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During normal development of the nervous system (NS), neural progenitor cells (NPCs)

produce specialized populations of neurons and glial cells upon cell fate restriction and

terminal differentiation. These sequential processes require the dynamic regulation of

thousands of genes. The calcium-sensing receptor (CaSR) is temporally and spatially

regulated in both neurons and glial cells during development of the NS. In particular,

CaSR expression and function have been shown to play a significant role during

differentiation of NPCs toward the oligodendrocyte lineage and also in maturation of

cerebellar granule cell precursors (GCPs). Moreover, CaSR regulates axonal and dendritic

growth in both central and peripheral nervous systems (PNSs), a process necessary for

proper construction of mature neuronal networks. On the other hand, several lines of

evidence support a role for CaSR in promotion of cell differentiation and inhibition of

proliferation in neuroblastoma, a tumor arising from precursor cells of developing PNS.

Thus, among the variety of NS functions in which the CaSR participates, this mini-review

focuses on its role in differentiation of normal and tumoral cells. Current knowledge

of the mechanisms responsible for CaSR regulation and function in these contexts is

also discussed, together with the therapeutic opportunities provided by CaSR allosteric

modulators.

Keywords: development, nervous system, neuroblastoma, calcium-sensing receptor, differentiation,

differentiation and proliferation

The calcium-sensing receptor (CaSR), a G protein-coupled receptor (GPCR) whose primary ligand
is calcium, was initially identified in the parathyroid gland, where it regulates calcium homeostasis
(Brown et al., 1993). Subsequent studies found that this GPCR is present in many other organs
(Riccardi and Kemp, 2012) and in some cancers (Brennan et al., 2013), where it plays versatile
roles. CaSR also participates in a wide range of cellular functions that are important for proper
development of the nervous system (NS; Bandyopadhyay et al., 2010; Ruat and Traiffort, 2013),
and any alterations in its expression and/or function may lead to disease, including tumors.

During development, cell fate restriction occurs in the NS where specialized neuronal
and glial populations arise from neural progenitor cells (NPCs). This is achieved without
changes of DNA sequence through the coordinated regulation of gene expression promoted
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by cell-intrinsic programs, such as epigenetic mechanisms and
transcription factors, as well as extracellular cues. Increasing
evidence indicates that proper CaSR expression and function is
important during differentiation of specific neural precursor cells
upon commitment toward neuronal and glial fates. CaSR also
plays significant roles during differentiation of neuroblastoma,
a developmental tumor of the peripheral nervous system
(PNS). Therefore, among many other functions of the NS in
which it participates (Bandyopadhyay et al., 2010; Ruat and
Traiffort, 2013), this mini-review focuses on the role of CaSR in
differentiation, a cellular process that is crucial for both normal
development and tumor biology.

ROLE OF CaSR IN DIFFERENTIATION OF
NORMAL DEVELOPING NERVOUS
SYSTEM

The rat Casr gene was cloned from a striatal cDNA library by
homology screening (Ruat et al., 1995). Subsequent expression
analyses identified its presence in almost all regions of the
central nervous system (CNS) including hypothalamus,
striatum, hippocampus, pituitary, cerebellum, brainstem,
circumventricular organs, and spinal cord (Ruat et al., 1995;
Chattopadhyay et al., 1997; Rogers et al., 1997).

The CNS is composed of neurons and three major populations
of glial cells, astrocytes, oligodendrocytes, and microglia.
Although, expression of CaSR has been reported in astrocytes
(Chattopadhyay et al., 2000; Dal Pra et al., 2005) and microglia
(Chattopadhyay et al., 1999a), the CaSR was first localized to
nerve terminals of neurons and fiber tracts (Ruat et al., 1995).
Nerve tracts consist of axons wrapped by myelin sheaths which
are produced by oligodendrocytes in the CNS and by Schwann
cells in the PNS. In order to be able to produce myelin,
oligodendrocyes precursor cells (OPCs) progress through a series
of differentiation steps, lose their capacity to proliferate and
migrate, and finally generate mature oligodendrocytes (Barateiro
and Fernandes, 2014).

