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Abstract: Contrary to its daytime counterpart, nighttime visible and near infrared (VIS/NIR) satellite
imagery is limited in both spectral and spatial resolution. Nevertheless, the relevance of such systems
is unquestioned with applications to, e.g., examine urban areas, derive light pollution, and estimate
energy consumption. To determine optimal spectral bands together with required radiometric and
spatial resolution, at-sensor radiances are simulated based on combinations of lamp spectra with
typical luminances according to lighting standards, surface reflectances, and radiative transfers
for the consideration of atmospheric effects. Various band combinations are evaluated for their
ability to differentiate between lighting types and to estimate the important lighting parameters:
efficacy to produce visible light, percentage of emissions attributable to the blue part of the spectrum,
and assessment of the perceived color of radiation sources. The selected bands are located in the green,
blue, yellow-orange, near infrared, and red parts of the spectrum and include one panchromatic band.
However, these nighttime bands tailored to artificial light emissions differ significantly from the
typical daytime bands focusing on surface reflectances. Compared to existing or proposed nighttime
or daytime satellites, the recommended characteristics improve, e.g., classification of lighting types
by >10%. The simulations illustrate the feasible improvements in nocturnal VIS/NIR remote sensing
which will lead to advanced applications.

Keywords: nighttime remote sensing; satellite image simulation; urban area; multispectral band
optimization; high spatial resolution; lighting parameter; lighting type classification

1. Introduction

Nocturnal optical remote sensing in the visible and near infrared (VIS/NIR) of the electromagnetic
(EM) spectrum is largely inferior both to its daytime counterpart as well as to nighttime remote sensing
in the thermal infrared. Even if there is a large gap in terms of the amount and the diversity of
available missions and products, there exists demand for such nighttime products. The interest in
such products is growing as evident from the increasing number of applications [1]. These include
the monitoring of human settlements and urban dynamics, the estimation of demographic and
socio-economic information, light pollution and its influence on ecosystems and human health and
astronomical observations, energy consumption and demands, detection of gas flares and forest
fires, natural disaster assessment, and the evaluation of political crises and wars [2]. Most of these
applications are derived from data linked to artificial lights which emit mainly in the VIS/NIR.
A stronger focus on optical nighttime remote sensing is, therefore, well-founded. However, the aim
of the first satellite sensor imaging low-light data, namely DMSP-OLS in 1976 [3], was to collect
global cloud cover data day and night, detecting nocturnal VIS/NIR emission sources was a widely
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used by-product. For example, to derive essential socio-economic information, the lighting type is,
however, a much stronger indicator of economic growth than solely the intensity of light as used
in most studies [4]. In 2011, a considerable improvement in spatial resolution from 2700 to 750 m
and detection limits from 5 × 10−9 to 2 × 10−10 Wm−2sr−1nm−1 was possible with the arrival of its
follow-on, the NPP-VIIRS-DNB yet with a daily global coverage [5]. In addition to these panchromatic
(500–900 nm, [5], for NPP) space-based nighttime images, trichromatic ones come in the form of
photographs with a spatial resolution between 10 and 200 m taken by astronauts aboard the ISS
irregularly since 2003 [6]. Other panchromatic data are acquired only over China frequently with
a spatial resolution of 130 m by LJ1-01 since 2018 [7] and of 0.7 m by EROS-B sporadically since
2013 [8]. Other data with multiple spectral bands are sporadically acquired only with a spatial
resolution of 120 m by AC-5 (AC-4 with similar spectral resolution) since 2013 [9] and of 0.9 m by
JL1-3B (JL1-07/08 with similar spectral resolution) since 2017 [10]. Furthermore, sporadically acquired
nighttime images of operational daytime missions reveal detection limits, e.g., for Landsat-8, of above
4× 10−4 Wm−2sr−1nm−1 only for the multiple spectral bands [11].

The need for finer spectral and spatial resolutions was expressed many times. For example,
a high-pressure sodium (HPS) lamp is indistinguishable from a light emitting diode (LED) lamp in
panchromatic images and a conversion from HPS to LED is even incorrectly observed as a decrease in
radiant flux for typical panchromatic images ([12], for Milan, Italy). For example, a street with one
lamp every 25 m is indistinguishable from a street with two lamps every 50 m in 100 m resolution
according to the Nyquist sampling theorem. Despite a proposal for a Nightsat mission in 2007 [13],
however, there is still no space-based nighttime VIS/NIR mission up with spatial resolution less than
100 m, multiple spectral bands, and a global coverage.

For daytime imaging, for example, with four spectral bands typically blue (457–523 nm),
green (542–578 nm), red (650–680 nm), and NIR1 (784–900 nm) are recommended ([14], for Sentinel-2)
and a panchromatic band (450–800 nm). Furthermore, spectral bands red edge (705–740 nm) and
NIR2 (960–1040 nm) are suggested. For nighttime imaging typically the same sensors are used.
In order to determine optimal spectral and radiometric characteristics for dedicated nighttime VIS/NIR
imaging, it is important to note that available data, for example based on airborne campaigns, provide
only panchromatic imagery with high radiometric resolution ([15], for Berlin, Germany) or high
spectral imagery with only low radiometric resolution ([16], for Las Vegas, NV, USA). Hence, these
sources do not satisfactorily determine the optimal sensor parameters and performances; instead,
an end-to-end sensor simulation is required with controlled environments to perform a realistic and
precise examination.

The objective of this article is to recommend spectral and radiometric nighttime sensor parameters
that are needed to support the community’s requirements, as well as those of the lighting engineering
community and the general public, with a main focus on urban environments and the detection and
differentiation of artificial outdoor irradiance sources at necessarily high spatial resolution.

Therefore, Section 2 analyzes the elements affecting the sensor signal, namely the natural
(e.g., moon) and artificial (e.g., street light) nighttime radiation sources, their interactions with the
surface (M2 and L1) and atmosphere (M1, M3, and L2), and the satellite sensor itself as illustrated in
Figure 1. For daytime similar considerations were widely investigated, e.g., by [14]. For nighttime
similar considerations were rarely investigated, e.g., by [17] based on their findings on spectrometer
measurements of outdoor lighting spectra. However, as only light source spectra were taken into
account, a large part of the complexity is ignored by neglecting, for example, the variability in surface
reflectances, atmospheric composition and sensor noise. For instance, two identical HPS or LED will
look different when illuminating a patch of grass compared to a stretch of asphalt. Similarly, they will
look different under hazy conditions compared to a clear night. Additionally, the number of spectral
band combinations that the authors have considered was limited to eight and does not cover the full
range of possibilities. Nevertheless, their recommendations are a reference for the considerations. Here,
radiances are constructed which combines spectra from different lighting types, different intensities,
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different surface types, and different atmospheric compositions. In other words, it generates theoretical
reference top-of-atmosphere (TOA) radiances for different conditions to know which signals arrive at
a space-based sensor at night.

Figure 1. Model of propagation of nighttime radiation in optical remote sensing (under cloud-free
conditions) with: (M1) downward atmosphere interaction with moon electromagnetic (EM) waves;
(M2) surface interaction with moon EM waves; (M3) upward atmosphere interaction with moon EM
waves; (L1) surface interaction with lamp EM waves; (L2) upward atmosphere interaction with lamp
EM waves.

