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Abstract 

Background:  Processed Chuanwu (PCW), the mother root of Aconitum carmichaelii Debeauxv, has been widely 
used as a classic Traditional Chinese Medicine for pain relieve for over two millennia clinically. However, its action on 
chronic inflammatory pain has not been clarified. Here, we investigated the antinociceptive effect of PCW in complete 
freund’s adjuvant (CFA)-induced mice and its possible mechanisms associated with opioid system and TRPV1 ion 
channel.

Methods:  Male ICR mice were intraplantarly injected with CFA. PCW (0.34, 0.68 and 1.35 g/kg) was orally given to 
mice once a day for 7 days. Von frey hairs and planter test were assessed to evaluate the antinociceptive effect of PCW. 
To investigate the participation of dynorphin/opioid system in PCW antinociception, subtype-specific opioid recep-
tor antagonists or anti-dynorphin A antiserum were used. To eliminate other central mechanisms that contribute to 
PCW antinociception, hot plate (50 °C) test were performed. Further, involvements of TRPV1 in PCW antinociception 
were evaluated in CFA-induced TRPV1−/− and TRPV1+/+ C57BL/6 male mice, and in capsaicin-induced nociception 
ICR naive mice pretreated with nor-BNI. Meanwhile, calcium imaging was performed in HEK293T-TRPV1 cells. Finally, 
rotarod, open-field tests and body temperature measurement were carried out to assess side effects of PCW.

Results:  PCW dose-dependently attenuated mechanical and heat hypersensitivities with no tolerance, which could 
be partially attenuated by coadministration of k-opioid receptor antagonist nor-binaltorphimine (nor-BNI) or anti-
dynorphin A (1–13) antiserum. And PCW antinociception was totally erased by pretreatment with nor-BNI in the hot 
plate test. In addition, PCW antinociception was decreased in TRPV1−/− mice compared to TRPV1+/+ group. And 
PCW still manifested inhibitory effects in capsaicin-induced nociception with nor-BNI pretreatment. PCW significantly 
inhibited capsaicin-induced calcium influx in HEK293T-TRPV1 cells. Finally, no detectable side effects were found in 
naive mice treated with PCW.
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Background
Inflammatory pain after tissue injury results in periph-
eral and central sensitization in peripheral tissues or 
spinal cord [1]. Indeed, hypersensitivities to thermal 
and mechanical stimuli are well documented charac-
teristic symptom of chronic inflammatory pain [1, 2]. 
This chronic process causes patients to live with dis-
ability and continues to impart high health cost, eco-
nomic loss to society. The mechanisms underlying 
the inflammatory pain remain to be elucidated. It is 
well-known that activation of opioid receptors result 
in the inhibition of chronic inflammatory pain [3]. On 
the other hand, transient receptor potential (TRP) ion 
channels in nociceptor peripheral terminals and dor-
sal root ganglias (DRG), especially TRPV1, contribute 
to the initiation and maintenance of hypersensitivity 
under inflammatory pain condition [4], and the delet-
ing or inhibiting activity of TRPV1 leads to reduced 
inflammatory hyperalgesia [4–6]. Recently, several 
reports suggested that the activation of opioid recep-
tors via inhibition of adenylyl cyclase suppresses 
TRPV1 and other nonselective cation currents stimu-
lated by inflammatory agents to induce antinocicep-
tion [7–9]. Current analgesics aimed to modulate pain 
transduction and transmission in neurons has limited 
success [1]. There are two main classes of analgesic 
drugs: opioids and non-steroidal anti-inflammatory 
drugs (NSAIDs), whereas opioid analgesics are limited 
by tolerance, somnolence, respiratory depression, con-
fusion, constipation and addiction [10, 11], NSAIDs 
are restricted by side effects such as gastrointestinal 
ulcers, bleeding, myocardial infarction and stroke [3, 
12, 13]. And the induction of hyperthermia by TRPV1 
antagonists has hampered the development of new 
drugs as analgesics [14]. Therefore, novel and effi-
cient agents that are lack of central side effects and of 
adverse effects typical of NSAIDs are needed [3].

There is a growing interest in the utilization of medici-
nal plants for prevention and treatment of pain. The 
mother and lateral root of Aconitum carmichaelii Debx, 
called as “Chuanwu” (CW) and “Fuzi” in Chinese respec-
tively, have been widely used to relieve pain and treat 
rheumatic arthritis and other inflammatory conditions 
for over 2000 years in clinic. Previous studies have shown 
that processed Fuzi, obtained after autoclaving crude 

Aconiti tuber (Ranunculaceae Aconitum carmichaeli 
Debeaux; Iwate, Japan) to minimize its toxicity, are effi-
cient in relieving pain in repeated cold stress mice, 
chronic constriction injury (CCI) neuropathic pain as 
well as adjuvant articular inflammation in rats [15, 16]. 
And the analgesic effect of processed Fuzi is mediated by 
spinal κ- and μ-opioid receptors in CCI rats and in tail-
flick test [17–20]. On the other hand, it is found that CW 
has an anti-arthritic effect in complete Freund’s adjuvant 
(CFA)-induced arthritis rats [21], and methanol extracts 
of crude Aconitum roots have anti-inflammatory effects 
in inhibiting acid-induced vascular permeability and car-
rageen-induced hind paw edema in mice [22]. However, 
the action of processed CW (PCW) on chronic inflam-
matory pain remains unclear. In the present study, we 
investigated the antinociceptive effect of PCW in CFA-
induced cutaneous inflammation and its possible mech-
anisms associated with opioid system and TRPV1 ion 
channel were also explored.