Several lines of evidence support a role for CaSR in
this differentiation process. First, a period of increased CaSR
expression was identified during rat postnatal development
in myelinated structures (Chattopadhyay et al., 1998; Ferry
et al., 2000). By double in situ hybridization, Casr and
myelin basic protein (Mbp) mRNAs were shown to co-localize
in cerebellum, brainstem, corpus callosum, fimbria of the
hippocampus, stria medullaris, and lateral olfactory tracts during
myelogenesis. Second, Northern blot and reverse transcription
polymerase chain reaction (RT-PCR) confirmed Casr mRNA
expression in purified oligodendrocytes. Moreover, exposure
to high Ca2+o and calcimimetic NPS R-568 resulted in
phosphatidylinositol hydrolysis and intracellular Ca2+ (Ca2+i )
mobilization (Chattopadhyay et al., 1998; Ferry et al., 2000).
Altogether, these data indicate that a functional CaSR is present
in olygodendrocytes and temporally regulated during OPCs
differentiation.

The role of CaSR in the transition of neural precursor cells
toward the oligodendrocyte lineage has also been established

(Chattopadhyay et al., 2008). To this end, neural stem cells were
isolated from fetal rat brains and induced to commit to neuronal,
oligodendrocyte, or astrocytic lineages.Casr expression increased
in OPCs, remained high during the premyelinating stage
and declined in mature oligodendrocytes. Furthermore, Mbp
mRNA levels increased in OPCs exposed to high Ca2+o or
spermidine for 1–3 days. This phenotype was blocked by
overexpression of a naturally-occurring dominant-negative CaSR
variant p.Arg185Gln (Bai et al., 1997). Furthermore,MbpmRNA
levels were significantly reduced in the cerebellum of 2-week
old Casr-null (Casr−/−) mice as compared to age-matched
Casr+/+ mice. Altogether, these results indicate that prolonged
CaSR activation promotes maturation of OPCs. However, a brief
exposure to high Ca2+o induced OPCs proliferation, suggesting
that acute and long-term activation of CaSR differentially affects
cell proliferation and differentiation (Chattopadhyay et al., 2008).

Studies conducted in Casr−/− mice (Liu et al., 2013), a
mouse model of human neonatal severe hyperparathyroidism
(Ho et al., 1995), have provided direct in vivo evidence for
CaSR roles during differentiation of CNS. In these mice,
both brain weight and size were reported to be lower
than that of wild-type littermates during the first 2 weeks
of postnatal development. Small brain size was associated
with a reduced number of cells and proliferation rates, but
deletion of the parathyroid hormone (Pth) gene, which corrects
hyperparathyroidism, hypercalcemia, and hypophosphatemia,
normalized these alterations. Interestingly, decreased expression
of neuronal (neuronal nuclear antigen, NeuN) and glial (glial
fibrillary acidic protein and MBP) differentiation markers were
detected in these brains, and levels of expression were not
normalized upon deletion of the Pth gene, thus suggesting that
CaSR is necessary for differentiation of neural progenitors toward
neuronal and glial fates, but not for their proliferation.

More recently, the role of CaSR has also been evaluated
in the developing cerebellum (Tharmalingam et al., 2016)
during a period that includes initial proliferation of granule
cell precursors (GCPs) in the external granule cell layer (EGL)
followed by differentiation and cell cycle exit. At later stages,
differentiated GCPs migrate within the EGL, a process called
tangential migration, and then toward the internal granule cell
layer (IGL) by radial migration. Immunoblots showed high rat
Casr protein expression in the cerebellum from P7 to P18, a
period during which maximal GCPs migration occurs. Moreover,
CaSR allosteric activators NPS R-568 and R-467 increased GCPs
migration in vitro, and these effects were blocked by calcilytic
NPS 2143 (Bandyopadhyay et al., 2010). Also, calcimimetics
promoted increased radial migration of GCPs from the EGL
into the IGL. Specificity of this phenotype was corroborated
by experiments conducted with NPS 2143. Interestingly, the
number of cells positive for NeuN was higher in rats treated
with CaSR allosteric activators and reduced in those receiving
NPS 2143 when compared to controls. Moreover, rats exposed
to the calcilytic also showed significantly increased numbers
of Ki67-positive GCPs, a nuclear marker of cell proliferation.
Together, these studies argue that CaSR expression and function
are necessary for proper migration and differentiation of
GCPs.
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While several studies have analyzed the expression and
function of CaSR in the CNS, much less attention has been
devoted to the role of this receptor in the PNS. Several
lines of evidence support that CaSR expression and function
during normal formation of the PNS are critical for axonal
and dendritic growth. Proper regulation of axon growth
and branching are crucial for constructing functional, mature
neuronal networks. These processes are regulated by extracellular
cues, growth factors, and morphogens that signal through
receptors, activate intracellular signaling cascades and regulate
cytoskeletal dynamics (Kalil and Dent, 2014). Compelling data
reported by Vizard et al. (2008) support that CaSR would be
among receptors that integrate extracellular signals during axon
growth and branching. These authors showed that a brief period
of increased Casr mRNA expression occurs in mouse neurons
of the superior cervical ganglion (SCG) from embryonic day
16 (E16) until E18, a time when murine sympathetic axon
are branching at their targets. They functionally showed that
neurons at this peak of Casr expression display enhanced axonal
growth when exposed to high Ca2+o and calcimimetic NPS R-
467, whereas this output is blunted by blocking CaSR function
by either calcilytic NPS 89636, Casr deletion, or overexpression
of a dominant-negative CaSR (Bai et al., 1997). Also, a significant
reduction in the iris sympathetic innervation density was shown
in Casr−/− mice. Furthermore, a similar role was demonstrated
in hippocampal pyramidal neurons, thus providing evidence for
a CaSR role in neuronal growth and branching in both PNS
and CNS.