Section 3 utilizes this data to answer the question, if it is possible to discriminate between
different radiation sources from space-based images and at what spectral and radiometric resolutions.
The complexity exceeds that of the traditional classification task, where the illumination source is
known (e.g., sunlight) and the surface object types are unknown. In the nighttime case, the illumination
source is also unknown and furthermore, irradiances produced by artificial lights are sometimes mixed
with moonlight. It is, therefore, important to know how different moon characteristics affect TOA
radiances and the discrimination of lighting types. Knowing the type of radiation source sheds light on
a number of important light characteristics. Some essential considerations of lighting, however, are not
linked to lighting type on a one-to-one basis. As a consequence, it is necessary to consider the dominant
criteria in the planning of nighttime lighting, and how far these lighting quality indices, namely
luminous efficacy of radiation (with radiant flux and luminous flux), spectral G index, and correlated
color temperature, are derivable [18]. Hence, the results of the simulations performed for various
spectral and radiometric parameters and performances are analyzed, namely optimal spectral bands are
derived (and typical TOA radiances are considered for the optimal radiometric resolution). While the
radiances focus on homogeneous single-pixel environments, this approach does not, however, take into
account any spatial information such as a lamp’s intensity distribution pattern or the overlapping of
different lights. Therefore, also the spatial resolution is discussed.

Finally, Section 4 concludes the findings and recommendations for sensor parameters as well as
the overview for future research.
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2. Materials and Methods

2.1. Natural Radiation Sources

There are in fact a number of natural light sources emitting light in the VIS/NIR of the EM
spectrum during nighttime.

The most prominent of those is the moon, reflecting sunlight arriving at its surface onto Earth.
Hence, the moon is actually not a light source in itself, but instead acts as a reflecting object.
The intensity of moonlight (0.1 lm/m2, cloud-free full moon) is rather small in comparison to sunlight
(100, 000 lm/m2, cloud-free full sun) or artificial lighting (10 lm/m2, lighted parking lot). In contrast
to artificial lighting, however, the emitted light is not focused, but instead spatially homogeneous
across the surface. Therefore, depending on the moon phase angle and with increasing elevation,
moonlight becomes significant, even though its intensity is relatively limited. For example, moonlight
is crucial in the detection of clouds from DMSP-OLS or NPP-VIIRS-DNB imagery, which is their
principal focus and also explains the low detection limits of these sensors achieved also by the coarse
spatial resolutions. Furthermore, moonlight facilitates the possibility to observe snow and ice features.
Compared to the typical spectra of artificial lighting, moon spectral irradiances are relatively spectrally
homogeneous across the VIS/NIR (Figure 2a). Most classifications and indices deal well with such
offsets. For that reason and because of the relatively small illumination of moonlight especially for
the considered fine spatial resolutions, namely the spectral radiances combine in particular one light
source and one surface, the moon is not considered. Furthermore, the moon irradiance is modeled
straightforwardly [19]. Approximating the surface reflectances using existing daytime imaging,
e.g., Sentinel-2 or daytime acquisitions of the nighttime satellite, (or less adequate assuming a constant
average value) and approximating the atmospheric compositions using existing operational services,
e.g., ECMWF, (or less adequate assuming a constant standard atmosphere) allows estimating and
eliminating this mixture.

Fires are natural (e.g., wildfires, volcanos) or artificial (e.g., fuel lamps, gas flares) radiation sources
and considered in Section 2.2.

Further natural nighttime radiation sources, such as auroras, nightglow, lightning,
and bioluminescence, either occur rarely or have insufficient intensities to be reasonably detected, here.
For that reason, they are not considered.

2.2. Artificial Radiation Sources

The sources used by humans to produce lighting have changed drastically throughout history
going from open fires to candles and oil lamps over natural gas to electrical light. For example, by [18]
it was figured out that, among artificial light sources, HPS lamps were responsible for about half of the
artificial light in the European Union in 2015, although a trend towards the use of LED lamps is to be
expected. We give an overview of the most common exterior lighting types used and a description of
their principal emission peaks, i.e., those wavelengths for which a particular lighting type emits most
of its light.

Fire is a relatively common source of nighttime radiation either natural, e.g., forest and grass fires,
lava, or artificial, e.g., candles, liquid, and pressurized gas- and petroleum-based fuel lamps.
Fire emission spectra (Figure 2b) are described using Planck’s law for blackbodies, whereby other,
here minor, effects on the spectra, e.g., kind of fuel, oxidation of fuel, amount of pressure, are not
considered. For example, for liquid fuel emission peaks at 1350 nm are obtained, whereas for pressured
fuel mantles typically contain rare Earth oxides absorbing infrared radiation to glow white in the
visible. For typical fires, color temperatures range between 400 and 1100 K.
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Figure 2. Typical normalized emission spectra by NOAA [17] and GUAIX [20] for different nighttime
radiation sources (stacked offset for clarity): (a) cloud-free full moon; (b) fire, 700 K; (c) incandescent
lamp; (d) high-pressure sodium lamp; (e) low-pressure sodium lamp; (f) mercury vapor lamp; (g) metal
halide lamp; (h) fluorescent lamp; (i) warm-white LED lamp; (j) cold-white LED lamp.

Incandescent (Inc.) lamps emit light by heating a tungsten filament inside a vacuum enclosed by
a glass bulb. When electricity passes through the filament, it heats up, thereby producing a spectrum
similar to that of a blackbody of the same temperature. However, for these bulbs most of the light with
an emission peak between 900 and 1050 nm falls in the infrared part of the spectrum (Figure 2c).

The next five lighting types are gas discharge lamps, which generate radiation by sending
electricity through an ionized gas, thereby releasing energy in the form of photons. Different gasses
typically result in their own characteristic emission lines. The lines are broadened by hot vapor or high
pressure due to physical broadening mechanisms.

High- and low-pressure sodium (HPS/LPS) lamps are a kind of gas discharge lamps which use
sodium in an excited state. They typically emit a bright yellow-orange light. For HPS the strongest
emission peak is at 819 nm (Figure 2d). Further broadened lines lie between 560 and 620 nm. LPS
exhibits a distinct narrow line at 589 nm due to absence of line broadening and a weak emission peak
at 819 nm (Figure 2e).
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Mercury vapor (MV) lamps are another kind of gas discharge lamps, using mercury and providing
a more blue-green color because of its peak emissions between 540 and 580 nm (Figure 2f). In contrast
to other discharge lamps, it additionally resembles the curve of an incandescent lamp, with a peak at
1250 nm.

Metal halide (MH) lamps are similar to mercury vapor lamps, but with an additional mixture of
metal halides added to the mercury. Metal halide lamps generally have strong emission peaks at 671
and 819 nm, with other peaks strongly depending on the composition of the halides (Figure 2g).

Fluorescent (Fluor.) lamps are gas discharge lamps at low-pressure using fluorescence to produce
radiation. Like with mercury vapor lamps, they make use of mercury. However, the inner surface of
the glass tube in which the gas resides contains a fluorescent coating of phosphors. This results beside
smaller infrared emissions in two main emission peaks at 544 and 611 nm (Figure 2h).

Warm-white and cold-white light emitting diodes (wLED/cLED) lamps consist of one or more
LED, which are semi-conductors releasing photons by radiative recombination when injecting an
electrical current. Different kinds of semi-conductors are used to create a wide range of colors.
Therefore, there are no specific emission peaks for LED, however, they are identifiable by relatively
symmetrically shaped emission bands and a lack of infrared emissions. White LED generally have two
primary peaks, one in the blue and another one in the green to red range (Figure 2i for warm-white
and j for cold-white). If the correlated color temperature (CCT) is at most 4000 K, it is warm-white and
otherwise, it is cold-white. As a result of their long lifespan and high efficiency, LEDs are becoming
more and more the standard for both indoor and outdoor lighting.