Methods
This study was supported by the Research Ethics Com-
mittee of China Academy of Chinese Medical Sciences, 
Beijing, China (Permit Number: 2015–2028). All ani-
mals were treated in accordance with the guidelines and 
regulations for the use and care of animals at the Center 
for Laboratory Animal Care, China Academy of Chinese 
Medical Sciences and International Association for Sui-
cide Prevention (IASP). All efforts were made to dem-
onstrate consistent effects of the drug treatments and 
minimize the suffering of animals.

PCW preparation and UPLC–MS and UPLC‑MS2 analysis
PCW preparation
PCW was purchased from Beijing Huamiao Chinese 
medicine Engineering Development Center (Beijing, 
China) and authenticated by Professor Shilin Hu, China 
Academy of Chinese Medical Sciences. Hypaconitine and 
mesaconitine were purchased from the Chinese Authen-
ticating Institute of Material and Biological Products 
(Beijing, China). Benzoylmesaconine, benzoylhypacoi-
tine, aconitine, and benzoylaconitine were purchased 
from Lan Yuan Biological technology Co., Ltd. (Shanghai, 
China). Reserpine as the internal standard was purchased 
from Sigma (USA).

Conclusions:  This study shows PCW’s potent antinociceptive effect in inflammatory conditions without obvious side 
effects. This effect may result from the activation of κ-opioid receptor via dynorpin release and the inhibition of TRPV1. 
These findings indicate that PCW might be a potential agent for the management of chronic inflammatory pain.

Keywords:  Processed mother root of Aconitum carmichaelii, CFA-induced inflammatory pain, Dynorpin/kappa-opioid 
system, TRPV1
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For PCW preparation, we used the method as we previ-
ously described [23, 24]. Briefly, PCW was dried, homog-
enized to fine powders by a plant pulverizer and screened 
by a 0.45  mm sieve. Then 50  g powdered PCW were 
immersed in 500 ml deionized water for 1 h, and heated 
to refluxing for 1.5 h. Water as 8 times of the above total 
weight was added for another 1.5  h refluxing after fil-
tered. The filtered extraction solutions were concentrated 
to 50 ml, and kept at −20 °C and was diluted with deion-
ized water to proper concentration for in  vivo study. 
PCW extraction procedures were carried out according 
to our previous study [24].

UPLC‑MS and UPLC‑MS2 analysis
Chromatographic separation was performed on a 
Waters CORTECS UPLC BEH C18 Column (2.7  μm, 
1.66  ×  100  mm) keeping at 35  °C. 0.1  % aqueous for-
mic acid (v/v) (A) and acetonitrile (B) were used as the 
mobile phase. The gradient elution with the flow rate of 
0.3 mL/min was performed as follows: 10 % B at 0–2 min, 
10–15 % B at 2–7 min, 15–30 % B at 7–15 min, 30–39 % 
B at 15–21 min, 39 % up to 100 % at 21–25 min. The sam-
ple inject volume was 5 μL. The MS analysis was car-
ried out by the ESI source in both positive and negative 
ion mode, and full-scan mass range was 100–1,200  Da. 
The source temperature was 110 °C, and the desolvation 
gas temperature was 300  °C. The flow rates of cone and 
desolvation gas were set at 30 L/h and 600 L/h, respec-
tively. The voltages of capillary, cone and extraction cone 
in positive ion mode were set at 2.5 kV, 35 V and 5.0 V, 
respectively, and in negative ion mode, they were set at 
2.0 kV, 35 V and 5.0 V, respectively.

Data processing
Data were acquired with MassLynx 4.1 and processed 
for calibration and for quantification of the analytes with 
Target Lynx software (Micromass UK).

Special conditions of MS/MS of each analyte are 
important for the development of a satisfactory quanti-
fication method by LC-MS/MS. Therefore, the intellistart 

function was used to find the most specific and sensitive 
detection parameters of each analyte in MRM mode. Ion 
transitions and instrumental parameters in MRM mode 
are shown in Table  1. Typical multiple reaction moni-
toring chromatograms of the compounds in positive ion 
mode are shown in Fig. 1.

The regression equations obtained by least squared 
regression using weighting factor (1/×2). Correlation 
coefficients (r2) were ≥0.9 for all calibration curves, and 
observed deviations were within ±15  % for all calibra-
tion concentrations. The calibration curves, calibration 
ranges and contented in PCW of these compounds are 
performed in Table 2.

Animals
Male mice of 8–12  weeks old were used in all experi-
ments. C57BL/6 TRPV1-knockout (KO) mice 
(TRPV1−/−) were purchased from Jackson Lab (USA). 
ICR mice and C57BL/6 wild-type (WT) mice were pur-
chased from Laboratory Animal Center of Academy 
of Military Medical Sciences, Beijing, China (License 
No. SCXK-2012-004). They were kept in a temperature 
controlled environment (22 ±  1  °C), 55 ±  5  % relative 
humidity with a 12h:12  h light–dark cycle and fed with 
standard chow, for at least 1 week before any manipula-
tions. Animals were habituated to the laboratory condi-
tions for at least 1  h before testing and all experiments 
were performed during the light phase of the cycle. All 
the experiments were performed by two independent, 
blinded observers.

