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Mantle Cloaks Based on the 
Frequency Selective Metasurfaces 
Designed by Bayesian Optimization
F. F. Qin1, Z. Z. Liu   1, Q. Zhang1, H. Zhang   2 & J. J. Xiao1

We propose a full optimization procedure for designing mantle cloaks enclosing arbitrary objects, 
using sub-wavelength conformal frequency selective surface (FSS). Rely on the scattering cancellation 
principle of mantle cloak characterized by an average surface reactance, a personal computer can 
achieve this design procedure. By combing a Bayesian optimization (BO) with an electromagnetic 
solver, we can automatically find the optimal parameters of a conformal mantle cloak which can nearly 
cancel the scattering from the enclosed objects. It is shown that the results obtained by our method 
coincide with those from a rigorous analytical model and the numerical results by full parametric 
scanning. The proposed methodology opens up a new route for realizing ultra-wideband illusion 
scattering of electromagnetic wave, which is important for stealth and microwave applications.

In the past decade, much attention has been paid to the concept and realization of electromagnetic cloaks, which 
is one of the most interesting applications of metamaterials and metasurfaces1–9. Coordinate transformation 
cloaking method10–12 is arguably the most successful approach that has been experimentally realized in radio fre-
quency11, near infrared, and the visible7,13–15. The principle of this technique is that by utilizing specific anisotropy 
and inhomogeneity profiles of the surrounding metamaterials (cloak) around an object, the electromagnetic wave 
inside the cloak can be bent and make the object effectively invisible. Soon later, several alternative approaches 
such as plasmonic cloaking16 and cylindrical transmission-line cloaking were proposed. However, all the above 
mentioned cloaking techniques rely on bulk metamaterials which are not only difficult to fabricate but also have a 
relatively large size compared with that of the region to be cloaked. These drawbacks greatly hinder the practical 
applications of these cloaking techniques.

Recently, a different cloaking method named scattering cancellation technique17–22 has been proposed to over-
come these issues. In this framework, the scattered fields from a given object are cancelled through generating 
“anti-phase” currents on a thin surface around the object. Once the required average surface reactance of the 
object has been confirmed, the specifically designed metasurface of the mantle cloak can be made by adopting the 
proper shape and geometry of the unit cell.

For some simple objects with canonical shapes, such as sphere and cylinder, one can use a rigorous analytical 
model to design the mantle cloaks16,19–25. But for more complicated geometries, theoretical or semi-theoretical 
analysis becomes difficult or even impossible. In such cases, we have to design the corresponding mantle cloaks 
with the aid of numerical calculations. When the designed metasurfaces only have one or two parameters to be 
determined, the simulations can be performed with brute-force parametric scanning. However, in many situ-
ations we need to consider much more correlative parameters that are usually high-dimensional and complex 
(mostly nonlinear). In addition, other issues such as fabrication requirement of the devices, attrition rate of the 
material should also be taken into account. Considering all these factors, direct parametric scanning in simula-
tions is inadvisable and some sophisticated but efficient optimization algorithms are highly demanding26,27.

The ultimate aim of optimization algorithms is to provide efficient numerical algorithms that can quickly find 
the minimal or maximum of a deterministic black-box function f , which may satisfy one or more of the following 
criteria: (1) it does not have a closed-form expression, being expensive to evaluate and (2) does not have easily 
available derivatives (non-convex). There are many methods for optimizing over parameters settings, ranging 
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from simplistic procedures like grid or random search28–30, to more sophisticated model-based approaches using 
random forests31 or Gaussian process (GP)32. Among these optimization algorithms, Bayesian optimization (BO) 
is a well recognized algorithm for solving global optimization problems with non-convex black-box function33–38. 
There are two aspects of advantages that make BO different from other optimization procedures. It involves a 
probabilistic model for the unknown objective function to be optimized and exploits such probabilistic model to 
acquire extra points to further modify the objective function. GP is the most commonly used probabilistic model 
in BO, due to its simplicity and flexibility in terms of conditioning and inference.