For each of the eight lighting types, we consider the spectra of [17] (by NOAA (National Oceanic
and Atmospheric Administration)) and [20] (by GUAIX (Universidad Complutense de Madrid, Group
of Extragalactic Astrophysics and Astronomical Instrumentation)) interpolated to the range from
350–900 nm in steps of 1 nm as it is the range common to both libraries and comprises the VIS/NIR
range of interest having a focus on outdoor street lighting. For fires, the spectra of blackbodies with
temperatures of 400 K, 700 K, 900 K, and 1100 K are considered.

While it is possible to give an extensive overview of a number of artificial light emitting sources
of radiation in the VIS/NIR part of the EM spectrum during nighttime, relative worldwide frequencies
of lighting types are difficult to determine.

2.3. Luminance

To determine the intensity of lamps, the European standard (EN) for street lighting is used as
reference [21]. As a result that it is more relevant to know how much reflected light is seen by the
human eye than to know the radiant flux of a lamp, standard values for average street luminance are
given instead. The required minimum luminance depends on the type of street and ranges between
0.3–2.0 cd m−2. Together with measured data a maximum luminance of 4.0 cd m−2 is considered,
here. From these luminances the corresponding bottom-of-atmosphere (BOA) radiances are deduced.
The BOA radiances have to equal the integral over all spectral radiances and they are computed based
on combined lamp spectra and surface reflectances.

2.4. Surface

Surface reflectance data are required to generate reflected lamp emissions, namely indirect
radiation towards the sensor. For this reason, 18 representative surface types including street asphalt,
paved brick, road concrete, grass, snow, sand, wood, asphalt roof shingle, and a Spectralon with
near-constant reflectance of 99%, which is considered as this is, here, similar to direct radiation
towards the sensor, of [22] (by USGS (United States Geological Survey)) are used as source for surface
reflectances (Figure 3, top).
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Figure 3. Top: Variation in surface reflectances for selected 18 spectra; bottom: Variation in atmospheric
transmission curves for selected five atmospheric profiles and visibilities 10 km (minimum; dark lines),
55 km (mean), and 100 km (maximum; bright lines).

2.5. Atmosphere

Radiative transfer is the physical process to transform BOA radiances to TOA radiances,
by which radiation interacts with the atmospheric constituents. To quantify atmospheric impacts,
the code by [23] is used. Since the focus is on cloud-free conditions, only such atmospheres are
considered. How to differentiate between cloud-covered and cloud-free conditions even solely
based on panchromatic images is illustrated by [24] especially for urban areas with high accuracy.
Since the focus is on urban areas, urban aerosols and atmospheric profiles mid-latitude summer,
mid-latitude winter, subarctic summer, subarctic winter, and tropical are included to cover a wide range
of conditions. Together with visibilities between 10 and 100 km, that strongly determine transmittance,
a range of 30–40% between highest and lowest atmospheric transmittance occurs (Figure 3, bottom).
Without further assumptions, this also gives an indicator of the possible error range for atmospheric
transmittance estimation, which is the largest error source in the estimation of radiant flux [25].

As illustrated in Figure 4, hence, a TOA radiance is generated for each of the eight considered
lighting types by sampling uniformly at random among the corresponding lamp spectra of NOAA and
GUAIX, luminances between 0.3 and 4.0 cd m−2 uniformly at random, as well as surface reflectances
selected of USGS and for fire by sampling temperatures uniformly at random between 400 and 1200 K.
Finally, one of five stated atmospheric profiles and between 10 and 100 km visibility selected uniformly
at random are applied.
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Figure 4. Framework for simulation of a spectral band’s sensor signal.

2.6. Satellite Sensor

The purpose of the satellite sensor is to produce radiance images on the focal plane array
of an optical imaging system, where different spectral bands are sensitive to particular ranges of
wavelengths. To compute for a band B the signal LB that arrives at a sensor through combining spectral
radiances Lλ of different wavelengths λ, the weighted average of the normalized effective radiance
value over the detector bandpass RB,λ is considered, namely the band-averaged spectral radiance
LB =

∫ ∞
0 LλRB,λdλ/

∫ ∞
0 RB,λdλ which is measured in W m−2 sr−1 nm−1. The detector bandpasses are

difficult to synthesize accurately beforehand. As a general rule, however, such detector bandpasses are
described by an analytical function which behaves as a combination of a rectangular function and a

Gaussian function. Commonly, a symmetric super-Gaussian function RB,λ = 2−|2(λ−BCW)/BFWHM|k is
used, where BCW and BFWHM represent the center wavelength (CW) and full width at half maximum
(FWHM) of band B and k denotes a parameter which defines the shape of the function. For high values
of k, the function resembles a rectangular function, while for k close to 2 the Gaussian function is
approximated. For optical remote sensing purposes, k = 6 usually results in realistic detector bandpass
functions [14]. Due to the robustness of optimization and due to production of detector bandpasses,
we consider CW in steps of 1 nm and FWHM in steps of 5 nm.

The signal that constitutes the at-sensor radiance image does not only contain radiances
originating from the already mentioned radiation sources. Additionally, it might include stray light
in case the satellite is directly lit by sunlight and high energy particles. Moreover, noise can be
introduced during the charge transfer process caused by detectors and electronic devices. Here,
the focus lies on radiometric or optical imaging system noise because other noise sources, such as
straylight, are relatively straightforward to model. To compare the amount of desired signal
electron number SB to the level of noise electron number NB, it is assumed that SNRB = SB/NB

as Signal-Noise-Ratio and NERB = LB/SNRB in W m−2 sr−1 nm−1 as Noise-Equivalent-Radiance.
The largest radiometric noise contribution is a result of the random incidence of photons, thereby
randomly generating photo-generated electrons, so-called photon shot noise. Assuming photon shot
noise to be dominant and other contributions negligible, the noise electron number is rewritten as
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NB =
√

SB, thereby obeying a Poisson distribution. The signal electron number SB itself is retrieved by
converting the incoming spectral radiance to electron content SB = LB · A · π · τ · η · t · BCW · BFWHM

/((4( f /#)2 + 1) · h · c) with A being the detector’s effective area, τ is the system’s optical transmittance,
η is the quantum efficiency, t is the effective integration time, f /# is the f-number, h is Planck’s constant,
and c is the speed of light [26].

As a reference for the noise model, the recommendation by [13] on SNR is adopted, i.e., for a
photopic spectral band P with PCW = 560 nm and PFWHM = 100 nm an SNRP = 10 at a band-averaged
spectral radiance LP = 2.5 × 10−7 W m−2 sr−1 nm−1. With the assumption of all other variables
remaining identical, this results in NERB =

√
LBPCWPFWHM/(LPBCWBFWHM) ·NERP and allows for

a noise value to be taken from a Poisson distribution to be added to LB.
Thus, as illustrated in Figure 4 for any given spectral band B, the TOA band-averaged spectral

radiances LB are computed from the TOA radiance spectra and noise taken from a Poisson distribution
with mean NERB is added to the signal in order to end up with a realistic sensor signal. Note that the
conversion to a digital number is not considered at this point; due to the fact that some sensor-specific
qualities need to be known before detection limits and saturation values are determined.