CFA‑induced chronic inflammatory pain
ICR mice were randomly divided into six groups (n = 8): 
the control group (Control), the CFA (Sigma-Aldrich, 
St.Louis, MO, USA)-induced inflammatory group 
(CFA), CFA-induced mice treated with PCW groups 
(CFA + PCW 0.34, 0.68, and 1.35 g/kg, respectively), and 
control mice treated with PCW group (PCW 1.35 g/kg). 
CFA or control groups received an intraplantar injection 
of 20 μl of CFA or vehicle (2 % tween 80 plus saline) to 

Table 1  Ion transitions and instrumental parameters for their LC–MS/MS quantification in MRM mode

IS internal standard, CE collision energy (eV), CV cone voltage (V), MRM specific mass transition, LOQ limit of quantification (ng/ml), LOD limit of detection (ng/ml)

Sample Ion mode MRM CV CE LOQ LOD

Benzoylmesaconine + 590.33 > 77.02 52 78 2.1 0.73

Aconitine + 646.39 > 586.34 50 34 1.9 0.6

Mesantine + 632.33 > 105.04 42 56 2.2 0.9

Benzoylhypacoitine + 574.32 > 542.35 46 34 1.8 0.6

Benzoylaconitine + 604.41 > 105.04 58 54 4.3 1.7

Hypaconitine + 616.36 > 556.31 42 32 1.9 0.61

Reserpine(is) + 609.33 > 174.07 40 42 – –
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the right hind paw. 48 h later, mice were orally adminis-
trated by syringe feeding with distilled water (10 ml/kg) 
or PCW daily for 7  days and mechanical and thermal 
hypersensitivities were evaluated accordingly.

Measurement of mechanical hypersensitivity
Mice were acclimatized in individual clear boxes on wire-
mesh plat form, mechanical hypersensitivity was assessed 
by the sensitivity to the application of von Frey hairs 
(Stoelting Co., Chicago, USA). The von Frey filaments 
of 0.04–2.0 g were used and held perpendicularly to the 
plantar surface of the injected paw for 2–4 s. An abrupt 
withdrawal of injured paw or flinching behaviour imme-
diately following removal of von Frey hairs indicate posi-
tive responses. A 50 % paw withdrawal threshold (PWT) 
was calculated following Dixon’s up-down method [25]. 
The PWT was analyzed at 0, 0.5, 1, 1.5, 2, 3, 4, 24 h and 
3rd, 5th, 7th days post PCW administration, respectively.

Measurement of the heat hypersensitivity in plantar test
The plantar test was assessed for thermal hypersensi-
tivity as previously described [26]. Briefly, mice were 

acclimatized to an apparatus (Ugo Basile Srl, Come-
rio VA, Italy) consisting of individual Perspex boxes, an 
infrared radiant heat source was directed to middle part 
of the plantar surface of the hind paw. We adjusted the 
basal paw withdrawal latency (PWL) to 9–12 s and set a 
cut-off time of 20 s to prevent tissue damage. PWL were 
measured at time piont of 1  h on the 2nd, 4th, 6th day 
post PCW (0.34–1.35  g/kg, p.o.) or vehicle administra-
tion, using the same mouse that for mechanical hyper-
sensitivity assessment, and three trials for each hind paw. 
The interval of PWL measurement was 5 min.

Investigation the mechanisms of antinociception of PCW 
in mice
Involvement of opiod system
To determine the potential role of opiod system in the 
antinociceptive effects of PCW, CFA-induced mice 
were pretreated with cyprodime (2.3  μmol/kg, i.p., 
a selective μ-opioid receptor antagonist, Sigma) or 
nor-binaltorphimine (nor-BNI, 13.6  μmol/kg, s.c., a 
preferential κ-opioid receptor antagonist, Sigma) or nal-
trindole (11.1 μmol/kg, i.p., a selective δ-opioid receptor 

Fig. 1  Typical multiple reaction monitoring chromatograms of PCW

Table 2  Calibration curves, concentration ranges and contented of 6 main components in PCW

Sample Calibration curves Concentration ranges  
(μg/ml)

Contented in PCW 
(μg/g)

Benzoylmesaconine y = 0.6530*x + 0.0857 (r2 = 0.9991) 0.09–90 0.218

Aconitine y = 0.5990*x + 0.0736 (r2 = 0.9875) 0.09–90 –

Benzoylhypacoitine y = 0.3158*x + 0.0488 (r2 = 0.9928) 0.09–90 0.051

Benzoylaconitine y = 0.9983*x + 0.0823 (r2 = 0.99665) 0.09–90 0.036

Hypaconitine y = 0.5151*x + 0.0896 (r2 = 0.9778) 0.09–90 0.011

Mesactonine y = 0.4919*x + 0.0520 (r2 = 0.9903) 0.09–90 0.006
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antagonist, Sigma). 15  min later, animals received an 
administration of PCW (1.35 g/kg, p.o.) or distilled water 
(10 ml/kg, p.o.), and PWT of injured paw was evaluated 
1 h later. In another set of experiments, mice co-treated 
with PCW and nor-BNI were subjected to the plantar 
test for heat hypersensitivity as described above.

Since endogenous dynorphin plays an important role 
in nociception modulation in inflammatory conditions 
[27], we evaluate the role of endogenous dynorphin in 
PCW antinociception by intraspinal injection (i.t.) of 
anti-dynorphin A (1–13) antiserum (Bachem/Peninsula 
Laboratories, Belmont, CA, USA) in CFA-induced mice. 
72 h after CFA treatment, mice were received a dose of 
anti-dynorphin A (1–13) antiserum (5 μg/5 μl, i.t.), then, 
PCW (1.35  g/kg, p.o.) was immediately administrated, 
and mechanical or heat hypersensitivities were measured 
1  h later. The anti-dynorphin A (1–13) antiserum was 
dissolved in saline and was injected by a 29-gauge needle 
between the L5 and L6 intervertebral spaces within 5 min 
[28].

