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Abstract: Shannon’s entropy is one of the building blocks of information theory and an essential
aspect of Machine Learning (ML) methods (e.g., Random Forests). Yet, it is only finitely defined for
distributions with fast decaying tails on a countable alphabet. The unboundedness of Shannon’s
entropy over the general class of all distributions on an alphabet prevents its potential utility from
being fully realized. To fill the void in the foundation of information theory, Zhang (2020) proposed
generalized Shannon’s entropy, which is finitely defined everywhere. The plug-in estimator, adopted
in almost all entropy-based ML method packages, is one of the most popular approaches to estimating
Shannon’s entropy. The asymptotic distribution for Shannon’s entropy’s plug-in estimator was well
studied in the existing literature. This paper studies the asymptotic properties for the plug-in
estimator of generalized Shannon’s entropy on countable alphabets. The developed asymptotic
properties require no assumptions on the original distribution. The proposed asymptotic properties
allow for interval estimation and statistical tests with generalized Shannon’s entropy.

Keywords: Shannon’s entropy; generalized Shannon’s entropy; plug-in estimation; asymptotic
normality

1. Introduction
1.1. Introduction and Related Work

Shannon’s entropy, introduced by [1], is one of the building blocks of Information
Theory and a key aspect of Machine Learning (ML) methods (e.g., Random Forests). It is
one of the most popular quantities on countable alphabet (An countable alphabet is a space
that could be either finite, or countably infinite; the elements in an alphabet can be either
ordinal (e.g., numbers) or non-ordinal (e.g., letters)), particularly on non-ordinal space with
categorical data. For example, in [2], all reviewed feature selection methods on non-ordinal
space boiled down to a function of Shannon’s entropy. In addition, Shannon’s entropy
is one of the most important foundations for all tree-based ML algorithms, sometimes
substitutable with the Gini impurity index [3–5].

As one of the essential information-theoretical quantities, Shannon’s entropy and
its estimation are widely studied in the past decades [6–12]. In particular, [9] proved
that an unbiased estimator of Shannon’s entropy does not exist. Current state-of-art
Shannon’s entropy point estimator was provided in [10] with the fastest bias decaying rate
(exponentially-decaying).

Nevertheless, Shannon’s entropy is only finitely defined for distributions with fast
decaying tails [13].

It is never known if the real distribution yields a finite Shannon’s entropy in practice.
Furthermore, all existing results on Shannon’s entropy require it to be finitely defined,
which results in a usage restriction when adopting the entropy-based methods. This is, in
fact, a void in the foundation of all Shannon’s entropy-related results.
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Example 1 (Unbounded Shannon’s Entropy). Let a distribution P be Pk = c/(k ln2 k) for
k ≥ 2, where c is the constant that makes P a valid probability distribution. Such c uniquely exists
because ∑∞

k=2[1/(k ln2 k)] converges. Then Shannon’s entropy of P , H(P) is unbounded because

H(P) =−
∞

∑
k=2

[Pk lnPk]

=−
∞

∑
k=2

[
c

k ln2 k
ln

c
k ln2 k

]
=−

∞

∑
k=2

[
c

k ln2 k
ln c
]
+

∞

∑
k=2

[
c

k ln2 k
ln k
]
+

∞

∑
k=2

[
c

k ln2 k
ln
(

ln2 k
)]

=−
∞

∑
k=2

[
c

k ln2 k
ln c
]
+

∞

∑
k=2

[ c
k ln k

]
+

∞

∑
k=2

[
2c ln ln k

k ln2 k

]
= A Finite Value + ∞ + A Finite Value = ∞.