ROLE OF CaSR IN DIFFERENTIATION OF
TUMORAL DEVELOPING NERVOUS
SYSTEM

Childhood solid tumors have been recognized as a group of
cancers significantly different from adult neoplasias (Scotting
et al., 2005; Marshall et al., 2014). They arise from precursor cells
during organogenesis and retain many of the morphological and
biological features of their undifferentiated, highly proliferative,
and sometimes migratory normal cells of origin.

Neuroblastomas originate from PNS precursor cells (Cheung
and Dyer, 2013) which in turn derive from trunk neural
crest cells. This is a transient population of embryonic cells
(LeDouarin, 1982) that generate several derivatives including
neurons and glia of the sympathetic NS (Bronner and LeDouarin,
2012). This process involves a period of cellular proliferation,
followed by delamination, migration, specification, and terminal
differentiation. To produce glial cells and neurons, a portion of
trunk neural crest cells migrate along a ventral pathway (Henion
and Weston, 1997). Several environmental cues contribute to
their fate restriction and, upon terminal differentiation, they
give rise to the sympathetic ganglia and medullary region of the
adrenal gland (Anderson and Axel, 1986; Anderson et al., 1991).

The potential origin of neuroblastomas in neural crest
precursor cells “blocked” at different stages of this process, as
well as a combination of various molecular and genetic events, is
thought to underlie the heterogeneity of this group of tumors that

include both benign and malignant cases (Brodeur, 2003; Maris,
2010; van Noesel, 2012). The most relevant factors associated
with these different clinical behaviors of neuroblastomas are age
at diagnosis, clinical stage, MYCN amplification, alterations of
ploidy, numerical and structural chromosomal abnormalities,
and histological degree of differentiation (Ambros et al., 1996;
Bown et al., 1999; Janoueix-Lerosey et al., 2008; Molenaar et al.,
2012; Cheung and Dyer, 2013; Pugh et al., 2013).

The first genetic alteration to be described in neuroblastoma
was the amplification of the oncogene MYCN (Schwab et al.,
1983). It is present in only 22% of these tumors but it is the
most significant genetic predictor of poor outcome (Brodeur
et al., 1984). MYCN is part of the basic helix-loop-helix family
of transcription factors that also includes MYC (c-MYC) and
MYCL (Zimmerman et al., 1986; Gustafson and Weiss, 2010).
MYCN is a critical promoter of cell proliferation while inhibiting
differentiation and apoptosis in early post-migratory neural crest
cells and also during CNS neurogenesis (Knoepfler et al., 2002).
This is achieved by a complex network of interactions with other
transcription factors and epigenetic mechanisms that cooperate
to regulate a wide array of genes (Huang and Weiss, 2013).
Intriguingly,MYC, which exhibits some structural and functional
similarities withMYCN, is an important transcriptional regulator
in the transition from proliferating to differentiating OPCs
(Magri et al., 2014).