In this work, we combine the BO algorithm with full-wave electromagnetic simulation to efficiently design 
mantle cloaks using metasurfaces composed of sub-wavelength frequency selective surface (FSS) elements. 
Specifically, we build up a bridge between the BO algorithm and commercial electromagnetic packages, e.g, 
COMSOL Multiphysics39, to automatically find the optimal parameters for FSS elements that can substantially 
reduce the overall scattering from a target object. As a benchmark, we firstly design a mantle cloak for a 2D 
cylinder. It is shown that the results achieved by our method coincide with the analytical results from a rigorous 
analytical model based on the Lorenz-Mie scattering theory40,41. We also confirm that the results obtained by our 
method and from parametric scanning are consistent. We then further demonstrate that the proposed method 
can successfully design mantle cloaks based on metasurface for other two- (2D) and three-dimensional (3D) 
geometries that are impossible to be theoretically analyzed.

Results and Discussion
Supposed the size of the FSS elements is far less than the operating wavelength, the FSS can be effectively 
described with an equivalent surface impendence = −Z R iXs s s, where Rs is the surface resistance associated 
with losses and Xs relates to the stored energy, which can be either inductive or capacitive, depending on the FSS 
structure. For simplicity, here we only consider the lossless case with =R 0s . The limiting case → ±∞Xs  corre-
sponds to a bare object without cloak, as the metasurface has no interaction with the scattering field of the object. 
Based on the electromagnetic multipole theory, the total scattering cross section (SCS) of a scatter can be 
expressed as42
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where k is the wave number; α l m( , )E  and α l m( , )M  are the multipole scattering coefficients. For an infinite long 
cylinder or a sphere with mantle cloaks, the scattering coefficients can be analytically calculated by forcing a dis-
continuity of the tangential magnetic field on the surface of the cloak, and they are functions of the frequency, Xs 
of the cloak, the thickness and dielectric constant of the material filled between the cloak and the object19–22. This 
holds true for more complicated objects though the explicit functions cannot be obtained analytically.

By proper selection of the FSS structure, the thickness and dielectric constant of the material filled between the 
cloak and the object, the multipole scattering coefficients may be made zero, which indicates drastic suppression 
of the scattering for a given object for any angle of incidence and observation, making it almost completely unde-
tectable, i.e., invisible, at the frequency of interest. The physical mechanism behind the scattering elimination of 
mantle cloak is that the destructive interference between the fields induced by the FSS elements and that scattered 
by the object happens at all angles.

To demonstrate the automatic design of mantle cloaks based on the BO procedure (see the BO in the Method 
and the detailed optimization process in the Supplementary Information), we begin with an example for a dielec-
tric infinite cylinder with relative permittivity ε = 8r  and diameter λ=a2 /60  (λ0 is the free-space wavelength at 
the design frequency f0). Mantle cloaks for dielectric cylinder have been realized using different structures and a 
FSS with inductive surface reactance is usually employed18,23. As shown in Fig. 1(a), here we use an ultrathin 
concentric cloaking metasurface composed of 1D periodic array of metallic vertical strips, which is commonly 
used to provide an inductive surface reactance43,44. The concentric cloaking metasurface is directly glued on the 
cylinder, e.g. with radius =a ac  [Fig. 1(b)]. From the analytical results in ref.21 [Appendix Eq. (A2)], it is known 
that the grid impedance of the metasurface is frequency dispersive and determined by the grid parameters, 
including the period D ( π=D a N2 /c , where N  is the total number of the strips) and width w [Fig. 1(c)].