The effort to generalize Shannon’s entropy has been long and extensive in the existing
literature. As summarized in [14], the main perspective in the generalization in the existing
literature is based on axiomatic characterization of Shannon’s entropy [15,16]. For example,
Refs. [17,18] are efforts with respect to the functional form, H = ∑k≥1 h(pk), under certain
desirable axioms, h(p) = −p log p is uniquely determined up to a multiplicative constant;
if the strong additivity axiom is relaxed to be one of the weaker versions, say α-additivity
or composability, then h(p) may be of other forms, which give rise to Rényi’s entropy [19],
and the Tsallis entropy [20]. However, all such generalization effort does not seem to lead to
an information measure on a joint alphabet that would possess all the desirable properties
of mutual information, which is supported by an argument via the Kullback–Leibler
divergence [21]. Interested readers may refer to [14] for details.

To further address the deficiency of Shannon’s entropy [14] proposed generalized
Shannon’s entropy (GSE) and showed that GSE enjoys all properties of a finite Shannon’s
entropy. In addition, GSE is finitely defined on all distributions. Due to the advantages
of GSE and the deficiency of Shannon’s entropy, the use of Shannon’s entropy should
eventually be transited to GSE.

1.2. Summary and Contribution

To aid the transition, the estimation of GSE needs to be studied. In practice, the plug-in
estimator is one of the most popular estimation approaches. For plug-in estimation of GSE,
asymptotic properties are required for statistical tests and confidence intervals. This article
studies the asymptotic properties for plug-in estimators of GSE.

As a summary of the article’s results, Theorem 1 and Corollary 1 provide asymptotic
normality properties for the plug-in estimators of GSE for all orders (An explanation of
the order is given in Definition 2) on countably infinite alphabet. Corollary 2 provides the
asymptotic normality properties for the plug-in estimators of GSE for all orders on finite
alphabet, except the underlying distribution being uniform (Under a uniform distribution,
the estimation of GSE is reduced to an estimation of population size. Interested readers
can read [22]). The presented asymptotic normality properties immediately allow interval
estimation and hypothesis testing with plug-in estimators of GSE. The numerical results in
Section 3 show that the developed asymptotic properties converge fast, especially when
the order is 2.

The presented properties and performance of GSE plug-in estimators suggest that
GSE’s use is full of promising potential. One may be concerned the construction of CDOTC
(Defined in Definition 1) would bring additional estimation challenges to the already-
difficult estimation of Shannon’s entropy. Yet, the convergence speed for GSE plug-in
estimators is fast. To further unlock the potentials of GSE, additional estimation methods of
GSE and asymptotic properties of functions of GSE (e.g., Generalized Mutual Information,
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also originated in [14]) shall be visited. This article’s results and proofs’ approaches provide
a solid direction toward that end.

The rest of this paper is organized as follows. Section 2 formally states the problem
and gives our main results. In Section 3, we provide a small-scale simulation study. In
Section 4, we discuss the potential of GSE. Proofs are postponed to Section 5.

2. Main Results

Let Z be a random element on a countable alphabet Z = {zk; k ≥ 1} with an as-
sociated distribution p = {pk; k ≥ 1}. Let the cardinality or support on Z be denoted
K = ∑k≥1 1[pk > 0], where 1[·] is the indicator function. K is possibly finite or infinite. Let
P denote the family of all distributions on Z . Shannon’s entropy, H, is defined as

H = H(Z) = − ∑
k≥1

pk ln pk.

To state our main result, we need to state Definitions 1 and 2 given by [14], and Definition 3.

Definition 1 (Conditional Distribution of Total Collision (CDOTC)). Given Z = {zk; k ≥ 1}
and p = {pk}, consider the experiment of drawing an identically and independently distributed
(iid) sample of size m (m ≥ 2). Let Cm denote the event that all observations of the sample take on a
same letter in Z , and let Cm be referred to as the event of total collision. The conditional probability,
given Cm, that the total collision occurs at letter zk is

pm,k =
pm

k
∑i≥1 pm

i
,

where m ≥ 2. pm =
{

pm,k
}

is defined as the m-th order CDOTC.