To explore whether other possible central mechanisms 
contribute to PCW antinociceptive effect, heat hypersen-
sitivity to hot plate was evaluated as previously described 
[29]. Briefly, CFA-induced mice were pretreated with 
nor-BNI (13.6  μmol/kg, s.c.). 15  min later, animals 
received an administration of PCW (1.35  g/kg, p.o.) or 
distilled water (10 ml/kg, p.o.), then mice were placed in 
a hot plate set at 50 ± 1  °C (Cold-hot Plate, Ugo Basile, 
Comerio, Italy) and the nociception was recorded as the 
latency time to withdrawal, shaking or licking the injured 
paw 1 h later. A cut-off time of 20 s was set to avoid tissue 
damage.

Involvement of TRPV1 ion channel
To evaluate the possible involvement of TRPV1 ion 
channel on PCW antinociceptive effect, TRPV1+/+ and 
TRPV1−/− mice were used. First, baseline sensory thresh-
olds in TRPV1+/+ and TRPV1−/− mice were tested, then 
mice received an intraplantar injection of 20 μl of CFA 
to the right hind paw. 48 h later, mice were orally admin-
istrated by syringe feeding with PCW (1.35 g/kg) or dis-
tilled water once. PWT of the injured paw was assessed 
before and 0.5, 1, 2, 3, 4  h post-PCW or  distilled water 
administration, respectively.

To further explore the possible involvement of TRPV1 
in PCW antinociception, capsaicin-induced spontane-
ous nociception, mechanical and thermal hypersensi-
tivities were assessed pretreated with κ-opioid receptor 
antagonist, as previously described [30, 31]. Mice were 
pretreated with AMG9810 (a selective TRPV1 antago-
nist, 30  mg/kg, i.p., Tocris Bioscience, Ellisville, Mis-
souri, USA) or Nor-BNI (13.6  μmol/kg, s.c., 15  min 
before PCW administration), PCW (1.35  g/kg, p.o.) or 

distilled water (10  ml/kg, p.o.) 1  h (for p.o. administra-
tion) or 0.5 h (for i.p. administration) prior to the injec-
tion of 20  µl capsaicin (2  µg/paw, Tocris Bioscience) 
or vehicle to the plantar surface of the right hind paw, 
respectively. Immediately after capsaicin application, 
mice were placed into clear observation boxes and the 
nociceptive response was evaluated as the time of spent 
licking the injected paw during 5 min. In another set of 
experiments, the same mice were immediately put into 
the individual clear boxes on wire-mesh platform for 
PWT assessment 15 min after capsaicin administration. 
In the third experiment, mice received the same adminis-
trations of AMG9810, Nor-BNI, PCW or distilled water, 
as described above, and then mice were acclimatized in 
individual clear boxes for 1 h. Immediately after vehicle 
or capsaicin intraplantar injection, mice were again put 
into the individual clear boxes, heat hypersensitivity of 
the injured paw was assessed in planter test, 15 min after 
capsaicin treatment.

Side effects assessments
Rotarod and open‑field test
The effects of PCW on locomotor activity was assessed 
as previously reported [32]. Briefly, mice were trained 
on the rotarod (8  rpm) until they could remain on the 
apparatus for 1 min without falling. Then, mice were sub-
jected to rotarod test 1 h after PCW (1.35 g/kg, p.o.) or 
vehicle (10  ml/kg) administration. The number of falls 
and latency to first fall from the apparatus were recorded 
for duration of 4  min. To exclude possible nonspecific 
muscle relaxant or sedative effects, mice were subjected 
to the open-field test [32]. The floor of the arena was 
divided into 12 equal squares, and the number of squares 
crossed with all paws was counted in a 5-min session.

Body temperature
The difference between the values before and after PCW 
(1.35  g/kg, p.o.) administration were calculated (Δ  °C) 
as described previously [32]. The TRPV1 antagonist 
(AMG9810) (30  μmol/kg, p.o.) was used as a positive 
control.

Cell viability assay
Human embryonic kidney (HEK293) cells were seeded 
in 96-well plates and incubated in serum free ster-
ile DMEM supplemented with 100  U/mL penicillin, 
100  μg/mL streptomycin, and 2  mM Gln-glutamine 
for 24  h. Cells were then incubated with medium con-
taining (0.25, 0.5, 1  µg/ml, respectively) for 24  h. After 
treatment, cells were washed twice with phosphate-
buffered saline (PBS, pH 7.4), and then cell viability was 
determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolium bromide (MTT) method using Cell Titer 
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96® Non-Radioactive Cell Proliferation Assay (Promega, 
Madison, USA) according to the manufacturer’s instruc-
tions. All absorbances at 570  nm were measured with 
a Tecan Infinite M200 Pro microplate reader (Tecan, 
Mannedorf, Swizerland). The experiments were carried 
out 2 times in triplicate measurements.

Calcium imaging
Cloning and cell culture
TRPV1 sequence was amplified from homo genome and 
cloned into pMig plasmid (Addgene, #9044). HEK293T 
cells were cultured in DMEM with 10 % fetal calf serum, 
100 U/l penicillin and 100 μg/ml streptomycin at 37 °C, 
5  % CO2. Cells seeded on poly-l-lysine-covered cover-
slips at the density of 1 ×  106/6-well plate (four cover-
slips/one well of 6-well plate) were transfected with 4 μg 
pMig-TRPV1 by lipofectamine® 2000 (Invitrogen, Mount 
Waverley, Australia) and used for functional calcium 
imaging within 24–48 h after transfection.

Detection of intracellular Ca2+

Cells plated on coverslips in 6-well plated were trans-
fected and cultured in calcium-containing DMEM over-
night and then treated with PCW (0.25, 0.5, 1  µg/ml, 
respectively) for 30 min. Fluo-4AM (40 µM) was loaded 
into HEK293T-TRPV1 cells for 30 min at 37 °C and then 
30  min at room temperature. Cells were then treated 
with capsaicin (8  μM). Fluorescence changes were 
examined by a Zeiss Lsm710 confocal microscope (Carl 
Zeiss AG, Oberkochen, Germany). The experiments 
were repeated independently for two times in triplicate 
measurements.