2.7. Performance Metrics

For indices, we consider the mean absolute error (MAE) to measure errors, namely
MAE = ∑n

1 |yi − xi|/n, where yi is the estimated value and xi the true value.
For classifications, we consider the confusion matrix with true positive (TP), false positive (FP),

false negative (FN), and true negative (TN). For example, the number of TP is defined by the number of
correctly predicted positives, while the number of TN is defined by the number of incorrectly predicted
negatives. With recall = TP/(TP + FN) describing the ability to correctly predict all positive instances
and precision = TP/(TP + FP) describing the radio of correct predictions among those instances
that have been predictive positive, it is F1 = recall · precision/(recall + precision) considered as both
measures are not reliable by themselves. For multiple classes the F1 is the mean over the F1 scores of
all classes.

3. Results

As it is not effective to share full lamp spectral irradiances, technical descriptions of and
management decisions on artificial lighting generally consists of only a limited number of performance
parameters or indices. We investigate the most common spectral indices in lighting engineering,
based on a report on road lighting and traffic signals of the European Commission [18,21]. These define
how much light is emitted, how much of the emitted light is seen by the human eye, or how much
light is emitted in the blue part of the EM spectrum. In addition to the discrimination of lighting types,
also the perceived color of the emitted light is assessed.

For optimization the MAE concerning the lighting parameters and F1 score concerning the
lighting classification are minimized or maximized based on the at-sensor radiances only. Namely
information on the radiation source, luminance, surface, or atmosphere are not considered while
estimating the values.

3.1. Luminous Efficacy of Radiation

In designing artificial lighting, achieving a high luminous efficacy is crucial. Luminous efficacy
rates the amount of visible light that is produced, in lumen, divided by the total amount electrical power
that is required, in watt. Therefore, it is a measure for the efficiency of a particular luminaire system.
Not only does luminous efficacy take into account emissions outside of the visual spectrum, but also,
for example, decreased lumen as a result of dirt collections on the luminaires or electrical power
losses in control gears. As luminous efficacy is impossible to be estimated without any ground-based
information, it is often interchanged with luminous efficacy of radiation (LER), which is computed as
the ratio between luminous flux Φv = Kmax

∫ ∞
0 V(λ) dΦe(λ)

dλ dλ with Kmax being the greatest luminous
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efficacy which can theoretically be achieved at 555 nm, equaling 683 lm W−1, and V(λ) is the CIE
photopic spectral luminous efficiency or the human eye’s relative sensitivity under well-lit conditions,
and radiant flux Φe =

∫ ∞
0

dΦe(λ)
dλ dλ, namely LER = Φv/Φe [18].

Thus, a choice of two bands is physically required for the estimation of LER. A panchromatic
band B0 is used to estimate the irradiance emitted across the full EM spectrum (i.e., denominator of
equation) and a (near) luminance band B1 is used to estimate the amount of irradiation which is visible
to the human eye (i.e., numerator of equation).

Band B0 estimates the amount of emitted irradiance, namely the radiant flux and is itself a light
parameter playing one of the most important roles that corresponds to a certain luminaire system.
The estimation of the radiant flux from band B0, however, is not straightforward, as it depends on
a number of different parameters, e.g., surface reflection, atmospheric transmittance, and the ratio
of emitted power within the measured spectrum. As in typical situations surface reflection and
atmospheric transmittance are essentially constant and similar factors to bands B0 and B1, however,
they basically cancel for LER. As band B0 covers the full EM spectrum, the signal is high and sensitive
to all considered radiation types; it also serves as a panchromatic band and is used for normalization
purposes. Whereas it is possible to estimate radiant flux of lamps, uncertainties remain relatively
high. Usually, rather than the radiant flux, it is the required electrical power that is of interest.
However, estimating the latter is further complicated by the need for data on electrical power efficacy,
which describes the ability to transform electrical power into optical power.

Band B1 estimates the amount of visible light, namely the luminous flux and is also an important
light parameter by itself, its detector bandpass function shall closely resemble the photopic spectral
luminous efficiency curve V(λ). However, the form of a detector bandpass function differs from the
form of V(λ). The optimal spectral band B1 to resemble V(λ) is reached for B1CW = 561 nm and
B1FWHM = 121 nm, theoretically. Note that the CW differs slightly from the wavelength at which V(λ)

reaches its maximum, i.e., 555 nm. This is ascribed to the asymmetrical form of V(λ) having a slightly
positive skew. It is expected that this shift to higher wavelengths will be less significant in practice,
as most lamps have almost no emissions around the larger base of the function, i.e., 650 nm.

The estimated LER, namely L̃ER = a · LB1/LB0, is not only achieved by LB1/LB0 as these ratios
do not yet represent LER values, but they need to be adjusted by applying a multiplication factor a.
It is theoretically approximated by a Kmax · B0FWHM/B1FWHM. A practical approximation based on the
ratios and LER using least-squares estimation is preferred.

In order to select the optimal parameters for B0 and B1, uniformly distributed sampling is used
for the CW and FWHM. Based on the discussions, for B0, CW ranges between 500 and 750 nm and
FWHM ranges between 300 and 550 nm, and for B1, CW ranges between 500 and 600 nm and FWHM
ranges between 80 and 150 nm. Considering all possible combinations, the optimum is reached for
the combination B0CW = 619 nm and B0FWHM = 490 nm (panchromatic) as well as B1CW = 556 nm
and B1FWHM = 125 nm (green). Note that, as expected, B1 deviates slightly from those reached from
approximating the photopic luminous efficiency function directly. An MAE for L̃ER of 13 lm W−1

is reached. For comparison, the mean LER for the test data equals 307 lm W−1 with a standard
deviation of 117 lm W−1. It is important to note that these LER are slightly higher than they will be
in reality, since they are only based on the 350-900 nm range, with data outside this range missing
for the spectra. The theoretical estimation of a results in 174, while the practical estimation yields
a = 151. Applying these analyses to the band B1 recommended by [13], namely B1CW = 560 nm and
B1FWHM = 80 nm, results in an MAE for L̃ER of 46 lm W−1, indicating that the proposed bands offer a
significant improvement for the estimation of the efficiency of artificial lighting.

Let us consider instead of the optimized the typical panchromatic band B0 with B0CW = 700 nm
and B0FWHM = 400 nm. Here, the range 865–900 nm is covered, but it is relevant for fire and
incandescent lamps only, where the radiant flux is only marginally emitted in VIS/NIR at all. However,
using the optimized or typical panchromatic band, estimations on the radiant flux are derivable taking
the lighting type into account. For all other lighting types there is almost no emission in this range.
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Here, the range 374–499 nm is not covered, but it is relevant for more than half of the considered
lighting types, e.g., LED lamps produce strong emissions, however, HPS lamps do not.

3.2. Spectral G Index

Light pollution, especially in the blue part of the spectrum, has gained substantial attention.
Examples are the disruptive effect of artificial lights on the nocturnal behavior of different species as
well as on human health [27]. For a long time correlated color temperature has been the principal
indicator for the amount of emitted blue light, despite its inability to sufficiently describe the spectrum
of a lamp. However, the European Commission has published a report in which it recommends the
use of the so-called spectral G index instead [18], which is computed as the total amount of luminous
flux divided by the amount of radiant power emitted between 380 and 500 nm with high values
corresponding to low blue light emissions, namely G = 2.5 log10

∫ ∞
0 V(λ) dΦe(λ)

dλ dλ/
∫ 500

380
dΦe(λ)

dλ dλ.
Note the similarities between the enumerator of this equation and the one of LER. Thus, a choice of
two bands is physically required for the estimation of G, with a focus on the amount of blue light.
However, the enumerator is estimated by the same spectral band B1. The denominator, on the other
hand, comprises the sum of emissions between 380 and 500 nm, and therefore needs an additional
band B2. This sum equals applying a rectangular detector bandpass with CW of 440 nm and FWHM of
120 nm. The optimal band for a super-Gaussian detector bandpass function will not, in practice, differ
much from these values.