Definition 2 (Generalized Shannon’s Entropy (GSE)). Given Z = {zk; k ≥ 1}, p = {pk},
and pm = {pm,k}, generalized Shannon’s entropy (GSE) is defined as

Hm(Z) = − ∑
k≥1

pm,k ln pm,k,

where pm,k is defined in Definition 1, and m = 2, 3, . . . is the order of GSE. GSE with order m is
referred to as the m-th order GSE.

It is clear that pm is a probability distribution induced from p = {pk}. Furthermore,
for each m, m ≥ 2, p and pm uniquely determined each other (Lemma 1 in [14]). To help
understand Definitions 1 and 2, Examples 2 and 3 are provided as follows.

Example 2 (The 2nd order CDOTC). Given Z = {zk; k ≥ 1} and p = {pk} = {6k−2/π2;
k = 1, 2, 3, . . . }, the 2nd order CDOTC is then defined as

p2 = {p2,k},

where

p2,k =
p2

k

∑i≥1 p2
i
=

36k−4/π4

∑i≥1[36i−4/π4]
=

k−4

∑i≥1 i−4

for k = 1, 2, 3, . . . .

Example 3 (The 2nd order GSE). Given Z = {zk; k ≥ 1}, p = {pk} = {6k−2/π2; k =

1, 2, 3, . . . }, and p2 = {p2,k} = { k−4

∑i≥1 i−4 ; k = 1, 2, . . . }, the 2nd order GSE, H2(Z), is then
defined as

H2(Z) = − ∑
k≥1

p2,k ln p2,k,
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where p2,k is given in Example 2.

The definition of the plug-in estimator of GSE is stated in Definition 3.

Definition 3 (Plug-in estimator of GSE). Let Z1, Z2, . . . , Zn be independent and identically
distributed (iid) random variables taking values in Z = {zk; k ≥ 1} with distribution p. For each
k = 1, 2, . . . , let Yk = ∑n

i=1 1[Zi = zk] be the sample count of observations in category zk, and let
p̂k = Yk/n be the sample proportion. The plug-in estimator for the m-th order GSE, Ĥm(Z), is
defined as

Ĥm(Z) =− ∑
k≥1

[ p̂m,k ln p̂m,k]

=− ∑
k≥1

[
p̂m

k
∑i≥1 p̂m

i
ln

p̂m
k

∑i≥1 p̂m
i

]
.

Our main results are stated in Theorem 1, Corollary 1 and 2.

Theorem 1. Let p = {pk} be a probability distribution supported by a countably infinite alphabet,
without any further conditions,

√
n
(

Ĥm(Z)− Hm(Z)
) d−→ N(0, σ2

m),

where

σ2
m =

∞

∑
k=1

[
m2

pk
(pm,k ln pm,k + pm,k Hm(Z))

]2

.

Corollary 1. Let p = {pk} be a probability distribution supported by a countably infinite alphabet,
without any further conditions,

√
n
(

Ĥm(Z)− Hm(Z)
σ̂m

)
d−→ N(0, 1),

where

σ̂2
m =

∞

∑
k=1

[
m2

p̂k

(
p̂m,k ln p̂m,k + p̂m,k Ĥm(Z)

)]2

. (1)

Corollary 2. Let p = {pk; k = 1, 2, . . . , K} be a non-uniform probability distribution on a finite
alphabet, without any further conditions,

√
n
(

Ĥm(Z)− Hm(Z)
σ̂m

)
d−→ N(0, 1),

where

σ̂2
m =

K

∑
k=1

[
m2

p̂k

(
p̂m,k ln p̂m,k + p̂m,k Ĥm(Z)

)]2

.

Corollary 2 is a special case of Theorem 1. All proofs are provided in Section 5.
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3. Simulations

One of the main applications of our results is the ability to construct confidence
intervals, and hence testing hypothesis. Specifically, Corollary 1 implies that an asymptotic
(1− α)100% confidence interval for Hm is given by(

Ĥm − zα/2
σ̂m√

n
, Ĥm + zα/2

σ̂m√
n

)
, (2)

where σ̂m is given by (1) and zα/2 is a number such that P(Z > zα/2) = α/2 and Z ∼
N(0, 1). In this section, we give a small scale simulation study to check the finite sample
performance of this confidence interval.