Statistical analysis
Data are presented as mean ± SEM. Data obtained from 
mechanical and thermal hypersensitivity experiments 
were analyzed by two-way ANOVA followed by Bonfer-
roni post hoc test. Other data were analyzed by one-way 
analysis of variance (ANOVA) followed by Student–New-
man–Keuls post hoc test. A value of P < 0.05 was taken to 
be significant.

Results
PCW attenuated mechanical and heat hypersensitivities 
in CFA‑induced mice
To investigate the antinociceptive effects of PCW, a 
chronic inflammatory model of nociception was used. 
Mechanical hypersensitivity was evaluated from day 1 to 
day 7 48 h after an intraplantar injection of CFA in mice. 
As showed in Fig.  2, CFA caused significant mechani-
cal hypersensitivity characterized by the reduced PWT 
compared with control group. Oral administration of 
PCW (0.34, 0.68, and 1.35 g/kg) was able to significantly 
reverse mechanical hypersensitivity and this effect lasted 
up to 3 h in high dose group. The maximum effect was 
observed 1  h post PCW treatment. And this antinoci-
ceptive effect was maintained while PCW (0.34, 0.68, 
and 1.35  g/kg) was orally administered daily, until the 
7th day post-treatment. Notably, on the 7th day, PCW 
reduced mechanical hypersensitivity with a time-course 
effect profile similar to that of the first day, ruling out 
the possibility of drug tolerance. Although PCW (1.35 g/
kg) potently reduced mechanical hypersensitivity in 
CFA-induced nociception, it did not alter the baseline 
thresholds in normal control mice, suggesting that PCW 

Fig. 2  Effect of PCW on mechanical hypersensitivity induced by CFA in mice. CFA-induced inflammatory pain mice were orally administrated with 
PCW (0.34, 0.68, and 1.35 g/kg, respectively) or water daily for 7 days. On the 1st and 7th days, evaluations for mechanical hypersensitivity were done 
0, 0.5, 1, 1.5, 2, 3, 4 and 24 h post-PCW treatment; all other evaluations were done 1 h post-treatment. Data are represented as the mean ± SEM. 
(n = 8). *P<0.05, **P<0.01 and ***P<0.001 vs. the CFA group, respectively
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(0.34–1.35 g/kg, p.o.) has a unique role in the normaliza-
tion of inflammatory pain.

Hypersensitivity to heat stimulus was explored in CFA-
induced mice in a plantar test. As showed in Fig. 3, oral 
administration of PCW significantly reversed heat hyper-
sensitivity in a dose-dependent manner. And similar 
inhibitions were observed in each dose of PCW on the 
2nd, 4th and 6th days after treatment. These results also 
suggested that the antinociceptive effects of PCW were 
not susceptible to tolerance. Consistent with mechani-
cal results above, PCW (1.35 g/kg) did not produce any 
analgesic effect per se in a plantar test even with repeated 
administration of 7 consetutive days.

Involvement of kappa‑opioid/dynorphin system in PCW 
antinociception in CFA‑induced mice
Previous reported that activations of μ-, δ-, and κ-opioid 
receptors lead to significant reduced inflammatory 
hypersensitivities [33–36]. To assess the antinociceptive 
mechanism of PCW on opioid system, specific antago-
nists of opioid receptors were used. As showed in Fig. 4a, 
PWT was strikingly reduced 48  h post CFA treatment. 
PCW (1.35 g/kg) significantly reversed PWT with inhibi-
tion of 59 ± 5 %, and applications of μ- or δ-opioid recep-
tor antagonist cyprodime or naltrindole did not alter the 
antinociceptive effect of PCW with similar inhibitions 
of 59 ± 7 and 61 ± 7 %, respectively. Interestingly, when 
nor-BNI, a selective antagonist of κ-opioid receptor, was 
used, the antinociceptive effects of PCW significantly 
reduced, with an inhibition of 32  ±  6  %. Heat hyper-
sensitivity in a plantar test was also examined. As dem-
onstrated in Fig.  4b, CFA caused a significant reduced 
in heat hypersensitivity, and this effect were reversed by 
treatment of PCW with inhibition of 66 ± 4 %, while nor-
BNI could significantly reverse its antinociception with 

an inhibition of 15 ±  6  %. These results indicated that 
the activation of κ-opioid receptor, but not μ- or δ-opioid 
receptor, contribute to the antinociceptive effect of PCW.

Endogenous dynorphin that binds to and activates 
κ-opioid receptor plays important role in pain modula-
tion under inflammtory conditons [27]. We further inves-
tigated whether PCW exerted its antinociceptive effects 
via dynorphin release in the spinal cord. As demonstrated 
in Fig. 4c, d, PCW significantly increased PWT and PWL 
compared to CFA group, and these effects could be sig-
nificantly decreased by coadministration of anti-dynor-
phin A (1–13) antiserum (i.t.), with similar inhibition as 
in the nor-BNI-treared mice described above.

To explore whether other possible central mechanisms 
contribute to the antinociceptive effects of PCW, heat 
hypersensitivity in a hot plate test was further inves-
tigated. As showed in Fig.  4e, CFA obviously reduced 
latency time to paw withdrawal compared to control 
group, and PCW (1.35  g/kg, p.o.) could reverse the 
latency time, while this effect was totally blocked by nor-
BNI pretreatment, even in a higher dose of PCW (3.00 g/
kg, p.o.) (data not shown). These results supported the 
central analgesic mechanism of PCW that the activation 
of κ-opioid receptor contributes to its antinociceptive 
process, and it also suggested that other central mecha-
nisms may not be involved in the antinociceptive effects 
of PCW under inflammatory conditions.