The optimal parameters for the mantle cloaks obtained by the analytical model and the BO algorithm are 
summarized in Table 1 and the corresponding SCSs are shown in Fig. 1(d). It can be seen that the SCSs obtained 
by the BO algorithm are at the same level to that by the analytical model, and as N  increases, the optimal param-
eters obtained by the numerical results are much closer to that of the analytical results (see Table S1 in 
Supplementary Information). To further show the effect of the mantle cloak designed by the BO algorithm, in 
Fig. 2 we compare the electric field amplitude and power-flow distributions of the cylinder cloaked and uncloaked 
( =N 4), respectively. The incident wave travels along the +x direction and its polarization direction is parallel to 
the z axis. In absence of the mantle cloak, Fig. 2(a) shows that the electric field around the cylinder is apparently 
disturbed due to the significant scattering. On the contrary, when the mantle cloak is present a uniform electric 
field distribution is obtained as if the cylinder is not present, as seen in Fig. 2(b). Figure 2(c,d) show the 
power-flow distribution for the uncloaked and cloaked dielectric cylinder, respectively. For the no cloak case in 
Fig. 2(c), it’s obvious that the power-flow distribution is deranged by the cylinder and a shadow region appears in 
the forward direction. It is seen in Fig. 2(d) that the energy drifted around and through the cloak is not subjected 
to much perturbation, which indicates that the object looks not existing.

With the above discussions on Figs 1 and 2, we have basically shown the effectiveness of our mantle cloak 
design method based on the BO algorithm. It should be noted that although using the accurate analytical model, 
one can quickly find the satisfied FSS element parameters for some canonical objects like the infinite cylinder in 
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Fig. 1, but for objects of random structure, it’s hard or impossible to use the same method. In the following we 
will demonstrate that, combining the fields in and around the objects, we can use the BO algorithm to precisely 
find the required FSS element parameters of mantle cloaks that can drastically suppress the scattering from more 
complicated objects.

Without loss of generality, we consider a dielectric object composed of two cylinders with different radius 
λ=a 3 /201 0  and λ=a /102 0 . The structure is shown in Fig. 3(a) and the cross section is given in the inset of 

Fig. 3(b). The relative permittivity of the object is ε = 10r  and an ultrathin mantle cloak clings to the object sur-
face. For simply and according to the curvature of the object, we choose two different periods of vertical strips 
with π=D a2 /91 1  and π=D a /32 2 , respectively. This then allows two free parameters, w1 and w2 for the optimiza-
tion. To test the performance of the BO algorithm, 10 rounds of optimization are conducted with different initial 
choices of 6 candidates. As Fig. 3(b) shows, all optimization procedures have the SCS decreasing rapidly during 
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Figure 1.  The mantle cloaks design for the infinite dielectric cylinder. (a) 3D view of the cylinder with a 
conformal array of vertical strips, (b) top-view of (a,c) periodic grid of the planar vertical strips, (d) the SCSs 
curves of the inductive strips for different number of strips obtained by the Bayesian optimization (BO) and 
actual analytical model (AM).

Method N εr Radius (ac = a) Periodicity D Width w

Analytical Model (AM)

2 8 λ0/12 λ0/4 λ0/25

4 8 λ0/12 λ0/8 λ0/198

6 8 λ0/12 λ0/12 λ0/1200

8 8 λ0/12 λ0/16 λ0/6478

BO Algorithm (BO)

2 8 λ0/12 λ0/4 λ0/21

4 8 λ0/12 λ0/8 λ0/210

6 8 λ0/12 λ0/12 λ0/1280

8 8 λ0/12 λ0/16 λ0/7580

Table 1.  The optimal parameters obtained by the analytical model and BO algorithm for the case of 1D periodic 
array of metallic vertical strips around the cylinder.
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the inception phase and then tend to converge to the same level with the optimal parameters of λ=w /29221 0  and 
λ=w /6552 0 , showing the high efficiency of the BO algorithm. Figure 3(b) also shows that there is a huge drop in 

the scattering from the object with cloaked, compared to the case of uncloaked (horizontal dashed line).
Figure 4 shows the corresponding electric field amplitude and the power-flow distribution on the (x-y) plane 

for the cases of dielectric object without and with the mantle cloak, respectively. Similar to results in Fig. 2, it is 
seen that the mantle cloak can significantly reduce the field and power-flow disturbance around the object caused 
by the strong scattering.