Neuroblastic tumors are composed of two main cellular
components: neuroblasts, of neuronal origin, and glial,
Schwannian-like cells. Classifications based on the degree
of neuroblasts maturation and the extent of the glial component
showed that differentiated tumors were associated with good
clinical outcome (Hughes et al., 1974; Shimada et al., 1999,
2001). A variety of proteins participate in the differentiation
processes of neuroblastomas (reviewed in Mohlin et al., 2011).
Among them, the CaSR was found to be highly expressed
in differentiated neuroblastic tumors and up-regulated upon
differentiation induction (de Torres et al., 2009). CaSR was
previously identified in adult CNS tumors (Chattopadhyay et al.,
1999b, 2000), but it had not been reported in any developmental
malignancy. In neuroblastoma, CaSR mRNA expression
significantly correlated with several factors associated with good
outcome such as age at diagnosis <1 year, low clinical stage and
differentiated histology. Immunohistochemistry showed that
undifferentiated neuroblasts were mostly CaSR-negative while
even the earliest stages of neuroblast differentiation displayed
CaSR immunostaining. When present, glial cells were also
strongly positive for CaSR. Moreover, upon neuroblastoma
differentiation induction, increased CaSR expression was seen
both in clinical specimens obtained after treatment, and in vitro,
at early phases of neuronal differentiation induced by retinoic
acid.

In accordance with these data, CASR gene silencing by
epigenetic mechanisms was found in undifferentiated,
MYCN-amplified, aggressive neuroblastomas (Casalà et al.,
2013). Thesemechanisms included promoter 2 hypermethylation
and histone modifications. CpG islands are clusters of GC
dinucleotides located in promoter regions, and also in intragenic
regions, that are usually unmethylated (Deaton and Bird,
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2011). Methylation of the fifth position of cytosines at CpG
islands around promoter regions is a mechanism of gene
silencing that inactivates tumor-suppressor genes (Herman
et al., 1996; Timp and Feinberg, 2013) and also contributes
to gene modulation during cell type specification and lineage
commitment (Hirabayashi and Gotoh, 2010; Hu et al., 2014).
A particular region of the CpG island encompassing CASR
gene promoter 2 was found to be hypermethylated in 25%
primary neuroblastomas, in association with reduced CaSR
mRNA expression, MYCN amplification, undifferentiated
histopathology and other factors of poor outcome. In
neuroblastoma cell lines, treatment with demethylating
agent 5′aza-2-deoxycitidine and/or histone deacetylase inhibitor
trichostatin A decreased the percentage of methylated cytosines
in this specific region of CASR gene promoter and concomitantly
restored CaSR expression in MYCN-amplified cell lines.
Association of MYCN amplification and epigenetic silencing of
several genes in neuroblastoma had been previously reported
(Alaminos et al., 2004), although the underlying mechanisms
are still under investigation (Perini et al., 2005; Hervouet et al.,
2009; Murphy et al., 2009, 2011; He et al., 2013). In addition,
monosomy of chromosome 3, where the human CASR gene
resides, was observed in >90% of primary neuroblastic tumors
of all subgroups by interphase fluorescence in situ hybridization.
Interestingly, other genes that exert tumor-suppressor
functions in neuroblastoma, like RASSF1A, are also located
on chromosome 3 and hypermethylated in neuroblastic
tumors and phaeochromocytomas, which are also PNS tumors
(Astuti et al., 2001). Furthermore, ectopic overexpression of
full-length CaSR in two MYCN-amplified cell lines in which
this gene was previously shown to be silenced by promoter
hypermethylation significantly decreased their proliferative
and tumorigenic capacities. Moreover, acute exposure to high
Ca2+o concentrations prompted their apoptosis. In all, these data
provided functional evidence of the biological relevance of CaSR
epigenetic silencing in neuroblastoma biology.

In addition, when non-synonimous genetic variants located
at the intracellular tail encoded by exon 7 of the CASR gene
were analyzed in a cohort of neuroblastoma patients, a haplotype
including a polymorphism considered to mildly reduce CaSR
activity (Heath et al., 1996; Cole et al., 1999; Scillitani et al., 2004,
2007; Hu and Spiegel, 2007; Vezzoli et al., 2007; Yun et al., 2007)
was associated with poor outcome (Masvidal et al., 2013).