The estimated G, namely G̃ = 2.5 · log10 (a · LB1/LB2), first ignores the logarithmic form, in order
to more accurately estimate the multiplication factor a.

In order to select the optimal band B2, uniformly distributed sampling is used for the CW between
420 and 460 nm and FWHM between 100 and 140 nm based on the discussions. As expected, the optimal
band B2 closely resembles the mentioned rectangular with B2CW = 443 nm and B2FWHM = 120 nm
(blue). For a factor a = 1.15 an MAE for G̃ of 0.081 is obtained. By comparing this result to the mean
1.875 and the standard deviation 1.923 of the data, adding a band in the blue part of the spectrum
proves to be beneficial. The recommended bands by [13], occasionally criticized for its lack of a
dedicated blue band, only reaches an MAE of G̃ of 0.569 with its scotopic band B2CW = 502 nm and
B2FWHM = 95 nm. With common criteria suggesting G ≥ 1.5 [18], an error of 0.081 is acceptable in
most cases. Note that these accuracy values additionally depend on the characteristics of the sensor,
i.e., detection limits, saturation, and the number of bits used for radiometric sampling. Hence, the error
will be slightly larger in reality, but remains acceptable for a sensible choice of sensor parameters.

With most of modern streetlights being non-Planckian radiators more emphasis is placed on the
estimation of the spectral G index, as opposed to estimating correlated color temperature.

3.3. Classification

In order to classify different radiation sources into their respective type, sensor data is compared to
a spectral library with the means of a k-nearest-neighbor (KNN) classification. Put simply, a particular
radiation source is labeled with the same class as the majority of its k nearest neighbors in feature space.
KNN is used as it is robust. The goal is not to find the best possible classifier, but the classification
method serves as a comparison measure to judge the usefulness of a particular band combination.
When applying KNN, adding features might deteriorate the classification performance, even if it
improves the classification of one of the classes. For example, if adding a particular band improves the
classification of one lighting type, it might generate large distances for other lighting types, because of
large variances in this band. To overcome these effects, with normalized bands considered as features,
namely its signal is divided by the signal of the panchromatic band, KNN is applied to each possible
combination of features individually. For each lighting type the best feature combination is determined
by withholding the combination with the highest classification performance. To combine the resulting
binary one-versus-all classification results, a weighted voting is performed, with the classification
performance used as weights. In other words, if a particular lamp is classified as multiple types,
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the one with the best performing classifier will be the deciding. For the case where a lamp is not
classified as any lighting type, it is labeled as no class.

Based on Figure 4, the spectral library includes two selected representative spectra for each of the
eight considered lighting types combined with eight typical surface reflectances and normalized to
luminance of 1 cd m−2. Furthermore, four fires with temperatures equally distributed between 400 and
1100 K are included. Finally, all these spectral radiances are combined with the five stated atmospheric
profiles at 20 and 75 km visibility each.

For each lighting type, KNN searches for the best possible combination of bands, including bands
B1 and B2 that have been fixed. In order to select the optimal additional bands, uniformly distributed
sampling is used for the CW between 350 and 900 nm and FWHM between 5 and 200 nm.

As a reference, the classification performance of the case is given, where no additional bands are
added, i.e., by only making use of bands B0 for normalization, B1, and B2. Here, a mean F1 score of
0.620 is reached. The four bands suggested by [13] instead of B1 and B2, however, reached a mean F1
score of 0.791. Thus, it is evident that improvements are possible, and required, by including more
bands. Table 1 gives an overview of the F1 scores for individual radiation source classes, for optimal
band selections of 0, 1, and 2 additional bands. An examination of the optimal combination of
3 additional bands proves that improvements are minimal with a mean F1 score of 0.917 compared
to 0.899 for 2 additional bands. One additional band results in a mean F1 score of 0.802. Hence,
the addition of two bands is recommended in order to allow lighting type identification.

Table 1. F1 scores per lighting type for 0, 1, and 2 additional bands.

0 Additional Bands 1 Additional Bands 2 Additional Bands

Fire 0.537 0.741 0.791
Incandescent (Inc.) 0.744 0.785 0.856
High-pressure sodium (HPS) 0.697 0.838 0.981
Low-pressure sodium (LPS) 0.960 0.921 0.961
Mercury vapor (MV) 0.156 0.861 0.865
Metal halide (MH) 0.687 0.807 0.884
Fluorescent (Fluor.) 0.670 0.706 0.767
Warm-white LED (wLED) 0.554 0.729 0.926
Cold-white LED (cLED) 0.495 0.772 0.956

Mean 0.620 0.802 0.899

An optimum is reached for B3CW = 578 nm and B3FWHM = 15 nm (yellow-orange), in the case of
one additional band B3. Corresponding mean F1 scores significantly increase to a similar mean F1 score
than for the bands suggested by [13], but with one band less. For example, the largest improvement is
seen for mercury vapor, which is clearly differentiated from other lighting types.

Although it is expected that the best combination of two additional bands includes a band
identical, or at least similar, to mentioned band B3, this is not necessarily the case. The reason for
this is that some parts of the spectra might possess high correlations with other parts of the spectra.
In other words, joining the two best scoring spectral bands does not necessarily result in a better
classification performance if they contain similar, correlated, information. The determination of two
additional bands, therefore, needs to start from the situation with B0, B1, and B2 fixed, and with
detector bandpasses for B3 and B4 being generated. In the case of two additional bands B3 and
B4, an optimum is reached for B3CW = 576 nm and B3FWHM = 15 nm (yellow-orange) as well as
B4CW = 815 nm and B4FWHM = 35 nm (near infrared). B3 does not, as is expected, differ much from
the one optimal in the case of one additional band. The largest improvements are seen for HPS and
LED classes as well as only two classes generate F1 scores lower than 0.8, i.e., fire and fluorescent.

A closer look at the confusion matrix in Table 2 reveals the reasons for these low values and details
which types of misclassifications are to be expected. For example, fire is sometimes wrongly classified
as an incandescent lamp or as a mercury vapor lamp. The confusion with mercury vapor lamps is
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probably solved by adding a narrow band around 545 nm, where mercury vapor lamps have one of
their emission peaks. However, the relatively low occurrences of both classes in urban areas, and the
relatively small improvement of introducing such a band aiming solely to distinguish between these
two types, do not justify its consideration. Likewise, there is a high correlation between fluorescent
and mercury vapor lamps. The reason for this lies in the manufacturing process of a fluorescent lamp.
Similarly to mercury vapor lamps, fluorescent lamps make use of mercury gas, resulting in nearly
identical emission spectra. Adding a narrow band around 610 nm probably solves this issue. However,
again its consideration is not justified.

Table 2. Radiation source confusion matrix (relative). Columns and rows represent true classes and
predicted classes.