Figure 5(a) shows the local distribution of the Gaussian regression around the optimal parameters. The candi-
dates acquired during the optimization process are depicted by circles. In this low dimensional space, it is viable 
to use the parametric scanning method to find the proper values in the full parameter space with acceptable 
computational costs. Figure 5(b) shows the brute force results which agree well with the prediction from the BO 
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(c) (d)
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z

Figure 2.  Full-wave numerical results for the BO final solution of the circular cylindrical structure. Magnitude 
of the electric fields on the xy-plane: (a) without the cloak and (b) with the vertical strip cloak. Vector power-
flow distributions on the xy-plane: (c) without the cloak and (d) with the vertical strip cloak.
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Figure 3.  The mantle cloak for a column of random shape with a TM-polarized plane wave at normal 
incidence. (a) 3D view of the infinite dielectric column of random shape with a conformal array of vertical 
strips, (b) The 10 optimization runs with different initial choices of candidates, where the insets show the 
schematic top view of (a). The 10 runs of the BO method find the same solution: λ=w /29221 0  and 

λ=w /6552 0 .
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Figure 4.  Full-wave numerical results for the BO final solution of the non-circular cylindrical structure. (a–d) 
are similar to those in Fig. 2.

(a)
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Figure 5.  Scattering cross section distributions obtained from (a) the BO method and (b) parameter scan.
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algorithm [Fig. 5(a)]. Besides, we also show the global distributions of SCSs obtained from the BO algorithm 
and pure numerical parametric scanning in the full parameter space (see Fig. S1 in Supplementary Information).

Analogous to the previous example, we next show an example of designing a mantle cloak with 2D 
sub-wavelength periodic elements. Let us consider the case of a 2D equilateral triangle prism with the side length 

λ=l 3 /100 , illuminated by a normal incident TM plane wave. The radius of the cylinder mantle cloak is denoted 
by ac and the medium between the dielectric prism and the mantle cloak is a dielectric with relative permittivity 
εc. Here two different types of prism are concerned: a dielectric prism with relative permittivity ε = 10r  [see 
Fig. 6(a)] and a perfectly electric conducting (PEC) prism [see Fig. 6(b)]. The optimal parameters obtained by the 
BO algorithm and the corresponding SCS spectra are given in Table 2 and Fig. 6(c), respectively. Clearly, strong 
scattering cancellations are achieved with the optimal parameters when compared to the original system without 
the mantle cloak. Figure 7(a,b) show the amplitude distribution of the total electric field for the cases of the 
uncloaked and cloaked dielectric prism, respectively. It is seen that the mantle cloak makes the prism ‘disap-
peared’ for the incident electromagnetic wave. Figure 7(c,d) show the similar results as in Fig. 7(a,b) but for the 
case of PEC prism. Besides, the corresponding far-field radiation patterns for the cases of the uncloaked and 
cloaked prisms validate that the suppression of the scattered field happens at all observation angles (see Fig. S2 in 
Supplementary Information).

Finally, we apply the BO algorithm to a 3D mantle cloaking design, i.e., a finite length elliptical cylinder under 
plane wave illumination. Figure 8(a) shows the dielectric elliptical cylinder with finite length λ=L /50 , relative 
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Figure 6.  3D view of the objects. (a) Dielectric object and (b) conductor object with a conformal array of 2D 
sub-wavelength periodic elements, (c) SCS for the optimized prisms with and without cloak.
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permittivity ε = 10r , geometrical dimensions λ=a /50 0  and λ=b /60 0 , covered by a spherical mantle cloak with 
radius ac. The plane wave travels along the +x-direction with electric field polarized in z-axis. Similar to the 2D 
cases, we have used the BO algorithm to design the cloak and the optimal parameters are shown in Table 3. 
Figure 8(b) plots the SCSs of the elliptical cylinder with and without the mantle cloak. Strong total scattering 
reduction appears around the frequency of interest. Figure 8(c,d) show the magnitude distribution of the E-field 
on the xy plane for the object without and with cloak, respectively. It is noticed that the mantle cloak indeed 
restrains the scattering from the object, whereas in absence of the cloak, the field distribution around the object is 
deranged and scattered in all directions.

