) 

at spindle poles of IFT88 depleted cells compared to control. Pixel intensity range increased 

to visualize astral MTs (arrow). Enlargements, spindle pole region. Graph (right), 

quantification of cells with long astral MTs (>3μm). n=70 mitotic spindles/experiment. (b) 
Side view of three-dimensional reconstructed images showing astral MTs (EB1 staining) 

contacting the cortex in control cells (arrow, upper panel) and astral MTs which fail to 

contact the cell cortex in IFT88 depleted cells (arrow, lower panel). Dotted lines, cell cortex. 

Graph (right): quantification of cells with both poles showing astral MTs contacting cortex. 

n=50 mitotic spindles/experiment. (c, d) Immunofluorescence images (c) and quantification 

(d) of mitotic spindles showing loss of EB1 and γtubulin (γ tub) from spindle poles (arrow) 

in IFT88 depleted cells compared to control. Graph (d): % cells with disrupted pole 

localization of EB1 or γtubulin (γ tub). n=50 mitotic spindles/experiment. Scale bar, 5μm. 

(e) Immunoblots showing that IFT88 co-immunoprecipitates with EB1 (left) and that 

γtubulin co-immunoprecipitates with IFT88 (right) from lysates of mitotic HeLa cells 

demonstrating a mitotic interaction between the proteins, either direct or indirect. Ig, rabbit 

Delaval et al. Page 14

Nat Cell Biol. Author manuscript; available in PMC 2011 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



antibody, negative IP control. Input, 5% of total lysate used for IP. For full scan of 

immunoblots see Supplementary Fig. S8. (f) Quantification of γtubulin intensity at spindle 

poles of mitotic cells showing γtubulin recruitment to poles in a MT regrowth experiment. 

T, time after nocodazole washout (min). Bar, median. Experiment shown is representative of 

three independent experiments. a.u., arbitrary unit. (g) Immunofluoresence images showing 

MT regrowth (αtubulin) at mitotic spindle poles 0min, 1min and 2min after nocodazole 

washout in IFT88 or GFP depleted mitotic cells. T=0min shows no nucleation in GFP and 

IFT88 depleted cells, T=1min and 2min show decreased nucleation in IFT88 depleted cells 

compared to control cells. Scale bar, 2μm. (h) % cells showing detectable nucleation (aster 

size ≥ 1μm) 0min, 1min and 2min after nocodazole washout. n=50 mitotic cells/experiment; 

error bars, mean of at least 3 experiments +/− SD.
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Figure 3. IFT88 is required for the movement of peripheral MT clusters containing MT 
nucleating components toward spindle poles in LLC-PK1 cells stably expressing GFP-α tubulin
(a) Immunofluoresence images showing IFT88 and dynein (intermediate chain, dynein IC) 

localizing to a peripheral MT cluster (GFP-αtubulin) in a prometaphase cell. Pixel intensity 

range increased to visualize peripheral MT cluster. Scale bar, 5μm. Inset, peripheral MT 

cluster. See Supplementary information Fig. S4a for negative controls. (b) Quantification of 

GFP-αtubulin LLC-PK1 metaphase cells with ectopic MT clusters following IFT88 or 

control (Con, lamin) siRNA treatment. n=50 mitotic cells/experiment. (c–d) 
Immunofluoresence images of GFP-αtubulin LLC-PK1 control or IFT88 depleted 
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metaphase cells. γtubulin (c), EB1 (d, left) and dynein (d, right) localize to ectopic MT 

clusters. Insets, ectopic MT clusters. Scale bar, 5μm. (e) Selected still images from time-

lapse movies of GFP-αtubulin LLC-PK1 cells. Control prometaphase, minus-end directed 

motion of peripheral MT clusters toward spindle pole. In IFT88 depleted cells, peripheral 

clusters formed but showed no movement towards spindle poles. Full cell (left); enlargement 

of spindle pole and MT cluster (right). Time (min); arrowhead, MT cluster; arrow, spindle 

pole. (f) Immunofluorescence images (left) and quantification (right) of the relocalization of 

MT clusters to spindle poles in a spindle reassembly assay (αtubulin, MT regrowth 

following nocodazole washout). The decrease in cells with ectopic MT clusters over time 

correlates with their movement towards the poles. IFT88 depletion delays relocalization of 

MT clusters to poles. Arrows, spindle poles (localization confirmed with centrosome protein 

staining). Arrowheads, ectopic MT clusters. n=40 mitotic cells/experiment/time point. T, 

time after nocodazole washout (min).
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Figure 4. IFT88 moves towards spindle poles and requires MTs for its spindle pole localization
(a) MT pull down assay shows IFT88 co-pelleted with taxol-stabilized MTs (Tax) in mitotic 

HeLa cell lysates. Nocodazole (Noc), inhibition of microtubule polymerization used as 

negative control. αtubulin, MTs (b) Immunofluoresence images showing IFT88 foci 

formation (lower panel) after nocodazole washout (αtubulin, MT regrowth; upper panel) in 

HeLa cells. T, time after nocodazole washout (min). Control without nocodazole (no noc). 