Involvement of TRPV1 in PCW antinociception
TRPV1 ion channel plays an important role in the initiation 
and maintenance of mechanical and heat hypersensitivities 
in inflammatory conditions [4–6]. We investigated whether 
TRPV1 was involved in the antinociceptive effect of PCW. 
As demonstrated in Fig. 5a, 48 h after CFA injection, both 
TRPV1+/+ and TRPV1−/− mice exhibited decreased PWT. 

Fig. 3  Effect of PCW on CFA-induced heat hypersensitivity in mice. Evaluations of heat hypersensitivity were done 1 h post-treatment in a 
plantar test on the 2nd (a), 4th (b) and 6th (c) days using the same mice for mechanical hypersensitivity assessment. Data are represented as the 
mean ± SEM. (n = 8). And ###P < 0.001 vs. the control group; *P < 0.05, **P < 0.01 and ***P < 0.001 vs. the CFA group, respectively
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By contrast, CFA reduced the PWL in wild-type mice, but 
not in TRPV1−/− group (Fig.  5b). Therefore, PWT were 
chosen for the assessments of TRPV1 ion channel in the 
antinociceptive effects of PCW. As showed in Fig. 5c, PCW 

caused a rebound of mechanical sensitivity toward base-
lines both in TRPV1+/+ and TRPV1−/− mice 0.5, 1 and 2 h 
post treatment, and the inhibitions in TRPV1+/+ mice were 
about 23 % higher than that in TRPV1−/− group at 0.5 and 

Fig. 4  Involvement of opiod/dynorphin system in the antinociceptive effect of PCW in CFA-induced mice. a Mice were intraplatar injected 
with CFA, 48 h later, mice were pretreated with cyprodime (2.3 μmol/kg, i.p.) or nor-binaltorphimine (nor-BNI, 13.6 μmol/kg, s.c.) or naltrindole 
(11.1 μmol/kg, i.p.). After 15 min, the mice received an administration of PCW (1.35 g/kg, p.o.) or distilled water (10 ml/kg, p.o.), and the mechanical 
hypersensitivity of right hind paw was evaluated 1 h later. Antinociceptive effects of PCW were also evaluated co-administration of nor-BNI (a, b) 
and anti-dynorphin A (1–13) antiserum (c, d) in mechanical and heat hypersensitivity tests, and this effect was also performed pretreated with nor-
BNI in the hot plate test (e). Data are represented as the mean ± SEM. (n = 6). ###P < 0.001 vs. the control group; *P < 0.05 and ***P < 0.001 vs. the 
CFA group, respectively

Fig. 5  Antinociceptive effects of PCW in CFA-induced TRPV1−/− and TRPV1+/+ mice. Baselines of PWT and PWL were tested in TRPV1−/− and 
TRPV1+/+ mice before and 48 h after CFA treatment in the right hind paw (a) and (b) (n = 6). Then, mice were orally administrated by syringe 
feeding with PCW (1.35 g/kg) or vehicle (10 ml/kg) once. Mechanical hypersensitivity of the injured paw was assessed by the sensitivity to the 
application of von Frey hairs 0, 0.5, 1, 2, 3 h, post-PCW administration, respectively (c) (n = 8). Data are represented as the mean ± SEM. (n = 6). 
###P < 0.001 vs. the baseline; *P < 0.05 and ***P < 0.001 vs. the CFA group, respectively; &P < 0.05 and &&P < 0.01 indicate TRPV1−/− vs. the TRPV1+/+ 
group, respectively
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1 h post PCW treatment. These data suggested that TRPV1 
relate to the antinociceptive effect of PCW.

To get the knowledge on the antinociceptive effects 
of PCW through TRPV1 ion channel, capsaicin-
induced nociception was further examined. As shown 
in Fig.  6a, capsaicin, a specific activator of TRPV1, 
induced obvious spontaneous nociception, and this 
nociception was significantly reduced in AMG9810 
and PCW-treated groups with similar inhibitions of 
52 ±  3 and 54 ±  4  %, respectively. While pretreated 
with nor-BNI, PCW produced an inhibition of 
21 ± 2 %. Capsaicin also induced obvious mechanical 
and thermal hypersensitivities, which were reduced 
by AMG9810 and PCW with similar inhibitions, and 
PCW could reverse these hypersensitivities with pre-
treatment of nor-BNI with inhibitions of 24 ±  5 and 
27 ±  6  %, respectively (Fig.  6b, c). These results fur-
ther supported the antinociceptive effects of PCW in 
a capaicin-induced nociception test, and this antino-
ciception was also independent of the activation of 
κ-opioid receptor.

To further explore the effect of PCW on TRPV1 activ-
ity, the intracellular calcium levels were measured in 
HEK293T-TRPV1 cells. As demonstrated in Fig.  7a–c, 
capsaicin significantly increased intracellular calcium in 
HEK293T-TRPV1 cells, while PCW (0.25–1 µg/ml) dose-
dependently decreased capsaicin-induced calcium influx. 
These results suggested that PCW has direct inhibitory 
effect on TRPV1 activity. Next, we examined whether 
the above effect was due to its cytotoxicity. Our results 
showed that PCW (0.25–1 µg/ml) did not exert any cyto-
toxic effects on HEK293T cells under the experimental 
conditions used in the present study (Fig.  7d), suggest-
ing that PCW might specifically inhibit TRPV1 activity 
in vitro.