Fire Inc. HPS LPS MV MH Fluor. wLED cLED Total

Fire 0.740 0.086 0.000 0.018 0.004 0.008 0.004 0.002 0.008 0.870
Inc. 0.104 0.846 0.000 0.000 0.016 0.000 0.000 0.000 0.000 0.976
HPS 0.000 0.000 0.984 0.000 0.010 0.012 0.000 0.000 0.000 1.006
LPS 0.000 0.000 0.000 0.928 0.000 0.000 0.004 0.000 0.000 0.932
MV 0.098 0.000 0.000 0.000 0.952 0.002 0.150 0.000 0.000 1.202
MH 0.016 0.000 0.014 0.006 0.002 0.894 0.060 0.012 0.018 1.022
Fluor. 0.000 0.000 0.000 0.000 0.004 0.038 0.730 0.082 0.050 0.904
wLED 0.000 0.000 0.000 0.000 0.000 0.000 0.048 0.904 0.000 0.952
cLED 0.000 0.000 0.000 0.000 0.000 0.008 0.002 0.000 0.924 0.934
No class 0.032 0.068 0.002 0.048 0.012 0.038 0.002 0.000 0.000 0.202

3.4. Correlated Color Temperature

In order to assess the perceived color of the light emitted by a particular lamp, its spectrum is
compared to a range of blackbody radiators, which follow Planck’s law. The absolute temperature of
the blackbody that most closely resembles the spectrum of the lamp, defines the so-called correlated
color temperature (CCT) [18]. It needs to be noted that, while the computation of CCT values is relevant
for lamps that closely resemble the spectrum of a Planckian source, e.g., in the case of incandescent
lamps, it is no longer relevant for other lighting technologies such as gas discharge or LED lamps.
Despite its limited ability to describe a lamp spectrum, CCT remains a widely applied indicator, as it is
relatively straightforward to grasp its meaning.

Another frequently cited parameter to describe a light source spectrum is that of the color
rendering index (CRI), which expresses a lamp’s ability to faithfully reproduce different colors along
the spectrum, compared to a blackbody radiator with the same CCT. Typically, incandescent lamps
have high CRI values close to the maximum value of 100. LPS lamps, on the other hand, have only one
narrow peak in its spectrum and, therefore, yield low CRI values, near 0. As estimating CRI requires a
very high spectral resolution its estimation is not considered, here.

Although it will most likely lose its value as a lighting metric, as it is limited in properly describing
a lamp’s characteristics, CCT remains a valuable and frequently mentioned specification. For a proper
estimation of CCT, a good distribution of spectral bands along the visible spectrum is required. Looking
at the bands that are already fixed for LER, G, and classification of lighting types, B1 and B2 seem to be
good candidates to cover the green and blue part of the spectrum. The part of the spectrum that is not
covered by the existing bands is located in the red part of the spectrum. It is, therefore, expected that
adding a single band in that wavelength range will significantly decrease the estimation error of CCT.

As expected, the optimum is reached for a band that covers the red part of the spectrum, namely
B5CW = 610 nm and B5FWHM = 75 nm (red). By adding this band, MAE for the estimated CCT, namely
C̃CT which is derived based on the estimated tristimulus values (X̃, Ỹ, Z̃) = ∑1≤i≤5(xi, yi, zi) ×
LBi/LB0 [28], is significantly improved from 994 K to 391 K. An additional advantage of including B5 is
that it offers the possibility of generating true color imagery, with B2, B1, and B5 corresponding to the
blue, green, and red band.
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3.5. Performance Analyses

The recommended spectral bands are illustrated in combination with some typical lamp spectra
in Figure 5 without the panchromatic band with 374–864 nm. What is immediately seen is the ability
of bands B3 and B4 to distinguish between different lighting types. Additionally, there is a good
spread of the different bands across the VIS/NIR spectrum, except for the wavelengths 650–800 nm.
This unsurprisingly coincides exactly with that part of the spectrum where lamps typically emit no
light. Due to the nature of nocturnal radiation sources, the choice of spectral bands differs significantly
from the typical daytime optical sensors. This nighttime focus results in rather atypical bands,
e.g., the narrow yellow-orange band B3 around 576 nm.

Figure 5. Selected bands and typical normalized emission spectra by NOAA [17] and GUAIX [20] for
different nighttime radiation sources (stacked offset for clarity): Band 1 (green, 493–619 nm); Band 2
(blue, 383–503 nm); Band 3 (yellow-orange, 568–584 nm); Band 4 (near infrared, 797–833 nm); Band 5
(red, 572–648 nm). Note that Band 0 (panchromatic, 374–864 nm) is not plotted. (a) cloud-free full
moon; (b) fire, 700 K; (c) incandescent lamp; (d) high-pressure sodium lamp; (e) low-pressure sodium
lamp; (f) mercury vapor lamp; (g) metal halide lamp; (h) fluorescent lamp; (i) warm-white LED lamp;
(j) cold-white LED lamp.
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A performance comparison for the selected bands with respect to other available band
combinations, i.e., the proposal for Nightsat, 10 m bands of Sentinel-2, AC-5, and JL1-3B is given
in Table 3, where the bands are illustrated in Figure 6. As the characteristics of the green band
of JL1-3B and photographs taken by astronauts aboard the ISS are the same, the estimated LER
are also the same. The blue bands are shifted by 10 nm only and therefore, the estimated spectral
G indices are also similar. As the table reveals, a performance improvement was achieved for all
relevant indices with the optimized bands. The Nightsat mission proposal, which is the standard
reference with respect to nighttime VIS/NIR missions, does score relatively well in certain aspects.
For example, the classification of radiation source types reaches similar results as the proposal with
three multispectral bands. However, it does not succeed in estimating emissions in the blue part of the
spectrum, as is reflected by the large MAE for the spectral G index.

Table 3. Performance comparison with other band combinations. Note that results are based on
a panchromatic band B0 with 374–864 nm. Overall accuracy (OA) is the total number of correctly
classified instances divided by the total number of instances.

Nightsat Sentinel-2 AC-5 JL1-3B B1–B3 B1–B4 B1–B5

Band 1 [nm] 450–520 459–525 400–512 430–512 383–503 383–503 383–503
Band 2 [nm] 520–600 542–578 480–590 489–585 493–619 493–619 493–619
Band 3 [nm] 630–690 649–680 560–850 580–720 568–584 568–584 568–584
Band 4 [nm] 700–900 780–886 - - - 797–833 797–833
Band 5 [nm] - - - - - - 572–648

LER [MAE] 46.07 114.40 46.58 68.73 12.66 12.66 12.66
G [MAE] 0.569 0.945 0.220 0.370 0.081 0.081 0.081
Classification [mean F1 score] 0.791 0.806 0.711 0.757 0.798 0.899 0.900
Classification [OA] 0.727 0.743 0.700 0.704 0.776 0.878 0.880
CCT [MAE] 1207 1134 1264 1442 1884 994 391

Figure 6. Dashed green line: CIE photopic spectral luminous efficiency V(λ); (a) black lines: Nightsat
bands, blue lines: Sentinel-2 bands; (b) black lines: AC-5, blue lines: JL1-3B bands; (c) optimized bands
B1–B5; (d) optimized panchromatic band B0.

3.6. Radiometric Resolution

As the conversion from sensor signal to a digital number as illustrated in Figure 4 is not considered,
unlimited dynamic ranges and quantization are assumed. Detectors, however, have a detection limit,
saturation, and bit depth. Assuming detectors have a linear response, the conversion for band B from
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an incoming band-averaged spectral radiance LB to DNB is computed by DNB = (LB − offsetB)/gainB
with offsetB = LB,min and gainB = (LB,max − LB,min)/DNB,max, where LB,min and LB,max represent the
detection limit and the saturation of the sensor as well as DNB,max is the maximum digital number
that can be attained, e.g., 255 for 8-bit images.