We consider Zeta distribution

P(x = k) =
1

ζ(s)
k−s, k ∈ {1, 2, . . . }

with s = 1.5 and 2.5, where ζ(s) is the Riemann zeta function given by

ζ(s) =
∞

∑
n=1

1
ns .

The simulations were performed as follows. For the given distribution, we obtained
a random sample of size n and used it to evaluate a 95% confidence interval for a given
index using (2). We then checked to see if the true value of the Hm was in the interval or
not. This was repeated 5000 times, and the proportion of times when the true value was in
the interval was calculated. When the asymptotics works well, this proportion should be
close to 0.95. We repeated this for sample sizes ranging from 10 to 1000 in increments of 10.
The results for s = 1.5, order m = 2 and m = 3 are given in Figures 1 and 2; the results for
s = 2.5, order m = 2 and m = 3 are given in Figures 3 and 4.

Figure 1. Effectiveness of the 95% confidence intervals as a function of sample size. Simulations from
Zeta distribution with s = 1.5 and GSE with order m = 2. The horizontal dashed line is at 0.95.
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Figure 2. Effectiveness of the 95% confidence intervals as a function of sample size. Simulations from
Zeta distribution with s = 1.5 and GSE with order m = 3. The horizontal dashed line is at 0.95.

Figure 3. Effectiveness of the 95% confidence intervals as a function of sample size. Simulations from
Zeta distribution with s = 2.5 and GSE with order m = 2. The horizontal dashed line is at 0.95.

The results suggest that convergence is fast, particularly when the order is m = 2. We
conjecture that this may be caused by the fact that, when m is larger, the probabilities in the
corresponding CDOTC are smaller and hence require a larger sample size for convergence.
For the same reason, the results with s = 1.5 converge faster than that of s = 2.5, because
s = 2.5 yields a thinner tail distribution which requires a larger sample size for convergence.
Although GSE with order m ≥ 3 may shed some light on specific information, GSE with
order m = 2 is enough to well exist with asymptotic properties for any valid underlying
probability distribution p.
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Figure 4. Effectiveness of the 95% confidence intervals as a function of sample size. Simulations from
Zeta distribution with s = 2.5 and GSE with order m = 3. The horizontal dashed line is at 0.95.

4. Discussion

The proposed asymptotic properties in Corollary 1 and 2 make it possible for interval
estimation and statistical tests. Based on the simulation results, the convergence is quite
fast, particularly under order m = 2. Note that a GSE with order m = 2 already enjoys all
asymptotic properties without any assumption on original distribution p.

We recommend using GSE with order m = 2 in place of Shannon’s entropy in all
entropy-based methods when applicable. By replacing Shannon’s entropy with GSE, one
still enjoys all the benefits of Shannon’s entropy with a fast convergence speed. Moreover,
using GSE is risk-free compared to Shannon’s entropy because Shannon’s entropy (1) does
not exist on some thick-tailed distributions and (2) requires thinner tail distribution for
some asymptotic properties [11]. Additional research is required to aid the transition. The
proposed asymptotic results allow interval estimation and statistical tests on the modified
entropy-based methods that replaced Shannon’s entropy with GSE. Future research should
aim to provide additional estimation methods of GSE and statistical properties of functions
of GSE, such as GMI. The proposed asymptotic properties in this article directly provide
asymptotic normality for the plug-in estimator of GMI when the real underlying GMI is
not 0. The asymptotic behavior for the plug-in estimator of GMI when the real underlying
GMI is 0 remains an open question, which we will address in future work.

5. Proofs

The proofs require several lemmas. The first lemma is state below.