PCW did not induce detectable adverse effects
Since PCW may stimulate κ-opioid receptor via dynor-
phin release to produce antinociception, we investigated 
whether this medicine produced common side effects of 
opioid-like drugs in rodents on motor performance. The 
active dose of PCW (1.35 g/kg, p.o.) did not alter forced 
or spontaneous locomotion, as assessed by the rotarod 
and open-field tests, respectively (Table  3). Meanwhile, 
PCW may inhibit TRPV1 activity to produce antinocic-
eption. Thus, we further explored whether PCW caused 
body temperature alteration as TRPV1 antagonists [14]. 
As demonstrated in Table 3, PCW (1.35 g/kg p.o.) did not 
induced hyperthermia compared to vehicle group, while 
the TRPV1 antagonist AMG9810 induced a significant 
increase in rectal temperature. In addition, PCW treat-
ment for 7  days did not induce significant body weight 
change and ulceration of the gastric mucosa compared 
with CFA and normal control groups (data not shown).

Discussion
PCW is known to be used effectively to treat joint pain 
and inflammatory diseases in clinic. However, its antino-
ciceptive properties and the possible mechanisms remain 
unclear. Data presented in this study indicate PCW could 
potently attenuate hypersensitivities to mechanical and 
heat stimuli without tolerance in CFA-induced nocicep-
tion. Moreover, the antinociception of PCW was partially 
reversed by coadministration with nor-BNI and anti-
dynorphin A antiserum, respectively. And this antino-
ciceptive effect was also reduced in TRPV1−/− mice. 
In addition, PCW could effectively inhibit capsaicin-
induced nociceptive behaviors with coadministration of 
nor-BNI. PCW also reduced capsaicin-induced calcium 
influx in HEK293T-TRPV1 cells. Thus, our data showed 
the potent antinociceptive effects of PCW and pointed 

Fig. 6  Antinociceptive effects of PCW co-treated with Nor-BNI in capsaicin tests. Nor-BNI (13.6 μmol/kg, s.c., 15 min before) or AMG9810 (30 mg/kg, 
i.p., 30 min before) were pretreated to mice. Then PCW (1.35 g/kg, p.o.) or distilled water (10 ml/kg, p.o.) were administered, and capsaicin tests were 
performed 0.5 (for i.p. administration) or 1 h (for p.o. administration) later. Immediately after capsaicin injection, the nociceptive responses were 
evaluated as the time spent licking the injected paw during 5 min (a), and the mechanical (15 min after capsaicin injection) (b), thermal (15 min 
after capsaicin injection) (c) hypersensitivities were also assessed. Data are represented as the mean ± SEM. (n = 6). ###P < 0.001 vs. the control 
group; **P < 0.01 and ***P < 0.001 vs. the capsaicin group, respectively



Page 10 of 13Wang et al. J Transl Med  (2015) 13:284 

to its connection with dynorphin/κ-opioid system and 
TRPV1 in inflammatory conditions.

CFA-induced cutaneous inflammation in rodents 
effectively mimics a chronic inflammatory pain condi-
tion. A characteristic symptom of this model is that it 

displays hyperalgesia to mechanical and thermal stimu-
lation [1, 2], and has been widely used to study per-
sistent inflammatory pain. In this study, we analyzed 
the antinociceptive effects of PCW in CFA-induced 
cutaneous inflammation. Our results showed that oral 

Fig. 7  Effect of PCW on capsaicin-induced [Ca2+]i influx in HEK293T-RPV1 cells. HEK293T-RPV1 cells were incubated with PCW (0.25, 0.5 and 1 μg/
ml, respectively) for 30 min, then Fluo-4AM for 1 h, and immediately stimulated with or without capsaicin (8 µM). The cells were divided into five 
groups: Control–HEK293T-TRPV1 cultured cells; Capsaicin–capsaicin-induced cells; PCW groups–capsaicin-induced cells treated with various 
concentrations of PCW (0.25, 0.5 and 1 μg/ml, respectively). a Localization of [Ca2+]i (green) in HEK293T-RPV1 cells with by fluorescence staining 
and laser scanning microscopy. b Fluorescent intensity of [Ca2+]i in HEK293T-RPV1 cells. c Mean change in fluorescence ratio in HEK293T-RPV1 cells. 
10 microscopic fields were selected randomly and [Ca2+]i positive cells were counted. d No effect of PCW (0.25, 0.5 and 1 μg/ml, respectively) on 
the cell viability by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. Cell viability of the control was taken as 100 %. Data are 
represented as the mean ± SEM. ###P < 0.001 vs. the control group; *P < 0.05, **P < 0.01 and ***P < 0.001 vs. the capsaicin group, respectively. n = 3 
in each group and each assay was repeated 2 times
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administration of PCW at doses of 0.34–1.35 g/kg could 
remarkably reduce inflammatory mechanical and heat 
hypersensitivities without tolerance, which confirmed its 
antinociceptive action in clinical use for pain relieve.