Scale bar, 5μm. (c, d) Immunofluorescence images showing the molecular composition of 

IFT88 foci in HeLa cells. Maximum projection of a cell with IFT88 foci 5min after 

nocodazole washout (c) shows that IFT88 foci co-stain for αtubulin and dynein intermediate 

chain (Dyn). Enlargments, single plane of the boxed foci. Enlargements of IFT88 foci (d) 

showing that MT clusters can be observed extending from the foci, and that IFT88 foci 

costain with MT nucleating components (5051, centrosome protein marker; γtubulin; EB1). 

Pixel intensity range increased to visualize foci. Scale bar, 1μm. (e) Quantification of IFT88 

intensity at spindle poles of mitotic HeLa cells showing IFT88 recruitment to poles 

following nocodazole washout. T, time after nocodoazole washout (min). Experiment shown 
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is representative of three independent experiments. Bar, median. a.u., arbitrary unit. No 

nocodazole (No Noc), untreated cells. (f) Still images from time-lapse imaging of a GFP-

IFT88 LLC-PK1 cell line (I.) showing one of the GFP-IFT88 foci (arrowhead) moving 

toward the GFP-IFT88-labeled spindle pole (arrow). Time elapsed is shown in seconds. 

Scale bar, 1μm. Schematic representation (II.) of several GFP-IFT88 foci moving toward 

(red arrow) or away from (black arrowhead) the spindle pole (grey dot). Time between 

points, 1second. Arrows indicate the direction of the movement.
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Figure 5. IFT88 is part of a dynein1-driven transport complex in mitosis
(a) Immunoblots (left) showing fractions of mitotic HeLa cell lysates obtained after gel 

filtration fractionation and probed for IFT88, dynein intermediate chain, dynactin p150/

glued, p50 dynactin, IFT52 and IFT20. Input, total lysate before gel filtration. Arrowheads, 

peak elution fraction for calibration proteins: BSA (66kDa), β-amylase (200kDa), 

thyroglobulin (669kDa). V, Void volume. Immunoprecipitation experiment (right) 

performed on fractions 16 to 22 from gel filtration containing dynein. Immunoblots show 

that IFT88 co-immunoprecipitates with dynein (IC, intermediate chain) after gel filtration. 

For full scan of immunoblots see Supplementary Fig. S8. (b–d) Immunofluorescence images 

of HeLa cells (b) showing IFT88 redistribution from mitotic spindle poles to a more diffuse 
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region surrounding the poles following dynein1 (D1) depletion compared to control (GFP). 

αtubulin (α tub). Intensity profiles, lower left panels; Spindle pole enlargement, lower right 

panels. Scale bar, 5μm. Graph (c), % cells with focused IFT88 localization at poles 

following dynein1 (D1) or dynein2 (D2) siRNA treatment. n=70 mitotic spindles/

experiment. Schematic representation (d) of IFT88 (green) redistribution in cilia when D2 is 

depleted, and around mitotic spindle poles when D1 is depleted. (e, f) Immunofluorescence 

images (e) showing that D1 depletion in HeLa cells delays IFT88 (red) relocalization to 

spindle poles in a spindle reassembly assay (αtubulin, green). The decrease of cytoplasmic 

foci over time, observed in control (GFP) cells correlates with the relocalization of IFT88 

from foci to spindle poles. Despite the formation of MT clusters in D1 depleted cells, several 

IFT88 foci remain in the cytoplasm 30 min after nocodazole washout. Arrows, spindle 

poles; Arrowheads, IFT88 foci. Graph (f): % of cells with more than ten cytoplasmic foci. 

n=40 cells/experiment/time point. T, time after nocodazole washout (min). (g) Molecular 

model for IFT88 function in mitosis. IFT88 is depicted as a component of a minus-end 

directed dynein1-driven transport complex. This complex is required for transport of MT 

clusters and their associated nucleating components (EB1 and γtubulin) to spindle poles. 

IFT88 thus contributes to the formation of astral MT arrays and consequently spindle 

orientation. Adapted from20.
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