Lemma 1 ([11,23]). Assume that ∑∞
k=1 pk|log pk|2 < ∞ and that there is a deterministic sequence

K(n) with K(n)→ ∞ such that limn→∞ K(n)/
√

n→ 0 and

lim
n→∞

√
n

∞

∑
k=K(n)

pk log pk = 0.

In this case √
n
(

Ĥn − H
) d→ N

(
0, σ2

)
,
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where

σ2 =
∞

∑
k=1

pk(log pk)
2 −

(
∞

∑
k=1

pk log pk

)2

.

Furthermore, if σ > 0,
√

n
(

Ĥn − H
σ̂n

)
d→ N(0, 1)

where

σ̂2
n =

∞

∑
k=1

p̂k(log p̂k)
2 −

(
∞

∑
k=1

p̂k log p̂k

)2

.

Different proofs of Lemma 1 are provided in [11,23].
The spirit for proof of Theorem 1 is to regard CDOTC as an original distribution and

utilize the result from Lemma 1. Toward that end, several lemmas are needed and stated
below.

Lemma 2 (Equivalent conditions in Lemma 1). For any valid distribution p, let the correspond-
ing CDOTC with order m be denoted as pm, then

∞

∑
k=1

pm,k
∣∣log pm,k

∣∣2 < ∞

and that there is a deterministic sequence K(n) with K(n)→ ∞ such that limn→∞ K(n)/
√

n→ 0
and

lim
n→∞

√
n

∞

∑
k=K(n)

pm,k log pm,k = 0.

Lemma 3 (σ2
m in Theorem 1). In Theorem 1,

σ2
m =

∞

∑
k=1

[
m2

pk
(pm,k ln pm,k + pm,k Hm(Z))

]2

.

Lemma 4 (σ̂2
m in Corollary 1). In Corollary 1,

σ̂2
m =

∞

∑
k=1

[
m2

p̂k

(
p̂m,k ln p̂m,k + p̂m,k Ĥm(Z)

)]2

.

Proof of Lemma 2. Note that for any p to be a valid distribution, the tail of p must
be thicker than 1/(k ln k) because ∑k≥2 1/(k ln k) diverges. Hence pm is thicker than
1/(k2 ln2 k) for any m ≥ 2 by definition. It is shown in Example 3 of [11] that such
tail satisfies the mentioned conditions.

Proof of Lemma 3. Because of Lemma 2, σ2 can be obtained under finite K and then let
K → ∞. For a finite K, it can be verified that for i = 1, . . . , K− 1,

∂Hm

∂pi
= (ln pm,K − ln pm,i)

mpm,i

pi
−m

(
pm,i

pi
− pm,K

pK

)
(Hm + ln pm,K).

Let
v = (p1, · · · , pK−1)

τ ,

v̂ = ( p̂1, · · · , p̂K−1)
τ .
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We have
√

n(v̂ − v) L→ MVN(0, Σ(v)), where Σ(v) is the (K − 1) × (K − 1) covariance
matrix given by

Σ(v) =


p1(1− p1) −p1 p2 · · · −p1 pK−1
−p2 p1 p2(1− p2) · · · −p2 pK−1
· · · · · · · · · · · ·

−pK−1 p1 −pK−1 p2 · · · pK−1(1− pK−1)


According to the first-order Delta method,

σ2
K = ∇HT

mΣ∇Hm =
K

∑
k=1

[
m2

pk
(pm,k ln pm,k + pm,k Hm(Z))

]2

.

Given Lemma 2, let K → ∞,

σ2 =
∞

∑
k=1

[
m2

pk
(pm,k ln pm,k + pm,k Hm(Z))

]2

.

Proof of Lemma 4. Lemma 4 is because of σ̂2
m

p→ σ2
m.

Proof of Theorem 1 and Corollary 1. With Lemmas 1–4, and Slutsky’s theorem, Theorem
1 and Corollary 1 are proved.

Proof of Corollary 2. Corollary 2 is a directly result of Theorem 1, except under uniform
distribution when ∇Hm = 0 for all m ≥ 2.
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