Conclusions
Combing the BO algorithm with a full-wave electromagnetic solver, we present an automatic design procedure 
for mantle cloaks of both 2D and 3D objects. The feasibility of the proposed optimization approach is firstly 
verified by comparing the results to those calculated by the analytical model for an infinite cylinder. We further 
show several examples to design mantle cloaks for more complicated 2D and 3D objects. These results confirm 
that the mantle cloaks designed by the proposed approach can substantially reduce the scattering of the target 
object at the interested frequency, indicating the versatility of the approach. Our scheme has the advantage of 
great flexibility and strong applicability, and may be extended to a variety of applications, such as cloaked sensing 
and non-invasive probing45,46.

Method
The Bayesian optimization procedure.  BO algorithm addresses the general problem of identifying a 
global maximizer (or minimizer) of an unknown objective function f x( ):

(a)

(c) (d)

(b)

Figure 7.  Full-wave numerical results of magnitude of the electric fields on the xy-plane. (a) Without the cloak 
and (b) with the mesh grid cloak for a dielectric prism: (c) without the cloak and (d) with the patch array cloak 
for a conductor prism.

εr Length l Radius ac N Periodicity D Width w εc

10 3 λ0/10 λ0/10 6 λ0/10 λ0/953 1.49

PEC 3 λ0/10 λ0/8 6 λ0/8 λ0/166 2

Table 2.  The optimal parameters of the mantle cloaks calculated by the BO algorithm for the cases of dielectric 
prim and conducting prism.
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where Χ is the d-dimensional design space of interest ( Χ ⊂ d). The design space may be a d-dimensional hyper-
cube or a general constraint parameter space. In general, BO algorithm has two key ingredients. The first ingredi-
ent is a probabilistic surrogate model, which consists of a prior distribution that captures our beliefs about the 
behavior of the unknown objective function and an observation model that describes the data generation mech-
anism. Due to its simplicity and flexibility, GP has proven to be useful surrogate models for computer experi-
ments. The second one is an acquisition function which is calculated from the posterior distribution of the 
unknown objective function. It is designed to measure the potential of unobserved inputs for finding the opti-
mum with relatively a few iterations.

A GP, as a flexible Bayesian nonparametric model, provides a full probabilistic model of the data, and allows 
one to compute not only the model prediction at input points but also to quantify the uncertainty in the predic-
tions. It can be defined by a mean function µ Χ →:  and a kernel function Χ Χ× →k:  which is positive 
definite and describes the covariance of the process. The probability distribution of the tuple = f x f xY ( ( ), , ( ))N1  
for any N points Χ∈x x, , N1  is given by
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Figure 8.  (a) 3D view of the elliptical cylinder and it’s covered by a sphere mantle cloak with radius ac, (b) SCSs 
for the optimized elliptical cylinder with and without cloak. Full-wave numerical results of magnitude 
distribution of the E-field on the xy-plane for the elliptical cylinder: (c) without the cloak and (d) with cloak.

Long axis a0 Short axis b0 εr Height L Radius ac N εc Petal radians θ (rad)

λ0/5 λ0/6 10 λ0/5 23λ0/100 6 1 0.34

Table 3.  The optimal parameters of the mantle cloak obtained by the BO algorithm for a finite length elliptical 
cylinder.
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1  and the covariance matrix is Σ = k x x[ ( , )]i j i j, . By 
choosing different kernels ′k(x, x ), a large class of random functions can be described. In this paper, we consider 
the square exponential kernel
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which is widely used in practice. The hyper-parameters of the Gaussian process ω σ= l l( , , , )d1 , including 
standard deviation σ and describing the length scales of the parameters l l, ,1 2  define higher level concepts 
about the model such as complexity, capacity to learn, rate of convergence, etc. And the optimal hyper-parameters 
lead to better efficiency, fast convergence and better results overall44.

For the choice of the next point to be evaluated, we use an acquisition function that enables active learning 
of the unknown objective function. Commonly used acquisition functions include the upper confidence bound 
(UCB) and expected improvement (EI). For efficiency, in this work we consider BO algorithm with EI

α = −x y y f x( , ) [max(0, ( ))] (5)min min

where f x( ) is the statistical prediction (Gaussian distribution) of the unknown objective function at the position 
x.
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