Recent studies reported that opioid drugs lead to 
more-pronounced antinociceptive effects on inflamma-
tory pain [33–36]. Previous reports suggested that κ- and 
μ-opioid receptors are involved in the antinociceptive 
effects of processed Fuzi (the lateral root of Aconitum 
carmichaelii Debx.) [17–20]. These studies encourage 
us to screen the specific opioid receptors that relate to 
PCW antinociception by using selective opioid recep-
tors antagonists. Our results showed that pretreatment 
with nor-binaltorphimine, a preferential κ-opioid recep-
tor antagonist, could markedly eliminate the antinocicep-
tion of PCW, while treatments of cyprodime, a selective 
μ-opioid receptor antagonist and naltrindole, a selective 
δ-opioid receptor antagonist did not reduce the analge-
sic effects of PCW, indicating that κ-opioid receptor, but 
not μ-, or δ-opioid receptor contributes to the antinoci-
ceptive effect of PCW. It has been reported that endog-
enous dynorphin synthsis increased in the lumber spinal 
cord and plays an important role in nociception modu-
lation under inflammatory conditions [27]. In the pre-
sent study, the enhanced antinociceptive effect of PCW 
under inflammatory conditions may result from the 
increased release of endogenous dynorphin from both 
PCW application and CFA-induced nociception in the 
spinal cord and the subsequent activation of kappa opiod 
receptor. And this hypothesis was supported by our 
findings that the antinociceptive effects of PCW signifi-
cantly dcreased by anti-dynorphin A (1–13) antiserum 
coadministration (i.t.). Although the antinociception of 
PCW in CFA-induced inflammation still remained with 
coadministration of nor-BNI or anti-dynorphin A (1–13) 
antiserum, PCW did not produce any antinociception 
with coadministration of nor-BNI in the hot plate test, 

suggesting that the antinociceptive effects of PCW may 
also relate to certain peripheral mechanisms.

TRPV1 is a heat transducer in normal and pathologi-
cal conditions, activated by temperatures above 42  °C, 
and deleting or inhibiting the activity of this heat-sensi-
tive channel results in reducing inflammatory heat and 
mechanical hyperalgesia [4–6]. Considering the close 
connections of this ion channel with mechanical and 
heat hypersensitivities in inflammatory pain conditions, 
it is reasonable to think that the antinociceptive effect of 
PCW may be mediated by TRPV1. To test this hypoth-
esis, we firstly investigated the antinociceptive effects 
of PCW in TRPV1 wild-type and TRPV1−/− mice. Our 
results showed that the antinociception of PCW was 
reduced in TRPV1−/− mice compared to TRPV1+/+ 
group in inflammatory conditions, indicating TRPV1 
was involved in antinociceptive process of PCW. Next, 
PCW antinociception was also explored in capsaicin 
tests in  vivo and in  vitro. Our data showed that PCW 
could significantly reduce capsaicin-induced nocicep-
tive response, mechanical and heat hypersensitivities in 
mice. Since activation of the opioid receptors reduces 
TRPs-mediated cellular and/or behavioural responses 
[37–40], the antinociceptive effects of PCW were fur-
ther examined on capsaicin-induced nociception with 
pretreatment of nor-binaltorphimine. Our findings dem-
onstrated that PCW still manifested inhibitory effects 
on capsaicin-induced nociception with nor-BIN pre-
treatment, which further pointed to the connection of 
TRPV1 in PCW antinociception. Additionally, calcium 
image analysis confirmed the direct inhibitory action of 
PCW on TRPV1 ion channel. Taken together, these find-
ings indicated that PCW may effectively inhibit TRPV1 
activity, which were consistent with our recent report 
that Wu-Tou decotion, with the main component of 
PCW, could inhibit capsaicin-induced nociception in 
mice [41].

Throughout the present study, the antinociceptive 
effect of PCW was not susceptible to tolerance and 
the active dose of PCW 1.35  g/kg did not cause motor 
impairment, hyperthermia. Furthermore, the prolonged 
treatment of PCW (0.34–1.35 g/kg) did not cause signifi-
cant change in body weight and gastrointestinal ulcers of 
mice. Therefore, it is likely that PCW selectively exerts 
its antinociceptive effect in inflammatory conditions. 
Current analgesics aim to modulate pain transduction 
and transmission in neurons has limited success in pain 
relieve [1], and targeting both the neuronal and nonneu-
ronal mechanisms and excessive neuroinflammation have 
attracted considerable attention for better chronic pain 
treatments [1, 42]. Considering the main mechanisms 
of neuroinflammation and new notions of multi-targets 
intervention for chronic pain [1, 42], it is reasonable to 

Table 3  The effects of PCW on locomotion and body tem-
prature of mice 1 h after administration

Mice were randomly divided into 3 groups: the Vehicle (10 ml/kg, p.o.) group, 
PCW (1.35 g/kg, p.o.) group and AMG9810 (30 μmol/kg, p.o.)-treated group 
for rotarod test, open-field test or body temperature assessment. Significant 
differences were not observed in the locomotion or body temprature tests 
between vehicle and PCW (1.34 g/kg. p.o.) groups, while AMG9810 (30 μmol/
kg, p.o.) significantly increased rectal temperature compared to vehicle or PCW 
(1.34 g/kg. p.o.) groups. Data are expressed as mean ± SEM. (n = 6)

*** P < 0.001 vs. the vehicle or PCW groups

Treatment Rotarod test Open-field test Body tem‑
perature

First fall (s) Falls Crossing Rearing

Vehicle 176 ± 21 2.3 ± 0.5 47 ± 8 11 ± 1 0.29 ± 0.06

PCW 183 ± 18 1.7 ± 0.3 54 ± 6 9 ± 1 0.36 ± 0.06

AMG9810 – – – – 1.09 ± 0.12***
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believe that PCW might have better features than other 
known anagisics.

Conclusions
Our data offered convincing evidence that PCW has 
potent antinociceptive effect in chronic inflammation 
conditions by attenuating mechanical and heat hyper-
sensitivity without obvious side effect. These effects 
may result from the stimulation of κ-opioid receptor by 
increased dynorphin release in the lumber spinal cord 
and the inhibition of TRPV1 ion channel. Collectively, 
these findings confirm and add new information about 
antinociceptive properties of PCW, it also indicates that 
PCW might be a potential agent for the management of 
chronic inflammatory pain.
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