Recommendations for the detection limits and saturation of multispectral nighttime VIS/NIR
sensors have been made by [13]. For a photopic spectral band with 510–610 nm detection
limit and saturation of 2.5 × 10−7 and 2.5 × 10−1 W m−2 sr−1 nm−1 are recommended. Here,
band-averaged spectral radiances for the corresponding band B1 range between 6.3 × 10−8 and
4.4× 10−5 W m−2 sr−1 nm−1 for the lamps. Note that the lower limit considers land environments
and challenges with the limited reflected light in aquatic environments are not covered. Especially the
upper limit is significantly lower than the saturation recommended by [13], where the Luxor Sky Beam
in Las Vegas, NV, USA, is used as reference. With a 42 billion candela tunnel of light, it is the strongest
light beam in the world. Taking a linear response into account and ignoring less than 2% of all TOA
radiances, for band B1 detection limit and saturation of 1× 10−7 and 5× 10−3 W m−2 sr−1 nm−1 are
recommended in the case of 16-bit as well as 1× 10−7 and 3× 10−4 W m−2 sr−1 nm−1 in the case fewer
bits are available. The detection limit recommended by [13], on the other hand, more or less conforms to
the computed values, here. However, setting the detection limit to at most 5× 10−8 W m−2 sr−1 nm−1

extends the area of operation to the lighting of pedestrian and cycle zones.
For the other bands, the distribution of band-averaged spectral radiances follow that of band B1

for the lamps, with marginally lower values for the narrow band B3 and with the exception of two
bands, i.e., the blue band B2 and the near infrared band B4. The rather low TOA radiances of band
B2 between 1.4× 10−10 and 2.7× 10−5 W m−2 sr−1 nm−1 is explained by the fact that some lamps,
e.g., high- and low-pressure sodium lamps, barely emit blue light. Ignoring less than 12% of the
smallest TOA radiances and with the importance of blue light emissions in mind, even for relatively
low TOA radiances, it is recommended that the blue band has a slightly lower detection limit by a
factor 10−1. Another difference is seen in band B4, where again some lamps, e.g., low-pressure sodium,
fluorescent, and LED lamps, barely emit near infrared light, but also rather high TOA radiances of
1.8× 10−3 W m−2 sr−1 nm−1 are computed, belonging to some of the high-pressure sodium lamps.
Therefore, by ignoring less than 33% of the smallest and 2% of the largest TOA radiances, it is
recommended that this band has a higher dynamic range, with a saturation in the case of 16-bit at
5× 10−3 and 8× 10−4 W m−2 sr−1 nm−1 in the case fewer bits are available. Increasing the saturation
of band B4 is not only useful for high-pressure sodium lamps, but additionally increases the detection
rate of fire.

Although the main focus is on urban areas, the detection of fire is an interesting by-product of a
dedicated nighttime VIS/NIR sensor. Performing a similar analysis for fire spectra with temperatures
between 400 and 1100 K illustrates that the highest TOA band-averaged radiances are not surprisingly
located in band B4, in the near infrared part of the spectrum. However, even this band is not able
to detect all fires, given the detection limit and saturation recommended for lamps. For a standard
atmosphere a detection limit of 10−7 W m−2 sr−1 nm−1 for B4 roughly corresponds to fires of 550 K,
while a saturation at 10−3 W m−2 sr−1 nm−1 for B4 roughly correspond to a temperatures of 750 K.
However, the saturation is less of an issue, as TOA radiance values are lower in the panchromatic
band B0, for example, thereby not exceeding the saturation threshold. As a consequence, most fires
with temperatures exceeding 550 K are detectable by the recommended sensor. These temperatures
cover most of the forest fires, meaning that the proposed spectral bands, with their detection limits
and saturation, serve as an additional tool for fire detection programs. Although the VIS/NIR part of
the spectrum does not cover the radiation peak of fires, as given by Wien’s displacement law, there is
an important difference with respect to daytime optical sensors. The lower detection limits that are
required for nighttime VIS/NIR sensors offer an opportunity to detect the lower TOA radiances that
are emitted by fires in the VIS/NIR region, typically not visible to daytime VIS/NIR sensors.
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For a standard atmosphere and a constant albedo of 20%, typical for road surfaces, TOA
band-averaged spectral radiances for full moon conditions range between 1.5× 10−7 for band B2 and
2.5× 10−7 W m−2 sr−1 nm−1 for band B5. As these values exceed the recommended detection limit, it
is necessary to model out moonlight in most cases. With typical albedo values for snow and clouds
around 95 and 70%, their respective TOA radiances range between 5× 10−7 and 10−6 W m−2 sr−1 nm−1.
Thus, under full moon conditions, it is possible to detect both clouds and snow cover. As both effects
are extended in size; a spatial binning results in detection capabilities even with reduced moonlight.
However, in comparison to, e.g., NPP-VIIRS-DNB its ability to detect such phenomena is limited.

The computed performance metrics for LER, spectral G index, classification, and CCT are based
on sensor signals before being converted into DN. This means that the results are slightly worse in
a realistic setup, since certain small TOA radiance differences will be lost as a result of radiometric
sampling. With the above-mentioned spectral bands and their recommended detection limits and
saturation levels, additional analyses are carried out for different bit depths in Table 4.

Table 4. Performance comparison for different bit depths, detection limit, and saturation considering
B0-B5. ? slightly different detection limit and saturation are considered. Overall accuracy (OA) is the
total number of correctly classified instances divided by the total number of instances.

∞-Bit 16-Bit ? 14-Bit ? 12-Bit ? 10-Bit ? 8-Bit ?

LER [MAE] 12.66 35.71 36.38 37.24 116.77 283.10
G [MAE] 0.081 0.118 0.128 0.169 0.715 1.804
Classification [mean F1 score] 0.900 0.842 0.861 0.865 0.839 0.690
Classification [OA] 0.880 0.794 0.774 0.787 0.768 0.662
CCT [MAE] 391 413 414 414 432 737

For most bit depths, classification results are more or less stable, with the exception of an 8-bit
conversion, which produces significantly deteriorated mean F1 scores. While the conversion to 10-bit
still succeeds at classifying most of the radiation sources, the ability to estimate the luminous efficacy
of radiation and spectral G index has drastically declined with respect to larger bit depths, with its
values unacceptable for proper use. It is, therefore, recommended to apply a radiometric sampling of
at least 12-bit, with higher bit depths not considerably better.

For each of the bands, typical TOA band-averaged spectral radiance values are calculated based on
the selected lamp spectra, surface types, luminance recommendations, and atmospheric conditions. It is
important to note here that some of these parameters are uniformly distributed between a minimum
and a maximum value. Therefore, rather than covering a realistic distribution of values, it reflects a
range of possibilities that is evenly distributed.

3.7. Spatial Resolution

The light emitted by artificial lighting sources does not only vary with wavelength, but also
depends on the direction in which the light is emitted. The spatial resolution that is required for
a VIS/NIR nighttime sensor depends completely on the objective of such a mission. It depends
especially on the scale of the objects that need to be detected. For example, if the focus of a mission
is on single-lamp level, a different spatial resolution is required, compared to city block level such
as NPP-VIIRS-DNB. However, for such spatial resolutions, the multispectral approach makes little
sense, since the signal that arrives at the sensor consists of a multitude of lamp signals and lamp types,
turning the estimation of LER, spectral G index, and radiation type meaningless. Therefore, the focus
will be on the single-lamp level here. It is sufficient to consider the panchromatic band only as reducing
the spectral resolution as such is not likely to change the detectability of lamps.

To arrive at recommendations concerning the spatial resolution of a nighttime VIS/NIR sensor
which focuses on artificial lighting, the spacing between different lamps, in combination with their
mounting height, plays an important role. Typical values for these variables were derived from lighting
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engineering standards [21]. This lead to three different cases, i.e., a spacing of 25 m and mounting
heights of 6 m for residential roads (Figure 7a); a spacing of 40 m and mounting heights of 10 m for
roads with a mixed function (Figure 7b); and a spacing of 60 m and mounting heights of 18 m for
major roads (Figure 7c). Lower spacing distances than 25 m do occur, but are not frequent. A typical
luminous intensity distribution pattern is considered, which shows the intensity of emitted light for
different directions.