Finally, a recent study has shown that cinacalcet, an allosteric
activator of the CaSR approved for clinical use (Nemeth
et al., 1998), inhibits neuroblastoma tumor growth in vitro
and in vivo (Rodríguez-Hernández et al., 2016). Mechanisms
involved include ER stress coupled to apoptosis dependent on
phospholipase C activation in MYCN-amplified neuroblastoma
cells and, irrespective of MYCN status, differentiation of
surviving cells. Induction of differentiation was also observed
upon prolonged exposure to cinacalcet in vivo. Genome-wide
gene expression analysis by microarrays of xenografts showed
up-regulation of numerous genes involved in neuroblastoma
differentiation, like NTRK3 (Nakagawara et al., 1993) and
GABRA3 (Roberts et al., 2004). Gene Ontology categories also
unveiled up-regulation of genes involved in axon growth like

doublecortin and ephrins (Kalil and Dent, 2014). Concomitantly,
genes that critically support neuroblastoma proliferation were
down-regulated, such as MYCN, inhibitor of differentiation 2
(ID2) andMYB (Figure 1). ID2 is a helix-loop-helix transcription
factor controlled by MYC proteins that blocks differentiation
and promotes cell proliferation (Lasorella et al., 2000), and MYB
is a transcription factor that cooperates with MYCN in cell
cycle regulation of MYCN-amplified neuroblastomas (Gualdrini
et al., 2010). Quite unexpectedly, cinacalcet also promoted
up-regulation of cancer-testis antigens, a family of proteins that
are almost exclusively expressed in tumor cells and are thus
considered ideal targets for immunotherapy (Fratta et al., 2011).

FIGURE 1 | Regulation of differentiation by calcium-sensing receptor in

neuroblastoma. In neuroblastoma, the CaSR is expressed in benign,

differentiated tumors. In this tumoral context, the main physiological ligand

remains unknown. However, acute exposure to high extracellular

concentrations of Ca2+ induces apoptosis of CaSR-positive, MYCN-amplified

cells, dependent on sustained activation of ERK. Also, short in vitro exposure

to cinacalcet, an allosteric activator of the CaSR approved for clinical use,

induces endoplasmic reticulum (ER) stress coupled to apoptosis in

CaSR-positive, MYCN-amplified neuroblastoma cells. This output is

dependent on activation of phospholipase C (PLC). Massive Ca2+ exit from

the ER up-regulates ryanodine receptor 2 (RYR2) and activation of adenylyl

cyclase type 8 (ADCY8) via capacitative calcium entry, a mechanism triggered

by depletion of intracellular Ca2+ stores. Furthermore, prolonged treatment

with cinacalcet promotes up-regulation of genes associated with

neuroblastoma differentiation (NFL, TUBB3, S100-β, NTRK1, NTRK3,

GABRA3) and down-regulation of genes that are critical for proliferation of

these tumors (MYCN, ID2, MYB). Concomitantly, sustained exposure to

cinacalcet also induces up-regulation of CaSR and increased expression of

cancer-testis antigens.
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Although mechanisms involved are not yet understood, histone
acetyltransferases such as p300 and CREB binding protein might
be recruited, taking into account that these genes are mainly
regulated by epigenetic mechanisms (Rao et al., 2011).

In summary, studies conducted in neuroblastoma indicate
that CaSR promotes differentiation and inhibits proliferation
in this malignancy. Also, they are in accordance with data
obtained in developing NS supporting that CaSR plays a
significant role in differentiation processes of specific NPCs
upon commitment toward neuronal and glial lineages. More
importantly, neuroblastoma models show that pharmacological
modulation of CaSR activity can provide novel therapeutic
opportunities.

CONCLUSIONS AND FUTURE
DIRECTIONS

Over the past decades, the patterns of expression of CaSR in
the NS have been described. However, our understanding of
CaSR regulation and functions during normal and pathological
development of CNS and PNS is incomplete. In the coming
years, epigenetic mechanisms responsible for CaSR regulation
during formation of NS will be elucidated. They will probably
involve cytosines methylation and demethylation by DNA

methyltransferases and 10–11 translocation enzymes (Hahn et al.,
2013), histones modifications and non-coding RNAs. Also, the
complex interplay of thesemechanisms with transcription factors
such as the MYC family will be characterized. This knowledge,
together with a precise picture of signaling pathways downstream
of CaSR during differentiation processes, will help to evaluate
whether pharmacological modulation of this GPCR might be
beneficial in the treatment of NS developmental diseases.
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