Figure 7. Single-row arrangement of five lamps with different spacing and mounting height at different
spatial resolutions, with (a) spacing of 25 m, height of 6 m; (b) spacing of 40 m, height of 10 m; (c) spacing
of 60 m, height of 18 m. Road lighting arrangements, spacing of 40 m, with (d) twin central arrangement;
(e) two-sided opposite arrangement; (f) two-sided staggered arrangement of a dual carriageway.

According to the Nyquist sampling theorem, the sampling frequency shall be at least twice the
highest frequency contained in a signal. Applying this logic here means that the required ground
sampling distance should equal half of the spacing, or less, between neighboring lamps. With a
minimum spacing of 25 m, this results in 12.5 m or less. Moreover, neighboring lamps usually possess
similar characteristics, which makes the detection of individual lamps not necessarily required in all
cases and a reduced ground sampling distance for multispectral bands than for the panchromatic
band are feasible. For each of these cases, some sensible spatial resolution options are investigated
in Figure 7. Notwithstanding the above-mentioned prediction, road lighting does not behave like a
regular point source. Intensity distributions have a major influence on the positioning estimation of
lamps. The results predicted by the Nyquist theorem, however, are confirmed by visual inspection that
a spatial resolution of 10 m is feasible. As a target of lighting engineering is to create more homogeneous
illumination patterns on the surface and the atmosphere blurs the shape, a spatial resolution less than
10 m is in this case required to distinguish lamps and between public and private lighting.

For larger-sized roads, such as dual-carriageways, not only the most common one-sided
arrangement and single central arrangement occur that are sufficiently covered by the investigated
single-row arrangement, but also a twin central arrangement (Figure 7d), a two-sided opposite
arrangement (Figure 7e), and a two-sided staggered arrangement (Figure 7f) are common.
Lamp spacings of 40 m are considered as a spacing of 25 m is not relevant, as it corresponds to relatively
narrow roads in a residential area, for which a single-row arrangement is the preferred option.
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A similar pattern as for single central arrangement with double the number of lamps is achieved
for the twin central arrangement, as neighboring twin lamps are that close to each other that they are
almost identical to single lamps. However, under certain conditions a thorough pattern analysis at a
minimum spacing of at most half the distance between the centers of the light cones of the twin lamps
allows the two lamps to be differentiated. Furthermore, as the light cones face each other, the task
gets more complicated. For the two-sided opposite arrangement a similar situation occurs, the light
cones are oppositely directed, which allows for a slightly coarser spatial resolution still enabling the
discrimination of the lamps. Moreover, since the lamps exhibit identical characteristics, it is acceptable
to classify them as a single lamp. It is considerably easier to detect single lamps for a two-sided
staggered arrangement. Once more, as all lamps have a distance of more than 25 m to each other due to
the carriage width, a comparable situation as for the single-row arrangement with a spacing of 25 m
is present.

Given the recommended spatial resolution of 10 m and the relatively low detection limits, it is
also possible to combine two panchromatic bands. The first band combines a high spatial resolution of
10 m with relaxed detection limits, thereby only focusing on lamp detection, while the second band
combines lower detection limits with a relaxed spatial resolution, e.g., 20–25 m. This is also sufficient
for the multispectral bands, for which a reduced spatial resolution of 40–50 m is still acceptable as
lighting parameters typically do not change from lamp to lamp, but potentially from street to street.
However, in this case a stronger mixture of the lamps spectra with spectra of residential and industrial
lighting as well as vehicle lights have to be considered also in combination with skyglow [29].

4. Conclusions

With a focus on spectral characteristics, but also considering radiometric and spatial resolutions,
the article performed and analyzed simulations to recommend performance parameters for nocturnal
multispectral satellite imagery for urban areas as summarized in Table 5. The simulations accounted
for all major contributions to the signal, namely typical theoretical fire spectra, lamp spectral libraries,
standard luminance values for road surfaces, a surface reflectance library, estimations of atmospheric
effects, and the sensor. Future research shall generate and consider fire spectral libraries in visible and
near infrared (VIS/NIR) to thermal infrared to exploit the capabilities of enhanced nighttime satellite
imagery for users of fire products. For urban areas the most important lighting parameters, namely
luminous efficacy of radiation (LER) (with radiant flux and luminous flux), spectral G index (G),
classification of lighting types (fire, incandescent lamps, high-pressure sodium lamps, low-pressure
sodium lamps, mercury vapor lamps, metal halide lamps, fluorescent lamps, warm-white LED lamps,
cold-white LED lamps) (Classif.), and correlated color temperature (CCT) are considered.

Table 5. Recommended performance parameters for nocturnal multispectral satellite imagery for urban
areas. ? normalization and single-lamp detection.

B0 B1 B2 B3 B4 B5

spectral range [nm] 374–864 493–619 383–503 568–584 797–833 572–648
spectral range [color] pan green blue yellow- near red

orange infrared
spatial resolution [m] 10 20 20 20 20 20
applications ?, LER LER, G G

Classif. Classif. Classif. Classif. Classif.
CCT CCT CCT CCT CCT CCT

bit depth [bits] 12 12 12 12 12 12
detection limit [W m−2 sr−1 nm−1] 1× 10−7 1× 10−7 1× 10−8 8× 10−8 2× 10−7 1× 10−7

reference radiance [W m−2 sr−1 nm−1] 1× 10−6 3× 10−6 5× 10−7 3× 10−6 4× 10−6 4× 10−6

saturation [W m−2 sr−1 nm−1] 3× 10−4 3× 10−4 3× 10−5 2× 10−4 8× 10−4 3× 10−4

Signal-Noise-Ratio at reference radiance 24 23 6 14 15 37
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Reference radiances represent the mean of all considered TOA radiances and the corresponding
Signal-Noise-Radio is derived according to Section 2.6, whereas all other parameters are already
directly derived in Section 3.

The next step in this process of simulation is to generate more complex imagery based on measured
lamps, measured reflectance spectra, digital surface models, cadastral maps, modeled cloud conditions
and adding factors such as the moon, residential and industrial lighting as well as vehicle lights.
Therefore, further ground, air-, and spaceborne measurements need to be integrated. Such more
realistic data allow investigating how mixtures of different radiation sources and spatial resolutions
influence, e.g., classification results and radiant flux estimations considering cloud parameters. Finally,
the accuracies of the models and the parameters are to be covered more detailed which is of major
importance for applications, too.

Nighttime images with high spectral and high spatial resolutions are a relatively unexplored field.
The options for future research are, therefore, plentiful. One such area of interest is the estimation of
radiant flux also considering inter- and intra-night changes of emissions, which enables recognition of
changes in human activities, where research has already scratched the surface of this topic. Time-series
of imagery at different scales are investigated to cover the dynamics of the urban lightscape [30].
Another such area of interest is the estimation of cutoff of lamps, i.e., non-cutoff, semi-cutoff, cutoff,
or full-cutoff, to rate the amount of wasted light and glare which is a major lighting parameter not
covered, here. Imagery acquired under different tilting angles are investigated.

With the mentioned areas of research only touching a part of the countless opportunities,
simulating nocturnal imagery is a major step towards a deeper understanding of nighttime VIS/NIR
remote sensing (missions) to reveal insights in the human activities shaping and changing the Earth.
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